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Abstract. Particles containing secondary organic material
(SOM) are ubiquitous in the atmosphere and play a role in
climate and air quality. Recently, research has shown that
liquid–liquid phase separation (LLPS) occurs at high relative
humidity (RH) (greater than ∼ 95 %) in α-pinene-derived
SOM particles free of inorganic salts, while LLPS does not
occur in isoprene-derived SOM particles free of inorganic
salts. We expand on these findings by investigating LLPS
at 290± 1 K in SOM particles free of inorganic salts pro-
duced from ozonolysis of β-caryophyllene, ozonolysis of
limonene, and photo-oxidation of toluene. LLPS was ob-
served at greater than∼ 95 % RH in the biogenic SOM parti-
cles derived from β-caryophyllene and limonene while LLPS
was not observed in the anthropogenic SOM particles derived
from toluene. This work combined with the earlier work on
LLPS in SOM particles free of inorganic salts suggests that
the occurrence of LLPS in SOM particles free of inorganic
salts is related to the oxygen-to-carbon elemental ratio (O : C)
of the organic material. These results help explain the differ-
ence between the hygroscopic parameter κ of SOM particles
measured above and below water saturation in the laboratory
and field, and have implications for predicting the cloud con-
densation nucleation properties of SOM particles.

1 Introduction

Secondary organic material (SOM) is produced in the at-
mosphere by the oxidation of volatile organic compounds
(VOCs) such as α-pinene and isoprene from trees and toluene
from anthropogenic sources. Once formed, the low-volatility

and semivolatile oxidation products can partition to the parti-
cle phase to form SOM-containing particles (Hallquist et al.,
2009; Ervens et al., 2011). SOM accounts for approximately
20–80 % of the submicrometer particle mass in the atmo-
sphere (Zhang et al., 2007; Jimenez et al., 2009). Although
the exact chemical composition of SOM in atmospheric par-
ticles remains an active area of research, laboratory and field
studies have shown that the average oxygen-to-carbon ele-
mental ratio (O : C) of these particles ranges from 0.2 to 1.0
(Chen et al., 2009; Jimenez et al., 2009; Heald et al., 2010;
Takahama et al., 2011).

As the relative humidity (RH) varies in the atmosphere,
SOM-containing particles can undergo several different
phase transitions with implications for the cloud conden-
sation nuclei (CCN) properties, optical properties, reactiv-
ity, and growth of these particles (Martin et al., 2000; Ray-
mond and Pandis, 2002; Bilde and Svenningsson, 2004;
Zuend et al., 2010; Kuwata and Martin, 2012; Brunamonti
et al., 2015). One possible phase transition that SOM parti-
cles may undergo as RH varies in the atmosphere is liquid–
liquid phase separation (LLPS) (Pankow, 2003; Marcolli et
al., 2006; Ciobanu et al., 2009: Zuend and Seinfeld, 2012;
Veghte et al., 2013; O’Brien et al., 2015). LLPS in particles
containing both SOM and inorganic salts has been the focus
of many recent studies. These studies have shown that SOM
particles mixed with inorganic salts can undergo LLPS in the
atmosphere when the O : C of the organic material is less than
0.56, but LLPS may not occur when the O : C of the organic
material is greater than 0.80 (Bertram et al., 2011; Krieger et
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Table 1. Experimental conditions for production and collection of SOM particles by ozonolysis. Included is the measured separation relative
humidity (SRH) upon moistening and mixing relative humidity (MRH) upon drying of the collected particles. Particles were collected on
hydrophobic substrates using an electrostatic precipitator or single-stage impactor. The uncertainty in the MRH and SRH values is ±2.0 %
RH, due to the uncertainty in the RH measurements.

SOM sample VOC O3 SOM mass Flow rate for Collection Collection MRH SRH
conc. conc. conc. SOM particle time method (%) (%)

(ppm) (ppm) (µg m−3)∗ production (h)
(L min−1)

