
Atmos. Chem. Phys., 17, 10435–10465, 2017
https://doi.org/10.5194/acp-17-10435-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Advanced error diagnostics of the CMAQ and Chimere modelling
systems within the AQMEII3 model evaluation framework
Efisio Solazzo1, Christian Hogrefe2, Augustin Colette3, Marta Garcia-Vivanco3,4, and Stefano Galmarini5
1European Commission, Joint Research Centre (JRC), Directorate for Energy, Transport and Climate, Air and Climate Unit,
Ispra (VA), Italy
2Environmental Protection Agency, Computational Exposure Division, National Exposure Research Laboratory,
Office of Research and Development, Research Triangle Park, NC 27711, USA
3INERIS, Institut National de l’Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France
4CIEMAT, Avda Complutense 40, Madrid, Spain
5European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Food and Security Unit,
Ispra (VA), Italy

Correspondence to: Efisio Solazzo (efisio.solazzo@ec.europa.eu)

Received: 20 March 2017 – Discussion started: 24 March 2017
Revised: 7 July 2017 – Accepted: 29 July 2017 – Published: 7 September 2017

Abstract. The work here complements the overview analy-
sis of the modelling systems participating in the third phase
of the Air Quality Model Evaluation International Initiative
(AQMEII3) by focusing on the performance for hourly sur-
face ozone by two modelling systems, Chimere for Europe
and CMAQ for North America.

The evaluation strategy outlined in the course of the three
phases of the AQMEII activity, aimed to build up a diagnos-
tic methodology for model evaluation, is pursued here and
novel diagnostic methods are proposed. In addition to eval-
uating the “base case” simulation in which all model com-
ponents are configured in their standard mode, the analysis
also makes use of sensitivity simulations in which the models
have been applied by altering and/or zeroing lateral bound-
ary conditions, emissions of anthropogenic precursors, and
ozone dry deposition.

To help understand of the causes of model deficiencies, the
error components (bias, variance, and covariance) of the base
case and of the sensitivity runs are analysed in conjunction
with timescale considerations and error modelling using the
available error fields of temperature, wind speed, and NOx
concentration.

The results reveal the effectiveness and diagnostic power
of the methods devised (which remains the main scope of this
study), allowing the detection of the timescale and the fields
that the two models are most sensitive to. The representa-
tion of planetary boundary layer (PBL) dynamics is pivotal

to both models. In particular, (i) the fluctuations slower than
∼ 1.5 days account for 70–85 % of the mean square error of
the full (undecomposed) ozone time series; (ii) a recursive,
systematic error with daily periodicity is detected, respon-
sible for 10–20 % of the quadratic total error; (iii) errors in
representing the timing of the daily transition between sta-
bility regimes in the PBL are responsible for a covariance
error as large as 9 ppb (as much as the standard deviation of
the network-average ozone observations in summer in both
Europe and North America); (iv) the CMAQ ozone error has
a weak/negligible dependence on the errors in NO2, while
the error in NO2 significantly impacts the ozone error pro-
duced by Chimere; (v) the response of the models to vari-
ations of anthropogenic emissions and boundary conditions
show a pronounced spatial heterogeneity, while the seasonal
variability of the response is found to be less marked. Only
during the winter season does the zeroing of boundary values
for North America produce a spatially uniform deterioration
of the model accuracy across the majority of the continent.

1 Introduction

The vast majority of the research and applications related to
the evaluation of geophysical models make use of aggregate
statistical metrics to quantify, in some averaged sense, the
properties of the residuals obtained from juxtaposing obser-
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vations and modelled output (typically time series of the vari-
able of interest). This practice is rooted in linear regression
analysis and the assumption of normally distributed residuals
and has been proven to be reliable when dealing with sim-
ple, deterministic, and low-order models. Led by the rapid
pace of improved understanding of the underlying physics,
the paradigm is, however, changed nowadays in that models
have grown in complexity and non-linear interactions and re-
quire more powerful and direct diagnostic methods (Wagener
and Gupta, 2005; Gupta et al., 2008; Dennis et al., 2010; So-
lazzo and Galmarini, 2016).

Evaluation of geophysical models is typically carried out
under the theoretical umbrella proposed by Murphy in the
early 1990s for assessing the dimensions of goodness of
a forecast: consistency (“the correspondence between fore-
casters’ judgments and their forecasts”), quality (“the cor-
respondence between the forecasts and the matching obser-
vations”), and value (“the incremental benefits realised by
decision makers through the use of the forecasts”) (Murphy,
1993). Since 2010, the Air Quality Model Evaluation Inter-
national Initiative (AQMEII, Rao et al., 2011) has focused
on the quality dimension – the one most relevant to science,
according to Weijs et al. (2010) – of air quality model hind-
cast products, aiming to build an evaluation strategy that is
informative for modellers as well as to users.

Our claim is that the value of a model’s result depends
strictly on the quality of the model that, in turn, depends
on sound evaluation. The scientific problem of assessing the
quality of a modelling system for air quality is tackled by
Dennis et al. (2010) who distinguish four complementary ap-
proaches to support model evaluation – operational, proba-
bilistic, dynamic, and diagnostic – which are also the four
founding pillars of AQMEII. Several studies performed un-
der AQMEII have focused on the operational and probabilis-
tic evaluation (Solazzo et al., 2012a, b, 2013; Im et al., 2015a,
b; Appel et al., 2012; Vautard et al., 2012) and more recently
efforts have been expanded to the diagnostic aspect (Hogrefe
et al., 2014; Solazzo and Galmarini, 2016; Kioutsioukis et
al., 2016; Solazzo et al., 2017).

Operational metrics usually employed in air quality eval-
uation (see Simon et al., 2012, for a review) have several
limitations as summarised by Tian et al. (2016): interdepen-
dence (they are related to each other and are redundant in
the type of information they provide), underdetermination
(they do not describe unique error features), and incomplete-
ness (how many of these metrics are required to fully charac-
terise the error?). Furthermore, they do not help to determine
the quality problem set above in terms of diagnostic power.
Gauging (average) model performance through model-to-
observation distance leaves open several questions such as
(a) how much information is contained in the error? In other
words, what remains wrong with our underlying hypothesis
and modelling practice? (b) Is the model providing the cor-
rect response for the correct reason? (c) What is the degree of
complexity of the system models can actually match? These

questions have a straightforward, very practical impact on
the use of models, the return they provide (the value), and
their credibility. Answers to these questions are also relevant
to the widespread practice of bias correction, which aims to
adjust the model value to the observed value rather than cor-
rect the causes of the bias which might stem from systematic,
cumulative errors.

The main aims of this study are to move towards tools de-
vised to enable diagnostic interpretation of model errors, fol-
lowing the approach of Gupta et al. (2008, 2009), Solazzo
and Galmarini (2016), and Kioutsioukis et al. (2016), and
to advance the evaluation strategy outlined in the course of
the three phases of AQMEII. In particular, the work pre-
sented here is meant to complement the overview analysis
of the modelling systems participating in AQMEII3 (sum-
marised by Solazzo et al., 2017) by concentrating on the per-
formance for surface ozone modelled by two modelling sys-
tems: Chimere for Europe (EU) and CMAQ for North Amer-
ica (NA). This study attempts to

– identify the timescales (or frequencies) of the error of
modelled ozone;

– attribute each type of error to processes by utilising
modelling runs with modified fluxes at the boundaries
(anthropogenic emissions and deposition at the sur-
face and boundary conditions at the bounding planes of
the domain) and breaking down the mean square error
(MSE) into bias, variance, and covariance – this anal-
ysis allows us to diagnose the quality of error and to
determine whether it is caused by external conditions or
due to missing or biased parameterisations or process
representations;

– investigate the periodicity of the ozone error which can
be symptomatic of recursive (either casual or system-
atic) model deficiencies;

– determine the role of the error of precursor or meteo-
rological fields in explaining the ozone error. The sig-
nificance (or the non-significance) of a correlation be-
tween the ozone error and that of one of the explanatory
variables can help to understand the impact (or lack of
impact) of the latter on the ozone error as well as the
timescale of the process(es) causing the error.

Among the several models participating in AQMEII3,
CMAQ and Chimere have been selected as the analysis pro-
posed in this study requires additional simulations beyond
those performed by all AQMEII3 groups, which implied ad-
ditional dedicated resources that were not available to all
groups. This of course opens an important issue connected
with the relevance of models in decision making, the ade-
quacy of their contribution, and consequently the fact that far
more resources would be required by the present complexity
and state of development of modelling systems to guarantee
that deeper evaluation strategies are put in place. Although
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only these two modelling systems are analysed here, they
represent two well-established systems that have been sys-
tematically developed over many years, are in use by a large
number of research groups around the world, and also have
participated in the various phases of AQMEII.

The data, model features, and error decomposition
methodology are summarised in Sect. 2. Results of the ag-
gregate time series and error decomposition analyses are pre-
sented in Sect. 3 and results of the diagnostic error investiga-
tion through wavelet, autocorrelation, and multiple regres-
sion analysis are presented in Sect. 4. Discussion, conclu-
sions, and final remarks are drawn in Sects. 5 and 6.