β-Caryophyllene 1 0.03 30 15–30 7.0 24 Single-stage impactor 92.7 94.9
β-Caryophyllene 2 0.03 30 15–30 7.0 46 Single-stage impactor 95.0 94.4
β-Caryophyllene 3 0.7 12 2000–4000 3.5 6 Electrostatic precipitator 90.9 91.5
β-Caryophyllene 4 0.7 12 2000–4000 3.5 14 Electrostatic precipitator 93.9 94.1
β-Caryophyllene 5 0.7 12 2000–4000 3.5 9 Electrostatic precipitator 93.9 94.1
Limonene 1 0.07 30 80–90 7.0 24 Single-stage impactor 95.6 98.7
Limonene 2 0.07 30 80–90 7.0 24 Single-stage impactor 97.4 98.8
Limonene 3 2.0 13 7000 3.5 20 Electrostatic precipitator 95.6 95.3
Limonene 4 2.0 13 7000 3.5 20 Electrostatic precipitator 92.7 94.5

∗ Values derived from number–diameter distribution measured by an SMPS and analyzed using a material density of 1200 kg m−3.

al., 2012; Smith et al., 2012; Song et al., 2012a, 2013; Schill
and Tolbert, 2013; You et al., 2013, 2014).

Recently, researchers have also focused on LLPS in SOM
particles free of inorganic salts. Petters et al. (2006) sug-
gested that a miscibility gap in particles containing organic
polymers at high RH may lead to a non-classical pathway for
CCN activation. Renbaum-Wolff et al. (2016) showed that
α-pinene-derived SOM free of inorganic salts can undergo
LLPS at high RH values (∼ 95 to 100 %), which could re-
sult in altered CCN properties. In addition, they showed that
LLPS in SOM particles will lead to a different hygroscopic
parameter, κ , at subsaturated conditions compared to super-
saturated conditions. The implication is that the CCN activity
of SOM particles, if they undergo LLPS, is higher than pre-
dicted from subsaturated hygroscopicity measurements. Re-
lated, Hodas et al. (2016), using a combination of measure-
ments and modeling of surrogates of oligomers, showed that
the prevalence of LLPS at high RH can contribute to differ-
ences in hygroscopicity above and below water saturation.
Most recently, Rastak et al. (2017) observed that isoprene-
derived SOM particles do not undergo LLPS even at high
RH. Rastak et al. (2017) used these results together with ther-
modynamic calculations to explain the hygroscopic proper-
ties of biogenic organic aerosol particles in the laboratory
and the field.

Here we expand on the studies by Renbaum-Wolff et
al. (2016) and Rastak et al. (2017) by investigated LLPS
in SOM particles generated by the ozonolysis of limonene,
ozonolysis of β-caryophyllene, and photo-oxidation of
toluene. Limonene and β-caryophyllene are both biogenic
VOCs, while toluene is an anthropogenic VOC (Kanakidou
et al., 2005). Both limonene-derived and β-caryophyllene-
derived SOM particles have been used as proxies of biogenic
SOM particles in the atmosphere (Bateman et al., 2009; Al-

farra et al., 2012; Kundu et al., 2012; Frosch et al., 2013; Liu
et al., 2013), while toluene-derived SOM has been used as a
proxy for anthropogenic SOM particles (Pandis et al., 1992;
Robinson et al., 2013; Liu et al., 2016; Song et al., 2016; Ye
et al., 2016).

2 Methods

2.1 Production of secondary organic materials

SOM particles were generated via β-caryophyllene ozonoly-
sis and limonene ozonolysis in a flow tube reactor and an ox-
idation flow reactor (OFR) (Table 1), and via toluene photo-
oxidation in the OFR (Table 2). The method of particle gen-
eration in the flow tube reactor was described in Shrestha et
al. (2013) and the methods of particle generation in the OFR
(Kang et al., 2007) were given in Liu et al. (2015). The flow
tube reactor was operated at a flow rate of 3.5 L min−1 (with
a residence time of 38 s) and < 5 % RH. The OFR was op-
erated at flow rates of 7.0 L min−1 (with a residence time of
110 s) and 13± 3 % RH. Both reactors were operated at a
temperature of 293± 2 K.

Table 1 lists the experimental conditions for the pro-
duction of SOM via ozonolysis. For the particle genera-
tion via ozonolysis, ozone was produced by irradiating pure
air (Aadco 737 Pure Air Generator) with ultraviolet emis-
sion from a mercury lamp (λ= 185 nm). Ozone concentra-
tions used for ozonolysis ranged from 12 to 30 ppm for β-
caryophyllene and 13 to 30 ppm for limonene (Table 1). β-
Caryophyllene and limonene (Sigma-Aldrich, ≥ 99 %) were
dissolved in 2-butanol (Sigma-Aldrich, ≥ 99.5 %). These or-
ganic solutions were injected into a glass round-bottom flask
held at 310 K, where the organic liquids vaporized at the tip
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Table 2. Experimental conditions for production and collection of SOM produced by photo-oxidation. Included are the measured separation
relative humidity (SRH) upon moistening and mixing relative humidity (MRH) upon drying of the collected particles. Particles were collected
on hydrophobic substrates using an electrostatic precipitator or single-stage impactor. SRH= 0 and MRH= 0 indicate LLPS was not observed
during humidity cycles.

SOM sample VOC O3 SOM mass Flow rate for Collection Collection MRH SRH
conc. conc. conc. SOM particle time method (%) (%)

(ppm) (ppm) (µg m−3)∗ production (h)
(L min−1)

Toluene 2 0.2 30 80–100 7.0 24 Single-stage impactor 0 0
Toluene 3 1.0 30 600–1000 7.0 48 Electrostatic precipitator 0 0
Toluene 4 1.0 30 600–1000 7.0 48 Electrostatic precipitator 0 0
Toluene 5 1.0 30 600–1000 7.0 96 Electrostatic precipitator 0 0
Toluene 6 1.0 30 600–1000 7.0 96 Electrostatic precipitator 0 0

∗ Values derived from number–diameter distribution measured by an SMPS and analyzed using a material density of 1200 kg m−3.

of a syringe. The organic vapor was then swept into the reac-
tor where ozonolysis took place to form SOM and particles.
The injected precursor concentrations were 0.03–0.7 ppm for
β-caryophyllene and 0.07–2.0 ppm for limonene in the main
flow of the reactor. In the ozonolysis experiments, butanol
served as an OH radical scavenger.

Table 2 presents the experimental conditions for the pro-
duction of SOM via photo-oxidation. For the particle gener-
ation via photo-oxidation, hydroxyl radicals were produced
in the OFR by the photochemical reactions:

O3+hυ→ O2+O(1D), (R1)

O(1D)+H2O→ 2 OH. (R2)

Ozone was again produced by irradiating pure air (Aadco
737 Pure Air Generator) with ultraviolet emission from a
mercury lamp (λ= 185 nm). Ozone concentrations used in
the photo-oxidation studies were 30 ppm (Table 2). Toluene
(Sigma-Aldrich, 99 %) was injected and vaporized in a flask,
and the vapors were swept into the OFR by purified air. The
injected toluene concentrations were 0.2–1.0 ppm.

The mass concentration of SOM particles during the gen-
eration process was determined from measurements of the
number–diameter distribution of SOM particles in the flow
tube reactor or OFR and assuming a material density of
1200 kg m−3 (Liu et al., 2013). The number–diameter dis-
tributions were measured with a scanning mobility particle
sizer (SMPS; TSI Inc.). The O : C ratio of the toluene-derived
SOM studied here was determined using a high-resolution
aerosol mass spectrometer (HR-ToF-AMS; Aerodyne Re-
search Inc.). Data analysis was based on the approach de-
scribed by Chen et al. (2011).

2.2 Production of supermicron SOM particles on
hydrophobic substrates

At the outlet of the flow tube reactor and OFR, the sub-
micrometer SOM particles were collected on hydrophobic
surfaces. The limonene-derived SOM and toluene-derived
SOM particles were collected onto glass slides coated
with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-
Aldrich, 97 %). The coating procedure is described in Knopf
(2003). The β-caryophyllene-derived SOM particles were
collected onto Teflon substrates.

Two different methods were used to collect submicron par-
ticles on hydrophobic substrates (see Tables 1 and 2). The
first method used was an electrostatic precipitator (TSI 3089,
USA). In this case, the resulting SOM particles on the hy-
drophobic substrates were smaller than ∼ 10 µm. From ex-
perience in our laboratory, detection of LLPS with our mi-
croscope setup is the clearest when the size of the particles
are roughly 20–80 µm. As a result, the following method was
used to coagulate the sub-10 µm particles into 20–80 µm par-
ticles: first the substrate containing the SOM particles was
placed in a RH-controlled flow cell (Parsons et al., 2004; Pant
et al., 2006; Song et al., 2012b). The RH in the flow cell was
then set to over 100 % for 30–60 min to grow and coagu-
late the SOM particles. The RH in the flow cell was then de-
creased to ∼ 80–90 % RH to evaporate the water. During the
experiments, the particles were observed using a reflectance
microscope (Zeiss Axiotech, 50×). These growth and coagu-
lation processes resulted in SOM particles consisting of 20–
80 µm in diameter (Song et al., 2015; Renbaum-Wolff et al.,
2016).