2 Methods

2.1 Data and models

Unless otherwise specified, analyses are carried out and re-
sults are presented for the rural receptors of three subregions
over each continental area as shown in Fig. 1. The three sub-
regions have been selected based on similarity analysis of the
observed ozone fluctuations slower than ∼ 1.5 days. The re-
gions where the slow fluctuations showed similar character-
istics were selected through unsupervised hierarchical clus-
tering (details in Solazzo and Galmarini, 2015). Due to the
similarity of the observations within these regions, which
implies that they experience common physical and chemi-
cal characteristics, spatial averaging within these subregions
was carried out.

The stations used for the analysis are part of European (Eu-
ropean Monitoring and Evaluation Programme: EMEP; http:
//www.emep.int/; European Air Quality Database AirBase;
http://acm.eionet.europa.eu/databases/airbase/) and North
American (USEPA Air Quality System AQS: http://www.
epa.gov/ttn/airs/airsaqs/; Analysis Facility operated by Envi-
ronment Canada: http://www.ec.gc.ca/natchem/) monitoring
networks. Full details are given in Solazzo et al. (2017) and
references therein.

Following the approach used in previous AQMEII
investigations, modelled hourly concentrations in
the lowest model layer (∼ 20 m for both models)
and corresponding observational data are paired in
time and space to provide a verification data sample{
modtr ,obstr ; t = 1, . . .,8760;r = 1, . . .,nrecs

}
of nrecs (num-

ber of monitoring stations) record of matched modelled and
observational data, where the rth pair modt0 and obst0 is
evaluated at receptor r at a given time t0. Further, while the
observations are reported at the hour at the end (for Europe)
or at the beginning (for NA) of the hourly averaging win-
dow, the model values available in this study are provided
instantaneously. Therefore, the model concentrations were
assumed to be linear between the instantaneous on-the-hour
reporting times; the integration (average) between those
times was used to construct hour starting (or ending) values

in order to more directly compare to the averaging used
in the observations. This is of particular relevance when
estimating the error due to timing of the diurnal cycle
discussed in Sect. 4.3.

For the analyses conducted in this study, the spatial av-
erage of the observed and modelled ozone time series has
been carried out prior to any time aggregation; i.e. the spa-
tial average is created by averaging the hourly values over
all rural stations in each region. Missing values in the time
series, prior to the spatial averaging, have not been imputed.
The analysis is restricted to stations with a data completeness
percentage above 75 % and located below 1000 m above sea
level. Time series with more than 335 consecutive missing
records (14 days) have been also discarded. The number of
rural receptors nrecs for ozone is 38, 184, and 40 for EU1,
EU2, and EU3 and 73, 43, and 28 for NA1, NA2, and NA3,
respectively. The EU continental domain used for analyses
extends between −30 and 60◦ latitude and between 25 and
70◦ longitude, whereas the NA continental domain extends
between −130 and −40◦ latitude and between 23.5 and 69◦

longitude.
The configuration of the CMAQ and Chimere modelling

systems for AQMEII3 is extensively discussed in Solazzo et
al. (2017) with respect to resolution, parameterisations, and
inputs of emissions, meteorology, land use, and boundary
conditions. For completeness a short summary is provided
hereafter.

The CMAQ model (Byun and Schere, 2006) is config-
ured with a horizontal grid spacing of 12 km and 35 verti-
cal layers (up to 50 hPa) and uses the widely applied CB05-
TUCL chemical mechanism (carbon bond mechanism; Whit-
ten et al., 2010) for the representation of gas-phase chemistry.
Emissions from natural sources are calculated by the Bio-
genic Emissions Inventory System (BEIS) model. The mete-
orology is calculated by the Weather Research and Forecast
(WRF) model (Skamarock et al., 2008) with nudging of tem-
perature, wind, and humidity above the planetary boundary
layer (PBL) height. In CMAQ, dry deposition is used as a
flux boundary condition for the vertical diffusion equation.
A review of CMAQ dry deposition model as well as other
approaches is provided in Pleim and Ran (2011).

Chimere (Menut et al., 2013) is configured with a grid
of 0.25◦ (corresponding, approximately, to 25 km× 18 km
over France), nine vertical layers (up to 500 hPa), and uses
the Melchior2 chemical mechanism (Lattuati, 1997) for the
representation of gas-phase chemistry. Natural emissions are
calculated using the MEGAN model (Guenther, 2012). The
hourly meteorological fields are retrieved from the Integrated
Forecast System (IFS) operated by the European Centre for
Medium-Range Weather Forecast (ECMWF). In Chimere the
dry deposition process is described through a resistance anal-
ogy (Wesely, 1989). For each model species, three resis-
tances are estimated: the aerodynamical resistance, the re-
sistance to diffusivity near the ground, and the surface re-
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Figure 1. Continental domains and subregions used for analysis. The networks of ozone receptors are also shown.

sistance. For particles, the settling velocity is added. More
information is included in Menut et al. (2013).

Both models are widely used worldwide in a range of ap-
plications such as scenario analysis, forecasting, ensemble
modelling, and model intercomparison studies.

2.2 Sensitivity runs with CMAQ and Chimere

The Chimere and CMAQ models have been used to perform
a series of sensitivity simulations aiming for a better under-
standing of the causes of differences between the base model
simulations and observed data. In particular, the following
set of sensitivity runs was performed:

– One annual run with zeroed anthropogenic emissions
provided an indication of the amount of regional ozone
due to boundary conditions and biogenic emissions (re-
ferred to as “zero emi”).

– One annual run with a constant value of ozone (zero
for NA and 35 ppb for EU) at the lateral boundaries

of the model domain provided an indication of amount
of ozone formed due to anthropogenic and biogenic
emissions within the domain (in addition to the con-
stant value for EU) (referred to as “zero BC” and “const
BC”). All species other than ozone had boundary con-
dition values of zero for both NA and EU in these sen-
sitivity simulations.

– One annual run was performed where the anthropogenic
emissions are reduced by 20 %. In addition, the bound-
ary conditions for this run were prepared from a C-IFS
simulation (detail in Galmarini et al., 2017, and refer-
ences therein) in which global anthropogenic emissions
were also reduced by 20 % (referred to as a “20 % red”).

– One run with ozone dry deposition velocity set to zero
was available for the months of January and July (re-
ferred to as “zero dep”).

The analyses presented are not meant to intercompare the
two modelling systems, as the CMAQ and Chimere models
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Figure 2. Average monthly (column a) and diurnal curves (column b) constructed from the January–December 2010 time series of hourly
ozone observations and model simulations for three North American subregions.

are applied to non-comparable contexts (different emissions,
meteorology, and observational data). The response of each
model to the changes in emissions, boundary conditions, and
deposition needs to be interpreted independently.

2.3 Error diagnostic metric

To aid diagnostic interpretation, the mean square (or
quadratic) error (MSE=E[mod− obs]2) is decomposed ac-
cording to

MSE=
(
mod− obs

)2
+ (σm− σo)

2
+ 2σmσo (1− r)

= bias2
+ var+ covar, (1)

where σm and σo are the modelled and observed standard de-
viation, var and covar are the variance and covariance opera-
tors, r is the linear correlation coefficient, and bias is the time
averaged offset between the mean modelled and observed
ozone concentration. The decomposition in Eq. (1) (and sev-
eral variations of it), derived e.g. by Theil (1961), has been
extensively discussed in Potempski and Galmarini (2009),
Solazzo and Galmarini (2016), and Gupta et al. (2009). The
first two moments (mean and variance) relate to the system-
atic error (unconditional bias) and variability (variance), re-
spectively. All other differences between the statistical prop-
erties of modelled and observed chemical species (e.g. the
timing of the peaks and autocorrelation features) are quanti-

fied by the correlation coefficient, i.e. in the covariance term
(Gupta et al., 2009).

The MSE is a quadratic, parametric metric widely applied
in many contexts and occurs because the model does not ac-
count for information that could produce a more accurate es-
timate. Put in an information theory context, the MSE pro-
vides a measure of the information about the observation that
is missing from a Gaussian model centred at a deterministic
prediction (Nearing et al., 2016). Ideally, the deviation of a
perfect model from the observation should be zero or sim-
ply white noise (uncorrelated, zero mean, constant variance).
Various flavours of MSE decomposition have been exploited
in several geophysical contexts (Enthekabi, et al., 2010; Mur-
phy, 1988; Wilks, 2011; Wilmott, 1981; Gupta et al., 2009),
all stemming from the consideration that the bias, the vari-
ance, and the covariance characterise different (although not
complementary and not exhaustive) properties of the error –
accuracy, precision, and correspondence, respectively.

The relative contribution of each of the MSE components
to the overall MSE is summarised by the Theil coefficients
(Theil, 1961):

Fb = bias2/MSE
Fv = var/MSE
Fc = covar/MSE. (2)

The overall MSE suffers from the limitations of the aggregate
metrics discussed in the introductory section, lacking inde-
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Figure 3. Average monthly (column a) and diurnal curves (column b) constructed from the January–December 2010 time series of hourly
ozone observations and model simulations for three European subregions.

pendence and explanatory power (Tian et al., 2016). When
decomposed (e.g according to Eq. 1), however, the underde-
termination issue is reduced and the MSE coefficients (Eq. 2)
do offer diagnostic aid in interpreting the modelling error
(Gupta et al., 2009).