In the second method used to collect SOM particles col-
lected on a hydrophobic substrate, a single-stage impactor
was used (Prenni et al., 2009; Pöschl et al., 2010; Hosny et
al., 2016). In this case, the SOM particles after collection
were as big as 100 µm due to coagulation during the collec-
tion process. Since the particles were already large enough
for the LLPS experiments, they were used directly without
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Figure 1. Optical images of SOM particles with increasing RH: (a) β-caryophyllene-derived SOM for the mass concentrations of 2000–
4000 µg m−3 (β-caryophyllene 3, Table 1) and (b) limonene-derived SOM for the mass concentrations of 7000 µg m−3 (limonene 3, Table 1).
Note that the light gray circles at the center of the particles are an optical effect due to the hemispherical nature of the particles. Illustrations
are shown below the images for clarity. Green: SOM-rich phase. Blue: water-rich phase. The scale bar is 20 µm.

the need for the growth and coagulation experiments de-
scribed above. Both methods used to collect SOM particles
collected both the water-soluble and water-insoluble compo-
nents of the SOM particles.

2.3 Optical microscopy of supermicron SOM particles

For the LLPS experiments, the hydrophobic substrate con-
taining SOM particles with sizes in the range of 20 to 80 µm
in diameters was mounted in a temperature and RH con-
trolled flow cell coupled to an optical reflectance microscope
(Zeiss Axiotech, 50× objective) (Parsons et al., 2004; Pant et
al., 2006; Song et al., 2012b). The temperature of the cell was
290± 1 K in all experiments. RH in the cell was regulated by
varying the ratio of a dry and humidified N2 flow. The total
flow rate was ∼ 1200 sccm. The RH was determined from
measurements of the temperature with a thermocouple and
measurements of the dew point/frost point with a chilled mir-
ror sensor (General Eastern, Canada). The RH was calibrated
using the deliquescence RH for pure ammonium sulfate par-
ticles (80 % RH at 293 K; Martin, 2000). After calibration,
the uncertainty of the RH was ±2.0 % based on the repro-
ducibility of multiple deliquesce measurements. At the be-
ginning of LLPS experiments the SOM particles were equi-
librated at∼ 100 % RH for 15 min. Then the RH was reduced
from ∼ 100 to ∼ 0 % RH at a rate of 0.1 to 0.5 % RH min−1,
and subsequently increased to ∼ 100 % RH at a rate of 0.1 to
0.5 % RH min−1. We did not observe a dependence of LLPS
on the RH ramp rate, although only a narrow range of rates
were used. During the humidity cycle, optical images of the

SOM particles were recorded every 5–10 s using a CCD cam-
era.

3 Results and discussion

3.1 β-Caryophyllene-derived and limonene-derived
SOM particles

Humidity cycles at 290± 1 K were performed for β-
caryophyllene-derived SOM particles generated with
mass concentrations of 15–4000 µg m−3 and limonene-
derived SOM generated with mass concentrations of
80–7000 µg m−3 (Table 1). In all cases, LLPS was observed
at high RH. Table 1 summarizes the results during humidity
cycles. Shown in Fig. 1a and Movie S1 (Supplement) are
examples of optical images of a β-caryophyllene-derived
SOM particle as a function of increasing RH for the par-
ticle mass concentrations of 2000–4000 µg m−3. Shown in
Fig. 1b and Movie S2 (Supplement) are examples of optical
images of a limonene-derived SOM particle as a function
of increasing RH for the particle mass concentrations of
7000 µg m−3. For both types of SOM particles, only one
phase was observed for RH values from 0 to ∼ 90 %. Note
the light-colored circle in the center of the particles at 90.5 %
RH for β-caryophyllene-derived SOM and at 95.0 % RH
for limonene-derived SOM is an optical effect due to the
light scattering from a hemispherical particle (Bertram et
al., 2011). In Fig. 1, LLPS is observed at 91.5 % RH for
the β-caryophyllene-derived SOM particle and at 95.3 %
RH for the limonene-derived SOM particle. LLPS began
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Figure 2. RH at which two phases were observed during humidity cycles of individual particles of (a) β-caryophyllene-derived SOM and
(b) limonene-derived SOM from this study, and (c) α-pinene-derived SOM from Renbaum-Wolff et al. (2016) as a function of the SOM
mass concentrations. For all panels, circles represent onset of phase separation upon moistening (i.e., separation relative humidity, SRH)
and triangles represent mixing of two liquid phases upon drying (i.e., mixing relative humidity, MRH). Yellow shaded region indicates two
phases present and green shaded region indicates one phase prevalent in SOM. SOM mass concentrations were derived from measured
number–diameter distributions and assuming a material density of 1200 kg m−3 (Liu et al., 2013).

Figure 3. Optical images of toluene-derived SOM for the particle mass concentrations of 80–100 µg m−3 (toluene 2, Table 2) with increasing
RH. Illustrations of the images are shown for clarity. Green: SOM-rich phase. Size bar is 20 µm.

with the formation of many small inclusions of a second
phase, and in both cases the phase transition occurred over
a narrow range of RH. The small inclusions coagulated
to larger droplets in the β-caryophyllene-derived SOM at
92.5 % RH and in the limonene-derived SOM at 96.1 % RH
(Fig. 1a and b). At the highest RH investigated, a core–shell
morphology is observed. Such a core–shell morphology on a
hydrophobic substrate has been observed previously by Song
et al. (2012b) in particles containing organic, ammonium
sulfate and water, although a different morphology can
result in the absence of the hydrophobic substrate (Reid et
al., 2011). After formation of the core–shell morphology
consisting of an inner and outer phase, the two liquid phases
co-existed as high as ∼ 100 % RH. We assume that the
inner phase is a water-rich phase, while the other phase
is an organic-rich phase, since the size of the inner phase
decreases as the RH decreases (Renbaum-Wolff et al., 2016).
The surface tension of water and the surface tension of
more-oxidized and less-oxidized organics is consistent with
this assumption (Jasper, 1972). Upon drying, the two liquid
phases merge into one liquid phase. This mixing process
occurred at 90.9 % RH for β-caryophyllene-derived SOM
and 95.6 % RH for limonene-derived SOM. Movies of the

mixing process are shown in the Supplement (Movies S3
and S4).

Shilling et al. (2009) showed that the O : C of SOM can
depend on the particle mass concentration used to generate
the SOM. To determine whether the occurrence of LLPS de-
pends on the SOM particle mass concentrations used when
generating the SOM, particle mass concentrations ranging
from 15 to 7000 µg m−3 were investigated (Table 1). Illus-
trated in Fig. 2a and b is the RH at which two phases were ob-
served during humidity cycles as a function of the mass con-
centrations of the β-caryophyllene-derived and limonene-
derived SOM samples. Triangles represent mixing relative
humidity (MRH) of two liquid phases upon drying and
circles represents separation relative humidity (SRH) upon
moistening.

LLPS was observed at 93.6± 1.5 % RH in the β-
caryophyllene-derived SOM particles for the particle mass
concentrations of 15–4000 µg m−3 (Fig. 2a). In the limonene-
derived SOM particles, LLPS occurred at 96.1± 2.1 % RH
for the particle mass concentrations of 80–7000 µg m−3

(Fig. 2b). LLPS occurred at 96.0± 0.7 % RH in α-pinene-
derived SOM particles for the mass concentrations of 75–
11000 µg m−3 (Renbaum-Wolff et al., 2016) (Fig. 2c). As
shown in Fig. 2, the SRH and MRH of the β-caryophyllene-
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Table 3. Summary of the LLPS results as well as the average oxygen-to-carbon atomic ratios (O : C) of the studied SOM particles. The
standard deviation (σ) of the separation relative humidity (SRH) and mixing relative humidity (MRH) is derived from several cycles of RH
for different SOM mass concentrations. SRH= 0 and MRH= 0 indicate phase separation was not observed. The average O : C values for
SOM from toluene photo-oxidation are based on the current study (Sect. 2.1). The average O : C values for the other SOM are taken from
the literature. Since the average O : C can depend on oxidant time and oxidation conditions, we chose literature data that were closest to the
experimental conditions used in the LLPS studies (Supplement, Sect. S1 and Table S1).