3 Sensitivity analysis to emissions and boundary
conditions perturbations

3.1 Aggregated time series of ozone

Figures 2 and 3 show monthly and diurnal curves for the base
and sensitivity simulations over the three subregions in each
continent. Results show that the monthly averaged curves of
the zeroed emission runs peak in April in NA and in July in
EU (May to July in EU1 are approximately the same), indi-
cating the periods when the impact of background concen-
tration (boundary conditions) and biogenic emissions on re-
gional ozone is largest: springtime in NA and summer in EU.
The monthly curves of “zero BC” and “zero emi” for NA are
anticorrelated between the months of April to July–August
(“zero emi” curve decreasing and “zero BC” curve raising)
and during autumn (“zero emi” curve rising and “zero BC”
curve decreasing), framing the interplay among these two
factors in terms of total ozone loading: boundary conditions
dominate in autumn–winter and biogenic plus anthropogenic
emissions are more important during spring–summer. The
springtime peak for the zero emissions case over NA is con-

sistent with the springtime peak in northern hemispheric
background ozone (Penkett and Brice, 1986; Logan, 1999)
and the predominant westerly and north-westerly inflow into
the NA domain. The background ozone springtime peak is
thought to be caused by a combination of more frequent
tropospheric–stratospheric exchange and in-situ photochem-
ical production during that season (Atlas et al., 2003).

The daily averaged profiles of mean ozone for NA show
that the observed peak (occurring between 16:00–18:00 LT
in NA1 and NA2 and ∼ 1 h earlier in NA3) is preceded by
the peak in the base run by ∼ 1 h in NA2 and by ∼ 2–3 h in
NA1, while the timing of the observed minimum (occurring
at 08:00–09:00 LT) is captured by the base run in NA2 and
NA3 while it is preceded by the base run by ∼ 1 h in NA1.
The modelled morning transition to convective conditions is
in phase with the observations except for NA1, where the
modelled transition occurs 1 h earlier than the observed one.
The modelled afternoon transition in NA1 precedes the ob-
served transition by 3–4 h, possibly due to errors in the par-
titioning between sensible and latent surface heat flux that
causes a faster-than-observed collapse of the PBL. One pos-
sible reason, as discussed in Appel et al. (2017), could re-
side in the stomatal conductance function and the heat ca-
pacity for vegetation in WRF and the ACM2 vertical mixing
scheme in both WRF and CMAQ (relative to the version of
WRF and CMAQ used in the current study). Recent updates
to these processes in CMAQ lead to a change in the modelled
diurnal cycle of ozone as well as other pollutants and meteo-
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Figure 4. MSE decomposition for June–August hourly ozone into bias, variance, and covariance for the three North American (NA) subre-
gions. Results are presented separately for daylight hours (a) and nighttime hours (b).

rological variables. In particular, the updates lead to a delay
in the evening collapse of the modelled PBL (Appel et al.,
2017).

The shape of the “zero BC” curve is similar in amplitude
to that of the base run, suggesting that the effect of the re-
gional/background ozone represented through boundary con-
ditions in a limited area model is mainly to shift the mean
concentration upwards, while it has no major effect on the
frequency modulation. By contrast, the absence of anthro-
pogenic emissions has a major effect on the amplitude of the
signal as well as its magnitude (“zero emi” curve). As dis-
cussed in the next section, these considerations translate into
the bias and/or variance type of error due to the boundary
conditions and emissions.

As for EU (Fig. 3), the observed daily profiles in EU1 and
EU2 are closely matched by the Chimere model between
11:00 and 23:00 LT (underestimated outside these hours),
while in EU3 the daily peak (observed at 19:00–20:00 LT) is
consistently occurring earlier in the model and its magnitude
is overestimated. The morning transition occurs earlier in the
model than the observations and follows a significant model
underprediction of nighttime and early morning ozone due
to difficulties in reproducing stable or near-stable conditions
(Bessagnet et al., 2016). In EU3, the model displays the poor-

est performance, with significant underestimation between
midnight and 09:00 LT (5–7 ppb) and overestimation in day-
light conditions (7–9 ppb).

As opposed to the CMAQ case for NA, the shape of the
“zero emi” curve of Chimere closely follows the shape that
of the base case (even when considering only the stations
classified as “urban”; Fig. S2 in the Supplement). Due to the
long time average (1 year), the daily profiles displayed in
Figs. 2 and 3 do not provide information about the exact tim-
ing of the minima and maxima for each season throughout
the year. Figures S3 and S4 report the seasonal average di-
urnal profiles for the model predictions and the observations
(network average over all stations) and show that the timing
of the ozone diurnal cycle varies seasonally.

3.2 Error decomposition

The plots in Figs. 4 (NA) and 5 (EU) show the MSE de-
composition according to Eq. (1) for the summer months of
June, July, and August for the base case simulation as well as
the sensitivity simulations, distinguishing between daylight
(from to 05:00 to 09:00 LT) and nighttime hours (the remain-
ing hours, from 10:00 to 04:00 LT). These plots are meant to
aid the understanding of the relative impacts of potential er-
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Figure 5. MSE decomposition for June–August hourly ozone into bias, variance, and covariance for the three EU subregions (the zero dep
data refers to the month of July only). Results are presented separately for daylight hours (a) and nighttime hours (b).

rors in lateral boundary conditions, anthropogenic emissions,
and the representation of ozone dry deposition on the total
model error by comparing the magnitude and type of model
error from these simulations against the model error for the
base case.

The plots in Figs. 6 to 15 are complementary to Figs. 4 and
5 and show the error decomposition for both the summer and
winter season in more detail, including the error coefficients
Fb, Fv, and Fc of Eq. (2) (left vertical axis), the total MSE
(right vertical axis), the sign of the bias and variance error
(± for model over- and underprediction), and the values of
the correlation coefficient. Furthermore, the maps in Figs. 16
and 17 show the root MSE (RMSE) at the receptors for the
“base” case as well as1RMSE, i.e. the percentage change of
RMSE of the sensitivity runs with respect to the “base” case
simulation:

1RMSE= 100 · (RMSEs −RMSEbase)/RMSEbase,

where the subscript s indicates the zeroed emission or the
zeroed (constant) boundary condition simulations (1RMSE
is measured as percentage).

The CMAQ results for NA are presented in Figs. 4, 6–10,
and 16 and can be summarised as follows:

– The MSE of the base case (MSEbase) during summer
daylight is mainly due to bias (∼ 35 % in NA1 and
∼ 75 % in NA2 and NA3) and the remaining portion is
due to covariance error. The fact that there is no vari-
ance error shows that the model is able to replicate
the observed 3-month averaged variability. Possible rea-
sons for the positive model bias (model overestimation)
have been discussed in Solazzo et al. (2017) and in-
cludes overestimation of emissions precursors (Travis
et al., 2016) and absence of correct parameterisations of
forested areas on surface ozone (Makar et al., 2017).

– The effect of zeroing the emissions of anthropogenic
pollutants on the summer MSE is a rise by a factor ∼ 2
to 4 (daylight) and by a factor ∼ 6 to 7 (nighttime) in
NA1 and NA2 with respect to MSEbase; during night-
time in NA3 the MSE stays approximately the same,
indicating that the emissions play a negligible role in
determining the total error in this subregion during sum-
mer night.

– Furthermore, all the error components deteriorate in the
simulations with zero anthropogenic emissions except
for the bias in NA3. This is particularly true for the
variance, signifying the fundamental role of emissions
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Figure 6. CMAQ MSE breakdown for summer and winter for the base case (hourly time series of ozone) over NA. The error coefficients
Fb, Fv, and Fc are reported on the left axis and the total MSE (ppb2) on the right axis (red triangles). The + and − signs within the bias
and variance portions of the errors indicate model over- and underprediction of mean concentration or variance, respectively. The values in
the covariance portion indicate the correlation coefficient between modelled and observed time series. Results are provided separately for
daytime and nighttime.

Figure 7. As in Fig. 6 for the hourly time series of “20 % reduction” scenario.

in shaping the diurnal variation of ozone. Indeed, this
suggests that the absence of a variance error in the base
case (see above) is due to the correct interplay between
the temporal/spatial distribution of the emissions, po-
tentially coupled with the variability due to the meteo-
rology.

– The covariance share of the error also increases (al-
though only slightly in NA2) for the zero emissions
case, indicating that the emissions play a role in deter-
mining the timing of the modelled diurnal ozone signal;
this increase is more pronounced during nighttime.

– The zeroing of the input of ozone from the lateral
boundaries has either no effect or only a limited effect
(e.g. daylight summer in NA2; Fig. 4) on the variance
and covariance shares of the error, while it has a pro-

found impact on the bias portion. This impact is ap-
proximately equal during daylight and nighttime, as ex-
pected from the discussion of the daily cycle shown in
Fig. 2.

– The removal of ozone dry deposition from the model
simulations (results based on July only) has the most
profound impact, increasing by 1 order of magnitude
the MSE of the base case, which is approximately dou-
ble the combined effect of the emissions and boundary
conditions perturbation. This sensitivity gives a gross
indication of the relative strength of this process vs. ex-
ternal conditions during summer, while the “zero BC”
case has a larger effect than the “zero deposition” case
in January (not shown). Similar to the “zero BC” case,
the exclusion of ozone dry deposition from the model
simulations acts as an additive term to the diurnal curve

www.atmos-chem-phys.net/17/10435/2017/ Atmos. Chem. Phys., 17, 10435–10465, 2017



10444 E. Solazzo et al.: Advanced error diagnostics of the CMAQ and Chimere modelling systems

Figure 8. As in Fig. 6 for the hourly time series of “zeroed anthropogenic emissions” scenario.