SOM Average O : C Average RH (%)± σ

Lowest Highest MRH SRH

Ozonolysis of β-caryophyllene 0.36a 0.38a 93.3± 1.7 93.8± 1.3
Ozonolysis of α-pinene 0.42a 0.44a 95.9± 0.8b 96.1± 0.6b

Ozonolysis of limonene 0.34c 0.40c 95.3± 1.9 96.8± 2.2
Photo-oxidation of isoprene 0.52d 0.89a 0e 0e

Photo-oxidation of toluene 1.14f 1.30f 0 0

a Li et al. (2015); b Renbaum-Wolff et al. (2016); c Heaton et al. (2007); d Lambe et al. (2015); e Rastak et
al. (2017); f this study.

Table 4. Literature data of measured average O : C, κHGF, κCCN, and the difference between κHGF and κCCN, denoted as 1κ , of SOMs.
The average O : C values are based on measurements from the individual studies referenced here. The experimental conditions for the studies
reported in Table 4 were not necessarily similar to the experimental conditions for the studies reported in Table 3, even if the same precursor
volatile organic compound was used.

SOM O : C κHGF at κCCN 1κ Reference
90 % RH

Photo-oxidation of 0.4 0.04 0.15 0.11 Massoli et al. (2010)
α-pinene 0.43 0.07 0.16 0.09 Massoli et al. (2010)

0.45 0.03 0.11 0.08 Pajunoja et al. (2015)
0.55 0.10 0.12 0.02 Pajunoja et al. (2015)
0.67 0.14 0.18 0.04 Massoli et al. (2010)
0.70 0.12 0.13 0.01 Pajunoja et al. (2015)

Photo-oxidation of 0.86 0.13 0.14 0.01 Pajunoja et al. (2015)
isoprene

Photo-oxidation of 0.39 0.02 0.10 0.08 Pajunoja et al. (2015)
longifolene 0.56 0.03 0.09 0.06 Pajunoja et al. (2015)

0.83 0.08 0.10 0.02 Pajunoja et al. (2015)

derived SOM, limonene-derived SOM, and α-pinene-derived
SOM particles do not depend strongly on the SOM particle
mass concentrations used to generate the SOM.

3.2 Toluene-derived SOM

Humidity cycles were also performed for SOM particles gen-
erated from photo-oxidation of toluene using particle mass
concentrations of 80–1000 µg m−3 in the reactor (Table 2).
None of the toluene-derived SOM particles underwent LLPS
during RH cycling even at high RH (Table 2).

Shown in Fig. 3 and Movie S5 (Supplement) are optical
images of a toluene-derived SOM particle for mass concen-
trations of 80–100 µg m−3. Images in Fig. 3 and Movie S5
were recorded as the RH was increased. No LLPS was ob-
served in the SOM particle during RH cycling between 0
and 100 %. Rastak et al. (2017) did not observe LLPS in

isoprene-derived SOM particles for the mass concentrations
of 60–1000 µg m−3

3.3 Relation between LLPS and O : C

Summarized in Table 3 are the average SRH and MRH values
determined in our work and by Renbaum-Wolff et al. (2016)
and Rastak et al. (2017). The average SRH and MRH values
are based on several cycles of RH for different SOM mass
concentrations. Also included in Table 3 are the average O : C
values for the studied SOM particles. The average O : C val-
ues for SOM from toluene photo-oxidation are based on the
current study (Sect. 2.1). The average O : C values for the
other SOM are taken from the literature. Since the average
O : C can depend on oxidant time and oxidation conditions,
we chose literature data that were closest to the experimental
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Figure 4. (a) Separation relative humidity (SRH) as a function of
the average O : C of the organic material. Shown are the results from
Table 3. β-Caryophyllene-derived SOM (red), limonene-derived
SOM (light green), and toluene-derived SOM (cyan) from this
study, isoprene-derived SOM (orange) from Rastak et al. (2017) and
α-pinene-derived SOM (blue) from Renbaum-Wolff et al. (2016) as
a function of O : C. RH value of 0 % indicates that LLPS did not oc-
cur. The O : C values of the SOM particles were taken from Table 3.
(b) The difference between κHGF and κCCN, denoted as 1κ , as a
function of the average O : C of the SOM. Data taken from Table 4.
The experimental conditions for the studies reported in (a) were not
necessarily similar to the experimental conditions for the studies re-
ported in (b), even if the same precursor volatile organic compound
was used.

conditions used when studying LLPS (Supplement, Sect. S1
and Table S1).