Figure 9. As in Fig. 6 for the hourly time series of the “zeroed boundary conditions” scenario.

in NA1, leaving almost unaltered the shape and timing
of the signal, while it impacts the variance and covari-
ance error in the other two subregions. The small impact
the removal of dry deposition has on the covariance er-
ror (timing of the ozone signal) together with the out-
weighing offsetting bias might suggest that the correct
estimate of the deposition magnitude is more beneficial
than, e.g. the time dependence of surface resistance. The
role of the variance is, however, unclear and deserves
further analyses.

– The instances where the “20 % red” bias error is lower
than the error of the base case occur when the mean
ozone concentrations were overestimated in the base
case (e.g. daylight for all subregions and NA2 and NA3
over nighttime summer) as illustrated in Figs. 6 and 7.

– The maps show that there are stations where the error
is reduced with zero anthropogenic emissions (e.g. a re-
duction of 20–30 % in the southern coast of the US and
in the far north-east during summer; Fig. 16d). This sug-

gests the presence of other compensating model errors
in both the base and sensitivity simulations that lead to
better agreement with observations when prescribing an
unrealistic emission scenario. The sources of these com-
pensating errors need to be investigated in future work.

– The “zero BC” run has profound negative effects
over the whole continental area of NA during winter
(Fig. 16e), while the effects are smaller during summer
(Fig. 16f), especially over the southern coast, due to the
relatively higher importance of photochemical forma-
tion of ozone during summer.

– The error characteristics of the daily maximum 8 h
rolling mean (DM8h, Fig. 10) resemble those of the
daylight base case (Fig. 6, left column), but reduced in
magnitude during winter, with almost null variance er-
ror and the same sign of the bias as the base case. The
NA1, NA2, and NA3 standard deviations of the sum-
mer DM8h is of 7.6, 5.2, and 8.1 ppb and of 7.6, 6.5,
and 7 ppb for the model and the observations, respec-

Atmos. Chem. Phys., 17, 10435–10465, 2017 www.atmos-chem-phys.net/17/10435/2017/



E. Solazzo et al.: Advanced error diagnostics of the CMAQ and Chimere modelling systems 10445

Figure 10. As in Fig. 6 for the rolling average daily maximum 8 h ozone time series.

tively. The model variability is therefore in line with the
observed variability. The error of the DM8h for the sen-
sitivity runs is reported in Fig. S5.

– On a network-wide average, removing anthropogenic
emissions causes a RMSE increase of 25 % during sum-
mer and of 0 % (10 % at 75th percentile) during winter
while a zeroing out of input from the lateral boundaries
causes a RMSE increase of 30 % during summer and of
180 % during winter (median values; Fig. 16).

The allocation of the error of the Chimere model for EU
varies greatly by subregion (Figs. 5, 11–15, and 17):

– The summer daylight RMSEbase ranges between
∼ 20 ppb2 (EU1, ∼ 60 % covariance and ∼ 20 % bias)
and ∼ 85 ppb2 (EU3, 95 % covariance). In EU3, the
nighttime bias of ∼ 75 % outweighs the covariance, as
seen in Fig. 11.

– Removing the anthropogenic emissions had almost no
effect on the covariance share of the MSE (if not a slight
reduction with respect to the base case in EU2 and EU3
and also during nighttime), indicating that the error in
the timing of the signal is influenced not by the emis-
sions but rather by other processes. Moreover, the vari-
ance portion is left almost unchanged (1 ppb increase in
EU1 and EU2), in contrast to the CMAQ results for NA.
This would indicate that the variability of ozone concen-
tration is hardly influenced by anthropogenic emissions
in Chimere. The bias is the error component most sensi-
tive to emissions reductions, especially in EU2 and less
so in EU3. This is in line with the discussion of the daily
profiles of Fig. 2b (which showed similar shapes of for
the “zero emi” and of the “base” profiles) and contrasts
with the NA case where the “zero emi” daily profiles are
flatter than the base case.

– The effect of imposing a constant ozone boundary con-
dition value of 35 ppb (and of zero for all other species)

has a net small effect on the variance of the ozone er-
ror but significantly reduces the covariance share of the
error in favour of the bias (Figs. 5 and 14). The total
MSE is similar to that of removing the anthropogenic
emissions as far as the total MSE and the bias of EU2
are concerned. It outweighs the latter for the total MSE,
bias, and variance in EU3 and covariance and nighttime
bias component in EU1. We can infer that the variability
of the boundary conditions has a significant role in de-
termining the timing of the ozone signal in EU1 (close
to the western boundary of the domain) as the correla-
tion coefficient degrades from 0.89 (base case) to 0.66
(“const BC”) (Figs. 5, 11, and 14). The bias staying the
same in EU1 daylight summer depends on the magni-
tude of the constant value (35 ppb were chosen here)
that is in close agreement with that of the base case
while the small variance error (∼ 2 ppb) vanishing with
respect to the base case might be explainable with nu-
merical compensation.

– During summer in EU2 and EU3 changing the ozone
boundary condition only influences the bias with
marginal impacts on variance and covariance, while in
winter (Fig. 14) there is also a significant reduction of
the correlation coefficient, meaning that the boundary
conditions modulate the timing of the signal. This also
implies that the variability of the boundary conditions
becomes more important in winter.

– EU3 deserves special consideration as the RMSEzero emi
is approximately the same as the RMSEbase, which
mostly consists of covariance error during daylight and
bias error during nighttime (Fig. 5e). Due to the local
topography, EU3 is typically characterised by stagnant
conditions that are difficult to model. For example, 50 %
of the observed wind speed is below 1.65 m s−1, while
Chimere predicts 1.95 m s−1. The largest impact on the
total MSE is seen in the “const BC” run and arises in
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Figure 11. Chimere MSE breakdown for summer and winter for the base case (hourly time series of ozone) and sensitivity simulations over
EU. The error coefficients Fb, Fv, and Fc are reported on the left axis, the total MSE (ppb2) on the right axis (red triangles). The + and
− signs within the bias and variance portions of the errors indicate model over- and underprediction of mean concentration or variance,
respectively. The values in the covariance portion indicate the correlation coefficient between modelled and observed time series. Results are
provided separately for daytime and nighttime.

Figure 12. As in Fig. 11 for the hourly time series of “20 % reduction” scenario

the bias portion, pointing to the importance of properly
characterising background (regional) concentrations.

– With respect to the base case, the DM8h (Fig. 15) shows
a reduced share of the covariance error with respect to
the mean ozone (Fig. 11) at the expense of an increase
in variance error; the timing error is now shifted towards
seasonal timescales. The variability of the DM8h is gov-
erned by synoptic processes which are likely responsi-
ble for the variability error of the DM8h. The EU1, EU2,
and EU3 standard deviations of the summer DM8h is
of 3, 6.2, and 8.6 ppb and of 6, 11, and 10.2 ppb for
the model and the observations, respectively. The model
therefore underestimates the observed variability (as in-
dicated by the “minus” sign in the variance share of the
error in Fig. 15) by up to 50 % in EU1. A range of pro-

cesses could be responsible for the lack of variability in
Chimere, from emission to chemistry to transport. The
error of the DM8h for the sensitivity runs is reported in
Fig. S6.

– On a network-wide average, removing anthropogenic
emission causes an RMSE increase of 21 % during sum-
mer and 12 % during winter (median values; Fig. 17c,
d).

– The effect of setting the dry deposition velocity of ozone
to zero (July only, Fig. 5) increases not only the bias er-
ror but also the variance and covariance shares of the
error. Thus in Chimere the deposition not only acts as
a shifting term on the modelled concentration but also
influences the variability and timing of ozone more pro-
foundly than for the CMAQ case examined earlier.
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Figure 13. As in Fig. 11 for the hourly time series of “zeroed anthropogenic emissions” scenario.

4 Timescale error analysis and diagnostic

The focus of this section is 1O3, the time series of the devi-
ation between the base case and observations. The nature of
1O3 is examined for time–frequency patterns using wavelet
analysis and for error persistence using autocorrelation func-
tions (ACFs). The causes of1O3 are also tentatively investi-
gated as dependencies on other fields using multiple regres-
sion analysis combined with bootstrapping to sample the rel-
ative importance of the regression variables.

4.1 Spectral considerations

The coefficients of the ACFs (Appendix A) can be inter-
preted as the Fourier transform of the power spectral den-
sity. Frequency analysis of a signal is often performed by
constructing the periodogram (or spectrogram; see e.g. Chat-
field, 2004). This approach has proven useful when dealing
with harmonic processes superimposed on a baseline signal
(Mudelsee, 2014) but, at the same time, periodograms often
contain high noise. Therefore, examining a signal at specific
frequencies can be instructive, for instance by resorting to
wavelet transform, which has the further advantage of en-
abling a 3-D time–frequency–power visualisation. Compared
to a power spectrum showing the strength of variations of the
signal as function of frequencies, wavelet transformation also
allows the allocation of information in the physical time di-
mension other than phase space. Here, wavelet analysis of the
periodogram of seasonal 1O3 is performed using the Morlet
wavelet transform (Torrence and Compo, 1997).

From inspecting Fig. 18 (NA) it emerges that the highest
values of spectral energies for 1O3 for the three subregions
(corresponding to the 99th percentile of the spectrum) are ob-
served for periods spanning the whole year (i.e. the intensity
keeps the same high value during the whole year and is asso-
ciated with a periodicity higher than∼ 300 days). These high
values of the energy spectrum are likely associated with the

slow variability of the non-zero bias throughout the investi-
gated period that acts as a slow envelop modulation of the
error at shorter timescales. Such a process is more evident in
NA1 and NA2 and its magnitude is 1 order of magnitude (or
more) higher of the 90th percentile value.

NA3 and to a lesser extent NA2 show a high spectral power
of the error for periodicities of 1–2 months and lasting from
January to May with a weaker wake extending up to the end
of the year, potentially pointing to errors in the characteri-
sation of larger-scale background concentrations associated
with boundary conditions. NA3 also exhibits a high spectral
power for errors associated with a periodicity of ∼ 20 days
during January–February and June–July and ∼ 15 days dur-
ing October and December. This may point to errors in repre-
senting the effects of changing weather regimes on simulated
ozone concentrations.

Except for the long-term variations of the model error with
periodicities greater than 2 months discussed above, NA1 is
the only subregion that shows only weak power associated
with model errors of shorter periodicities from June to De-
cember. This suggests that fluctuations caused by variations
in large-scale background and changing weather patterns are
better captured in this region compared to the other two sub-
regions.

The energy associated with the daily error is again higher
and more pronounced in NA3 than in the other subregions,
where it is most pronounced during summer (NA1) or be-
tween March to October (NA2). While during winter and au-
tumn the daily error is likely driven by difficulties in repro-
ducing stable PBL dynamics, during spring and summer it is
also influenced by the chemical production and destruction
of ozone, a process entailing NOx chemistry, radiation, bio-
genic emission estimates, and chemical transformation, and
thus difficult to disentangle from boundary layer dynamics.
Wavelet plots of the ozone error for periods between 12 h
and 6 days are reported in Figs. S7 and S8, allowing us to
better identify the periods (and/or the periodicity) affecting
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Figure 14. As in Fig. 11 for the hourly time series of the “constant boundary conditions” scenario.

Figure 15. As in Fig. 11 for the rolling average daily maximum 8 h ozone time series.

the error of the fast fluctuations, e.g the daily error in NA3
(all year) and the high energy spot towards the end of April
in NA2 with a periodicity of ∼ 6 days and above, that could
be associated with an ozone episode, but analysis of episodes
is beyond the scope of this investigation.

For the EU (Fig. 19) a notable feature is the very high
daily error energy in EU3 that is present throughout the year
and most pronounced in summer. Such high energy suggests
persistent problems in representing processes having a pe-
riodicity of 1 day. Further, EU3 shows an area of high en-
ergy associated with a period of 1 to 2 months and extend-
ing from February, peaking in April and May, and ending in
September (mostly model underestimation; Fig. 19c), while
the error of the winter months in EU3 receives high energy
from slower processes, acting on timescales of ∼ 6 months
and beyond. Considering that the EU3 region is surrounded
by high mountains, tropopause folding (e.g. Bonasoni et al.,
2000; Makar et al., 2010) together with the lack of modelling
mechanisms for the tropopause/stratosphere exchange could
offer an explanation of the high energy of the error at long

timescales (also considering that the higher level modelled
by Chimere is well below the tropopause and that vertical
fluxes are those prescribed by the C-IFS model). Errors in the
biogenic emissions also remain a plausible cause of ozone er-
ror during spring and summer months.

The similarity of the wavelet spectra for NA3 (Fig. 18c)
and EU1 (Fig. 19a) (both regions are located on the western
edge of their domain) at the beginning of the year for periods
of 1 to 2 months might be indicative of the periodicity of
the bias induced by the boundary conditions. Compared to
CMAQ, the error of the Chimere model is more concentrated
during spring and early summer, with a periodicity of 10–
20 days.

Having identified some relevant timescales for the 1O3
error, in the next sections methods are proposed for its detec-
tion and quantification.
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Figure 16. (a, b) Spatial maps of RMSE (in ppb) for the base case. (c, d) Percentage RMSE changes for the zeroed emissions case with
respect to the base case. (e, f) Percentage RMSE changes for the zeroed boundary condition case with respect to the base case. (a, c, e) Winter
months (DJF); (b, d, f) summer months (JJA).

4.2 Temporal characteristics of the error of ozone

In a recent study, Otero et al. (2016) analysed which synoptic
and local variables best characterise the influence of large-
scale circulation on daily maximum ozone over Europe. The
authors found the majority of the variance during spring over
the entire EU continent is accounted for in the 24 h lag au-
tocorrelation while during summer the maximum temper-
ature is the principal explanatory variable over continental
EU. Other influential variables were found to be the relative
humidity, the solar radiation, and the geopotential height. Ca-
malier et al. (2007) and Lemaire et al. (2016) found that the
near-surface temperature and the incoming short-wave radi-
ation were the two most influential drivers of ozone uncer-
tainties.

The ACFs and PACFs (partial autocorrelation function) of
1O3 (see Appendix A for a definition of both functions) re-
veal a strong periodicity for periods that are multiples of 24 h
(Figs. 20 and 22) (note that the first derivative of1O3 is used
in this analysis to achieve stationarity). The structure of the
error is such that it repeats itself with daily regularity, indicat-
ing either a systematic error in the model physics or a miss-

ing process at the daily scale, possibly related to radiation
and/or PBL-related variables. While the presence of a daily
periodic forcing due to the deterministic nature of day–night
differences superimposed on the baseline ozone is expected,
the periodicity maintained in the error structure is not and
deserves further analysis.

The PACF plots confirm that the error is not simply due
to propagation and memory from previous hours but rather
arises at 24 h intervals and hence stems from daily processes.
On average, for NA corr(1O3(h), 1O3(h+ 1)) (i.e. the cor-
relation between 1O3(h) and 1O3(h+ 1)) is ∼ 0.45, while
the corr(1O3(h), 1O3(h+ 24)) ∼ 0.68, for any given hour
h. Similarly for EU, corr(1O3(h) and 1O3(h+ 1)) ranges
between 0.31 (EU2) and 0.54 (EU3), while corr(1O3(h),
1O3(h+ 24)) ∼ 0.70 for all subregions. Thus, the ozone er-
ror with a 24 h periodicity has a longer memory than the error
with a 1 h periodicity. Since the 24 h periodicity of the error
is present in the entire annual time series, the periodic error is
not associated with particular conditions (e.g. stability) but is
rather embedded into the model at a more fundamental level.
Moreover, similar periodicity is observed for
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Figure 17. (a, b) Spatial maps of RMSE (in ppb) for the base case. (c, d) Percentage RMSE changes for the zeroed emissions case with
respect to the base case. (e, f) Percentage RMSE changes for the constant boundary condition case with respect to the base case. (a, c,
e) Winter months (DJF); (b, d, f) summer months (JJA).

– the ACF analysis repeated for the “zero emi” scenario
(Fig. S9);

– the ACF of 1WS and 1Temp for both models
(Fig. S10);

– the ACF of primary species (PM10 for EU and CO for
NA) (Fig. S11);

– the ACF of ozone error for the “zero emi” scenario
at three stations where isoprene emissions are low

(Fig. S12). These stations have been selected by looking
at the locations where isoprene emissions accumulated
over the months of June, July, and August as provided
by the two models analysed here.

In all cases, the error has a marked daily structure, strength-
ening the notion that a daily process affecting several model
modules is not properly parameterised. The error due to
chemical transformation at daily scale is screened out by the
daily periodicity of the ACF of the primary species, while
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Figure 18. Annual time series of differences between CMAQ and observed O3 (1O3, top portion of each panel) and Morlet wavelet analysis
of the periodogram of 1O3 (lower portion of each panel) for the three NA subregions. Black contours lines identify the 95 % confidence
interval. The period (in days) is reported in the vertical axis, while the quantiles of the power spectral density are measured in ppb2. (The
scale reports the quantiles of the power spectrum.)

the daily periodicity of the zeroed emission scenario allows
the reinforcement of the claim that the PBL dynamics is the
most probable cause of the error.

Since the individual daily processes directly or indirectly
affecting the PBL dynamics cannot be untangled, here “PBL
error” is meant to encompass errors in the representation of
the variables affecting boundary layer dynamics (i.e. radi-
ation, surface description, surface energy balance, heat ex-
change processes, development or suppression of convection,
shear generated turbulence, and entrainment and detrainment
processes at the boundary layer top for heat and any other
scalar) and their non-linear interdependencies.

By removing the diurnal fluctuations (i.e. by screening out
the frequencies between 12 h and up to ∼ 1.5 days by means
of the Kolmogorov–Zurbenko (KZ) filter, as described in
Hogrefe et al., 2000) from the modelled and observed time
series, the daily structure of the ACF disappears (Figs. 21
and 23), replaced by a slow decay and negative (EU1, EU2

and partially NA1, NA2) or fluctuating (NA3, EU3) correla-
tion values. The PACF plots in Figs. 21 and 23 suggest that
some significant correlation persists up to ∼ 40 h, likely due
to leakage from the removed diurnal component. As exten-
sively discussed in several earlier works, the KZ filter does
not allow for a clear separation among components and thus
some leakage is expected (see e.g. Galmarini et al., 2013;
Solazzo et al., 2017). The amount of overlapping variance
between the isolated diurnal fluctuations and the remainder
of the time series is of ∼ 4–9 %.