Based on the data shown in Table 3, there appears to be
a relationship between the occurrence of LLPS and the av-
erage O : C of the organic material: when the average O : C
was between 0.34 and 0.44, LLPS was observed, but when
the average O : C was between 0.52 and 1.30, LLPS was not
observed. This trend is also apparent in Fig. 4a, where SRH
data in Table 3 are plotted versus the O : C data in Table 3.

SOM have an average O : C and a spread (or distribution)
of O : C values. Similar to SOM, systems containing two or-
ganics and water also have a spread in O : C and an average
O : C. Hence, as a starting point to understanding LLPS in
SOM, we considered previous studies that explored the mis-
cibility gap in bulk solutions containing two organics and wa-
ter (see Table 1 in Ganbavale et al., 2015). When the average
O : C of the organic material was low in a system contain-
ing two organic components with water, LLPS was observed.

For example, LLPS was observed in a mixture of 1-butanol
(O : C= 0.25), 1-propanol (O : C= 0.20), and water (Gomis-
Yagües et al., 1998) and in a mixture of 1-pentanol (O : C =
0.20), acetone (O : C= 0.33), and water (Tiryaki et al., 1994).
On the other hand, when the average O : C of the organic
material was high in a system containing two organics and
water, LLPS was not observed. For example, LLPS was not
observed in a mixture of acetic acid (O : C= 1.00), ethanol
(O : C= 0.50), and water (Pickering, 1893). We conclude that
the relationship between average O : C and LLPS in SOM ob-
served here is not inconsistent with previous LLPS studies in
systems containing two organics and water. In addition to the
average O : C, the spread in O : C in organic mixtures will
also be important for LLPS (Renbaum-Wolff et al., 2016).

4 Implications

As mentioned in the introduction, Petters et al. (2006), Ho-
das et al. (2016), Renbaum-Wolff et al. (2016), and Rastak
et al. (2017) showed using thermodynamic calculations that
SOM particles that undergo LLPS at high RH values have
modified CCN properties. Hence, LLPS should be consid-
ered when predicting the CCN properties of SOM particles
derived from α-pinene ozonolysis, β-caryophyllene ozonol-
ysis, and limonene ozonolysis. A caveat is that the mass con-
centrations used when generating the SOM particles in our
experiments was larger than normally found in the atmo-
sphere (Zhang et al., 2007; Jimenez et al., 2009; Spracklen
et al., 2011; Li et al., 2015). Additional studies are needed to
confirm LLPS in SOM particles generated using more atmo-
spherically relevant SOM mass concentrations.

Discrepancy between the hygroscopic parameter, κ (Pet-
ters and Kreidenweis, 2007), measured below water satu-
ration (κHGF) and above water saturation (κCCN) in SOM
particles have been reported in several studies (Petters et
al., 2006, 2009; Prenni et al., 2007; Juranyi et al., 2009;
Good et al., 2010; Irwin et al., 2010, 2011 Massoli et al.,
2010; Dusek et al., 2011; Hersey et al., 2013; Pajunoja et
al., 2015; Zhao et al., 2016). Petters et al. (2006), Hodas
et al. (2016), Renbaum-Wolff et al. (2016) and Rastak et
al. (2017) suggested that such discrepancies are expected in
systems that undergo LLPS at high RH. Summarized in Ta-
ble 4 and Fig. 4b are literature data on the difference between
κHGF and κCCN (denoted 1κ) as a function of average O : C
of the organic material studied (Prenni et al., 2007; Massoli
et al., 2010; Pajunoja et al., 2015). The experimental con-
ditions (oxidation time and oxidation level) for the studies
reported in Table 4 were not necessarily similar to the exper-
imental conditions for the studies reported in Table 3, even if
the same precursor volatile organic compound was used.

Figure 4b suggests that 1κ is related to the average O : C
of the organic material. Figure 4a and b combined suggests
that when the average O : C is small, LLPS occurs and the
difference between κHGF and κCCN is large. On the other
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hand, when the average O : C is large, LLPS does not occur
and the difference between κHGF and κCCN is small. Figure 4
provides additional support for the suggestion that the LLPS
is related to the discrepancies between κHGF and κCCN.

Data availability. Underlying material and related items for this
paper are located in the Supplement.
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