The relative strength of the MSE for the undecomposed
ozone time series and for the ozone time series with the di-
urnal fluctuations removed and with only the diurnal fluctu-
ations is reported in Table 1. With the exception of NA1 and
EU3, the baseline error (denoted with “noDU”) accounts for
∼ 70 to 85 % of the total error, while the diurnal fluctuations
(denoted with “DU”) are responsible for 10 to 23 % of the
total error (and even less during nighttime). The “DU” er-
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Figure 19. Same as in Fig. 18 for Chimere over the three EU subregions.

ror outweighs the “noDU” error (67 % to 26 %) only in EU3,
where the daily PBL issue has been pointed out in the previ-
ous section.

4.3 Covariance error: phase shift of the diurnal cycle

This section explores the nature of the covariance error which
occurs, among other reasons, when the two signals being
compared are not in phase. The first and second moments
of the error distribution are invariant with respect to a phase
shift between the two signals (Murphy, 1995); i.e. the mean
of the signal and the amplitude of the oscillations with re-
spect to the mean value are not affected by a phase shift,
which therefore does not have an impact on the bias and vari-
ance components of the error. The correlation coefficient, in
contrast, is impacted by a lagged signal, producing a net in-
crease of the covariance error.

The analysis of the phase lag between the daily component
of the modelled and observed cycles is reported in Figs. 24
(NA) and 25 (EU), while winter and summer are analysed
separately.

To perform this analysis, the modelled and observed ozone
time series are first filtered to isolate the diurnal component
using a KZ filter. Then, the cross covariance between the two
time series is calculated. The time at which the maximum
covariance value occurs is taken as the phase shift between
the two signals. The method has an error of ±0.5 h.

In NA, the modelled diurnal peak occurs 1–2 h earlier than
the observed diurnal peak at many stations and up to 3–4 h
earlier at some Canadian stations. By taking into considera-
tion the 0.5 h error of the estimate, the receptors at the west-
ern border (approximately corresponding to NA3) are least
affected by this timing error (especially in summer Fig. 24b),
and therefore the covariance share of the error shown in
Fig. 4 is not due to daily phase shift in this region but proba-
bly due to the shifting of longer (or shorter) time periods in-
duced for example by errors in transport (wind speed and/or
direction). Figure S13 in the Supplement reports the same
analysis repeated for the “zero emi” and “zero BC” runs.

In the EU (Fig. 25), no phase shift (or a phase shift compat-
ible with the 0.5 h estimation error) is observed in Romania,
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Figure 20. CMAQ model: autocorrelation (ACF) and partial autocorrelation (PACF) functions for the differenced time series of residuals
of ozone (model–observations). The differentiation is necessary to remove non-stationarity and thus to convey the ACF and PACF values
depending on lag only.

Figure 21. As in Fig. 20 for the differenced time series of residual of ozone obtained by filtering out the diurnal fluctuations from the
modelled and observed time series.
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Figure 22. Chimere model: autocorrelation (ACF) and partial autocorrelation (PACF) functions for the differenced time series of residuals
of ozone (model–observations). The differentiation is necessary to remove non-stationarity and thus to convey the ACF and PACF values
depending on lag only.

Figure 23. As in Fig. 22 for the differenced time series of residual of ozone obtained by filtering out the diurnal fluctuations from the
modelled and observed time series.
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Table 1. MSE (ppb2) of the full, undecomposed ozone time series (FT) and relative fraction of MSE of the time series derived by filtering
out the diurnal fluctuations (noDU) and of the time series derived by keeping only the diurnal fluctuations (DU). The diurnal signal has been
isolated by applying a Kolmogorov–Zurbenko filter KZ(13,5). The relative fraction of noDU and of DU does not add up to 100 % because
the filter allows some leakage to the nearest frequencies (see Hogrefe et al., 2000, and Solazzo and Galmarini, 2016, for details). (a) NA;
(b) EU.

(a) NA1 NA2 NA3 Continent

FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU

CMAQ MSE – summer

28.65 40 % 41 % 49.12 70 % 23 % 79.35 84 % 13 % 28.25 56 % 29 %

CMAQ MSE – winter

86.08 94 % 5 % 19.27 75 % 21 % 61.67 74 % 21 % 22.38 85 % 9 %

(b) EU1 EU2 EU3 Continent

FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU FT (ppb2) noDU DU

CHIMERE MSE – summer

20.91 85 % 10 % 46.19 78 % 15 % 125.86 26 % 67 % 26.95 76 % 18 %

CHIMERE MSE – winter

20.87 85 % 12 % 19.95 85 % 10 % 39.91 38 % 59 % 11.34 73 % 16 %

Figure 24. Phase shift of the diurnal cycle (in hours). A positive
phase shift indicates that the model peak is “late”, while a negative
phase shift indicates that the modelled peak precedes the observed
peak. This analysis includes urban and suburban stations in addition
to rural stations.

Germany, or the UK during winter, while a significant phase
shift (the modelled peak occurs up to 6 h early) is observed in
the north of Italy and Austria, with France and Spain oscillat-
ing between positive 3 (model delay up to 5 h in the south of
Madrid) and negative 5 and 6 h phase shifts, with the net ef-
fect of a spatially aggregated daily cycle that is in phase with
the observations (Fig. 3b). During summer the phase shift
is larger and extends also to the countries where the phase
shift was null during winter. Moreover, some country-wise
grouping can be detected, as for example at the border be-
tween Belgium and France, Spain and France, and Finland
to Sweden, possibly due to the different measurement tech-
niques and protocols among EU countries (e.g. Solazzo and
Galmarini, 2015). Figure S14 in the Supplement reports the
same analysis repeated for the “zero emi” run. The differ-
ence between the time shift of the base case and the zeroed
emission scenario (Fig. S15) reveals the effects of the tim-
ing of the anthropogenic emissions on the covariance error.
The effect is null over EU (median value of the difference of
zero) and is very limited in NA (median value of zero during
summer and of −1 during winter), reinforcing the conclu-
sion that the timing of the emissions is not responsible for
(or contributes very little to) the daily error.

While errors in emission profiles obviously can be one
cause of the phase shift and thus the covariance error of the
modelled ozone signal, the representation of boundary layer
processes clearly can be a factor as well. As discussed in e.g.
Herwehe et al. (2011), the parameterisation of vertical mix-
ing during transitional periods of the day can cause a time
shift in the modelled ozone concentrations due to its effects
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Figure 25. As in Fig. 24 for EU.

Figure 26. Normalised MSE produced by lagging the observed diurnal cycle with respect to itself. The MSE due to such a shift is entirely
due to covariance error. The plots are presented for EU2 (b, d) and NA2 (a, c) for the months of JJA. Panels (a, b) shows the impact of the
phase shift on the DU component, and (c, d) show results for the undecomposed time series (FT). For EU2, a shift of ±3 h causes an MSE
of ∼ 0.5 times the variance of the observations.

on the near-surface concentrations of NOx and ozone, which
in turn affect the chemical regime and balance between ozone
formation and removal.

To quantify the importance of the covariance error caused
by a phase shift relative to other sources of error, Fig. 26
shows the curves of normalised MSE as the observed ozone
time series is shifted with respect to itself between −10 and
10 h. The MSE curve equals zero for a zero-hour lag and is
symmetric with respect to the sign of the lag. Since this anal-
ysis compares the observed signal to itself (with varying de-
grees of time lags), the MSE fraction of bias and variance is
zero while all of the MSE is due to the covariance.

The curves in Fig. 26 shows that a phase lag in the diurnal
cycle of±6 h causes a MSE error in the diurnal component of

magnitude ∼ var(obs) (in both EU and NA), where var(obs)
is the variance of the measured diurnal cycle (top panel). The
effect on the full (undecomposed) time series is that a phase
lag of ±4 (EU) and ±5–6 (NA) hour in the diurnal cycle
causes a MSE error of magnitude ∼ var(obs), where in this
case the variance is that of the undecomposed time series of
ozone (lower panel).

Therefore, a modelled ozone peak that occurs 4 to 5 h too
early (a feature that is detected at some EU3 and Canadian
stations) corresponds to a covariance error of 9.0 ppb (i.e.
the standard deviation of the network-average ozone observa-
tions in summer in both EU and NA). This result also helps
explain the large covariance error in EU3, which can be at
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Figure 27. Percentage of variance explained by the regressors (the total R2 for the regression is reported in the title of each panel). The
relative importance of each variable is assessed by using a bootstrap resampling. The plots at the bottom show the ACF and PACF of the
yearly time series of residual of the fit, i.e. the portion of the ozone time series that was not captured by the linear regressions on the available
variables. The analysis encompasses 47 co-located stations (the NA stations for ozone, NO2, WS, and Temp that fall in a radius of 1000 m
and vertical displacement less than 250 m).

least partially attributed to the large phase shift of the daily
cycle.

4.4 Explaining the error of ozone

In this section a simple linear regression model for the er-
ror of ozone 1O3 is applied with the goal of detecting the
causes of model errors on the daily and longer-term scales
identified in the previous section. Although a linear model
is overly simplistic and other methods are available (e.g ker-
nel smoothers), we employed the simpler approach (i) since
it is not the aim of this study to build a statistically accurate
model for the model error and (ii) by pursuing simple rea-
soning we hope to identify the timescale of the error and the
most likely fields causing it at that timescale. More advanced
techniques are likely to overcomplicate the results and their
interpretations but could be pursued in future studies.

The available regressors (explanatory variables) are the er-
rors of the variables for which measurements have been col-
lected within AQMEII, i.e. NO (EU only), NO2, Temp, and
WS:

1O3 = β11NO+β21NO2+β31Temp+β41WS+ k, (3)

where βi are the coefficients of the multiple linear regres-
sion, and the intercept k is the portion of the ozone error not
explainable by any of the regressors. A bootstrap analysis
(Mudelsee, 2014; Groemping, 2006) is used to calculate the
relative importance of each error field in explaining the vari-
ance of 1O3 (Figs. 27 and 28) with an uncertainty of ∼ 5 %.
The analysis is restricted to stations of ozone, NOx , WS, and
Temp that are located within a maximum horizontal distance
of 1000 m and maximum vertical displacement of 250 m, to
avoid error due to spatial heterogeneity. The number of sta-
tions is 61 in EU and 45 in NA.

The errors of temperature and wind speed explain about
a third of the daylight winter ozone error of CMAQ, while
∼ 20 % of the ozone error variability during daylight sum-
mer ozone is associated with the error in temperature and, to
a lesser extent, wind speed (Fig. 27). In contrast, in Chimere
the NO and NO2 error over EU during winter is correlated
with the error of ozone, especially during nighttime (Fig. 28).
Overall, there is no instance where the variance explained by
the available variables (quantified through the coefficient of
determination R2) exceeds 0.45 (corresponding to a linear
correlation coefficient of ∼ 0.67). The ACFs of the residuals
of the regression show that there is an overwhelming daily
memory of the error that can only partially be attributed to er-
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Figure 28. Same as Fig. 27 for EU. The analysis encompasses 61 co-located stations (the EU stations for ozone, NO, NO2, WS, and Temp
that fall in a radius of 1000 m and vertical displacement less than 250 m).

rors of the available regressor variables, pointing to the need
to include additional variables in future applications of this
regression analysis.

A straightforward limitation of Eq. (3) is that it assumes
that successive values of the error terms are independent,
while in practice this is not the case. Table 2 reports the corre-
lation coefficient of the diurnal fluctuations of the residuals,
obtained by filtering out fluctuations faster than ∼ 1.5 days
from the measured and observed time series (for the analy-
sis of Table 2 the co-location restriction on the rural recep-
tors is removed to allow spatial considerations, the only con-
straint is on the the vertical displacement among stations to
be less than 250 m). Several significant collinearities can be
detected (e.g between1WS and1Temp and between1NO2
and 1Temp, especially in winter).

In addition to the collinearity issue, there are other en-
dogenous variables that are not part of the regression analysis
but whose error contributes to total 1O3, as revealed by the
ACFs and PACFs of the first-order differentiated residuals of
the regression, reported in the last panels of each plot. Such
missing variables are likely to correlate with both the de-
pendent (1O3) and the explanatory variables. For instance,
errors in the cloud cover and/or radiation scheme, land use
masking, etc. are shared by the chemical species (ozone and
its precursors) as well as by the meteorological fields. The
ACFs and PACFs suggest that the common omitted error of

the fit propagates with daily recurrence and is not explained
by the available variables, stressing the findings of the previ-
ous section and again pointing to PBL-related errors.

However, since we are not in a position to estimate the er-
rors associated with PBL variables (radiation, temperature,
turbulence), an alternate approach is to filter out the diurnal
process from the modelled and observed time series and re-
peat the analysis based on Eq. (3) (Figs. S16 and S17). The
correlation coefficients of the residuals with the diurnal com-
ponent filtered out are reported in Table 3. The collinearity
has been largely removed, especially for NA, while for EU
some strong correlation persists (1NO2 and 1NO, and be-
tween 1WS and 1Temp in winter).

The R2 of the regression for the “no-DU” case drops dras-
tically in NA, while keeping approximately the same values
in EU (but in EU3 R2 does not exceed 0.10; not shown) as
shown in Figs. S16 and S17. Moreover, this analysis and its
comparison to the results presented in earlier sections lead to
the following conclusions:

– A strong daily error component is common to all vari-
ables investigated here.

– This error manifests itself in the correlation coefficient
and thus is due to a variance/covariance type of error
(otherwise, if it was a bias-type error, theR2 would have
been similar between the analysis of the signal with and
without the diurnal component).
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Table 2. Linear correlation coefficient between the diurnal residuals of the regressors of Eq. (3). The residuals are calculated by removing
fluctuations faster the∼ 1.5 days from the measured and modelled time series. All the correlation values are significant up to 1 % significance
threshold. (a) NA; (b) EU. For each set of variables, the regression analysis includes the rural stations within a maximum differential altitude
of 250 m.

(a) Correlation among diurnal components of residuals

1NO2 1Temp 1WS

NA1 NA2 NA3 NA1 NA2 NA3 NA1 NA2 NA3

SUMMER

1NO2 1 1 1 −0.6 −0.23 −0.65 −0.19 0.46 −0.26
1Temp −0.6 −0.23 −0.65 1 1 1 0.62 0.53 0.7
1WS −0.19 0.46 −0.26 0.62 0.53 0.7 1 1 1

WINTER

1NO2 1 1 1 −0.63 −0.57 −0.56 −0.55 −0.05 −0.19
1Temp −0.63 −0.57 −0.56 1 1 1 0.63 0.47 0.35
1WS −0.55 −0.05 −0.19 0.49 0.47 0.35 1 1 1

(b) Correlation among diurnal components of residuals

1NO 1NO2 1Temp 1WS

EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3

SUMMER

1NO 1 1 1 0.05 0.68 0.48 −0.08 −0.05 −0.27 −0.07 0.11 −0.02
1NO2 0.05 0.68 0.48 1 1 1 0.57 0.18 −0.27 0.51 0.38 0.26
1Temp −0.08 −0.05 −0.27 0.57 0.18 −0.27 1 1 1 0.81 0.63 0.21
1WS −0.07 0.11 −0.02 0.51 0.38 0.26 0.81 0.63 0.21 1 1 1

WINTER

1NO 1 1 1 0.31 0.6 0.73 0.02 −0.52 −0.62 0.03 0.12 0.06
1NO2 0.31 0.6 0.73 1 1 1 −0.13 −0.7 −0.7 −0.01 0.09 0.11
1Temp 0.02 −0.52 −0.62 −0.13 −0.7 −0.7 1 1 1 0.48 0.02 −0.01
1WS 0.03 0.12 −0.06 −0.01 0.09 0.11 0.48 0.02 0.01 1 1 1

– By inspecting the “no-DU” case, at least in NA
(Fig. S16), the bias error discussed in Sect. 3 cannot be
explained simply in terms of the fields NO2, Temp, and
WS. Hence, the bias of the CMAQ model over the NA
continent appears to be associated with processes with
longer timescales (i.e. longer than daily), such as bound-
ary conditions (inducing mostly bias error, as discussed
in Sect. 3), deposition, and/or transport (potential sys-
tematic errors in wind direction, for example, would
likely produce a bias-type error).

– The impact of 1NO2 and 1NO in EU (all subregions,
mostly daylight) and of 1WS in EU1 (and partially
EU2) on the error of ozone (not shown) is similar with
and without the diurnal fluctuations, indicating cross
correlation of these error fields for periods longer than
1 day.

5 Discussions

The application of several diagnostic techniques in conjunc-
tion with sensitivity scenarios has allowed in-depth analysis
of the timescale properties of the ozone error of CMAQ and
Chimere, two widely applied modelling systems. The main
results, as stemming from various aspects of the investiga-
tion, are that the largest share of MSE (∼ 70–85 %) is associ-
ated with fluctuations longer than the daily scale and mostly
due to offsetting error in NA and due to covariance error in
EU, while the remaining MSE is due to processes with daily
variation. The causes of the long-term error need to be sought
in the fields that produce (mainly) a bias type of error such
as emissions, boundary conditions, and deposition for NA,
while the time shift of the slow fluctuations in EU is possibly
due to timing error of the synoptic drivers or other synoptic
processes.

By excluding other plausible causes, and assuming that
observational data are “correct” (not affected by systematic
errors), we can conclude based on multiple indicators that
the dynamics of the boundary layer (which in turn depend on
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Table 3. Linear correlation coefficient between the residuals of the regressors of Eq. (3), when the diurnal fluctuations are filtered out.
The residuals are calculated by removing fluctuations faster the ∼ 1.5 days. All the correlation values are significant up to 1 % significance
threshold from the measured and modelled time series. (a) NA; (b) EU. For each set of variables, the regression analysis includes the rural
stations within a maximum differential altitude of 250 m.

(a) Correlation among residuals (diurnal fluctuations removed)

1NO2 1Temp 1WS

NA1 NA2 NA3 NA1 NA2 NA3 NA1 NA2 NA3

SUMMER

1NO2 1 1 1 −0.2 −0.02 −0.26 −0.06 −0.05 −0.19
1Temp −0.2 −0.02 −0.26 1 1 1 0.28 0.09 0.42
1WS −0.06 −0.05 −0.19 0.28 0.09 0.42 1 1 1

WINTER

1NO2 1 1 1 −0.12 −0.42 −0.03 −0.02 −0.16 −0.11
1Temp −0.12 −0.42 −0.03 1 1 1 0.54 0.34 0.13
1WS −0.02 −0.16 −0.11 0.54 0.34 0.13 1 1 1

(b) Correlation among residuals (diurnal fluctuations removed)

1NO 1NO2 1Temp 1WS

EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3 EU1 EU2 EU3

SUMMER

1NO 1 1 1 0.22 0.71 0.69 0.12 −0.23 −0.03 0.06 −0.23 −0.08
1NO2 0.22 0.71 0.69 1 1 1 −0.27 −0.41 −0.11 −0.54 −0.43 −0.01
1Temp 0.12 −0.23 −0.03 −0.27 −0.41 −0.11 1 1 1 0.44 0.22 0.36
1WS 0.06 −0.23 −0.08 −0.54 −0.43 −0.01 0.44 0.22 0.36 1 1 1

WINTER

1NO 1 1 1 0.21 0.64 0.46 −0.22 −0.19 −0.02 −0.15 −0.14 −0.01
1NO2 0.21 0.64 0.46 1 1 1 −0.09 −0.38 −0.35 −0.07 −0.2 −0.08
1Temp −0.22 −0.19 −0.02 −0.09 −0.38 −0.35 1 1 1 0.37 −0.1 0.38
1WS −0.15 −0.14 −0.01 −0.07 −0.2 −0.08 0.37 −0.1 0.38 1 1 1

the representation of radiation, surface characteristics, sur-
face energy balance, heat exchange processes, development
or suppression of convection, shear generated turbulence,
and entrainment and detrainment processes at the boundary
layer top for heat and any other scalars) are responsible for
the recursive daily error. The most revealing indicator is the
analysis of the ACF and PACF of the time series of ozone
residuals that shows a daily periodicity: the 24 h errors are
highly associated throughout the year; i.e. the error repeats
itself with daily regularity. This could be caused by multiple
processes occurring on a daily timescale, such as chemical
transformations, the timing of the emissions, and PBL dy-
namics. However, analyses of the error periodicity of primary
species (to exclude the role of chemical transformations) and
of the scenario with zeroed anthropogenic emissions (to ex-
clude the role of emissions) have shown the same error struc-
ture, pointing to PBL processes as the main cause of daily
error.

Due to the spatial aggregation of these analyses and the
non-linearity of the models’ components, it is possible that

the periodicity of the error could be due to a combination of
multiple processes at specific sites. However, the absence of
a spatial or emission dependence and the persistence of the
daily periodicity indicate that the main cause of the daily er-
ror stems from PBL dynamics. Furthermore, the analogies of
the time shift of the diurnal component of the base and zeroed
emission cases suggest that the timing error (pure covariance
error) is not caused by anthropogenic emissions (with the
possible exception of winter in NA where some small dif-
ferences are present).

6 Conclusions

This study is part of the goal of AQMEII to promote in-
novative insights into the evaluation of regional air quality
models. This study is primarily meant to introduce evaluation
methods that are innovative and that move towards diagnos-
ing the causes of model error. It focuses on the diagnostic of
the error produced by CMAQ and Chimere applied to calcu-
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late hourly surface ozone mixing ratios over North America
and Europe.

We argue that the current widespread practice (although
with several exceptions) of using time-aggregate metrics to
merely quantify the average distance (in a metric space) be-
tween models and observations has clear limitations and does
not help target the causes of model error. We therefore pro-
pose to move towards the qualification of the error compo-
nents (bias, variance, covariance) and to assess each of them
with relevant diagnostic methods. At the core of the diagnos-
tic methods we have devised over the years within AQMEII
is the quality of the information that can be extracted from
model and measurements to aid understanding of the causes
of model error, thus providing more useful information to
model developers and users than can be gained from aggre-
gate metrics. Applying such approaches on a routine basis
would help boost the confidence in using models prediction
for various applications. At the current stage, the methods we
propose help identify the timescale of the error and its period-
icity. The step to link the error to specific processes can only
be reached by integrating the analysis with sensitivity model
runs. For instance, we can infer that the timing error of the
diurnal component is (at least partially) associated with the
dynamics of the PBL, but further analyses are necessary to
isolate the components of the PBL responsible for that error.

While remarking that the analyses carried out are not
meant to compare the two models but are rather meant to
show how the two models, applied to different areas and us-
ing different emissions, respond to changes, the main conclu-
sions of this study are as follows:

– While the zeroing/modification of input of ozone from
the lateral boundaries causes a shift of the ozone diurnal
cycle in both CMAQ and Chimere, the response of the
two models to a modification of anthropogenic emis-
sion and deposition fluxes is very different. For CMAQ,
the effect of removing anthropogenic emissions causes
a shift and a flattening of the diurnal curve (bias and
variance error), while for Chimere the effect is restricted
to a shift. In contrast, setting the ozone dry deposition
velocity to zero causes a shift (bias error) for CMAQ,
while a profound change of the error structure occurs
for Chimere with significant impacts on not only the
bias but also the variance and covariance terms.

– The response of the models to variations in anthro-
pogenic emissions and boundary conditions show a pro-
nounced spatial heterogeneity, while the seasonal vari-
ability of this response is found to be less marked. Only
during the winter season does the zeroing of boundary
values for North America produce a spatially uniform
deterioration of the model accuracy across the majority
of the continent.

– Fluctuations slower than ∼ 1.5 days account for 70–
85 % of the total ozone quadratic error. The partition

of this error into bias, variance, and covariance depends
on season and region. In general, the CMAQ model suf-
fers mostly from bias error (model overestimation dur-
ing summer and underestimation during winter), while
the Chimere model is rather “centred” (i.e. almost un-
biased) but suffers high covariance error (associated
with the timing of the signal and thus likely to synoptic
drivers).

– A recursive, systematic error with daily periodicity is
detected in both models, responsible for 10–20 % of the
quadratic total error, possibly associated with the dy-
namics of the PBL.

– The modelled ozone daily peak accurately reproduces
the observed one, although with significant exceptions
in France, Italy, and Austria for Chimere and with the
exceptions of Canada and some areas in the eastern US
for CMAQ. Assuming the accurateness of the observa-
tional data in these regions, the modelled peak is antici-
pated by up to 6 h, causing a covariance error as large as
9 ppb. The analysis suggests that the timing of the an-
thropogenic emissions is not responsible for the phas-
ing error of the ozone peaks but rather indicates that it
might be caused by the dynamics of the PBL (although
the role of biogenic emissions and chemistry cannot be
ruled out).

– The ozone error in CMAQ has a weak/negligible depen-
dence on the error of NO2 and wind speed, while the
error of NO2 impacts significantly the ozone error pro-
duced by Chimere. On timescales longer than 1.5 days,
the Chimere ozone error is significantly associated with
the error of wind speed and temperature.

Although having exploited several evaluation frameworks
over the past 10 years within AQMEII (operational, diagnos-
tic, and probabilistic) the goal of clearly associating errors to
processes has not yet been achieved. As already suggested
in the conclusions of the collective analysis of the AQMEII3
suite of model runs summarised by Solazzo et al. (2017), fu-
ture model evaluation activities would benefit from incorpo-
rating sensitivity simulations and process specific analyses
that help to disentangle the non-linearity of the many model
variables, possibly by focusing on smaller modelling com-
munities. The “theory of evaluation” being put forward by
the hydrology modelling community (Nearing et al., 2016,
and references therein) may provide a template for the air
quality community to further advance their model evaluation
approaches.

Data availability. The modeling and observational data generated
for the AQMEII exercise are accessible through the ENSEMBLE
data platform (http://ensemble.jrc.ec.europa.eu/) upon contact with
the managing organizations. References to the repositories of the
observational data used have been provided in Sect. 2.1.
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Appendix A

The ACF is derived by the autocovariance (ACV) and ex-
presses the correlation of a time series with its lagged version
(e.g. Chatfield, 2004):

ACV(k)= E {[X(t)−µ] [X(t + k)−µ]}

= Cov[X(t)X(t + k)] ;
ACF(k)= ACV(k)/ACV(0).

At any lag k, the ACV coefficients ck are given by

ck =
1
N

N−k∑
t=1

(xt − x)(xt+k − x).

As usual, the autocorrelation coefficients are given by nor-
malising ck with c0.

The PACF measures the excess of correlation between two
elements of X(t) lagged by s elements not accounted for
by the autocorrelation of the intermediate s− 1 elements. In
other words, the ACF of X(t) and X(t + s) includes all the
linear dependence between the intermediate s− 1 lags. The
PACF allows us to investigate the direct effect of lag t on the
lag t + s.

The advantage of using ACFs and PACFs is that they are a
function of the lag k only (and not of the specific time t). This
condition holds only if X(t) is stationary (i.e. its mean and
variance do not change over time). Several tests are available
to check X(t) for stationarity (e.g. Chatfield, 2004). Differ-
encing the time series is typically a way to achieve stationar-
ity.
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