

Supplement of

Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study

Xin Long et al.

Correspondence to: X. X. Tie (xxtie@urcar.edu) and R. J. Huang (rujin.huang@ieecas.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Drawinaa	$P_{i,k}^{a}(Gg)$			$\mathbf{E}^{\mathbf{b}}(0/0)$	CO Emission	EC	
Province	Rice	Corn	Wheat	\mathbf{F}_i (%)	(Mg)	гс _i	
Beijing	1	500	122	18.65	6.1	216	
Tianjin	121	1014	586	20.75	22.5	308	
Hebei	542	16707	14299	18.80	392.0	2222	
Shanxi	6	9381	2591	17.50	111.9	974	
Inner Mongolia	524	21861	1539	13.70	153.4	1868	
Liaoning	4515	11705	28	16.70	152.7	2761	
Jilin	5876	27335	1	15.00	255.2	2976	
Heilongjiang	22510	33434	466	12.60	445.0	6603	
Shanghai	841	26	186	27.70	26.5	201	
Jiangsu	19120	2390	11604	33.05	969.6	2453	
Zhejiang	5901	301	310	24.40	142.4	1278	
Anhui	13946	4655	13936	28.40	786.9	5240	
Fujian	4971	203	7	28.45	132.6	340	
Jiangxi	20252	123	26	14.10	263.4	781	
Shandong	1010	19883	22638	22.25	675.5	4152	
Henan	5286	17321	33290	21.10	908.9	4725	
Hubei	17295	2937	4216	17.65	371.5	1541	
Hunan	26340	1886	103	28.75	721.5	716	
Guangdong	10916	769	3	31.60	327.3	768	
Guangxi	11661	2664	2	23.95	283.7	224	
Hainan	1554			21.45	30.6	29	
Chongqing	5032	2560	270	14.85	88.5	434	
Sichuan	15265	7519	4232	15.35	324.5	1108	
Guizhou	4032	3138	615	13.25	74.3	348	
Yunnan	6661	7433	836	12.85	129.2	391	
Tibet	5	24	237	12.30	2.9	8	
Shaanxi	909	5396	4172	17.15	120.0	626	
Gansu	35	5645	2716	13.70	67.8	130	
Qinghai	0	187	349	12.55	5.1	6	
Ningxia	618	2241	406	16.25	30.8	192	
Xinjiang	762	6411	6423	16.15	151.5	135	
Total	206507	215649	126209		8174	43754	

Table S1 National and provincial estimated amounts of crop production ($P_{i,k}$), CFB proportion (F_i), CO emission and CFB activities times (FC_i) in China in 2014.

a. The values were taken from NBS (2015). b. The values were taken from Wang and Zhang (2008) and Zhang Yisheng (Unpublished doctor thesis-in Chinese). Parameters $P_{i,k}$ and F_i are related to Equation 1 and FC_i is related to Equation 2 in the text.

species	residue-to-crop ratio ^a	dry residue fraction ^b	combustion efficiency ^b
	(\mathbf{R}_k)	(\mathbf{D}_k)	(CE_k)
rice	1.00	0.89	0.93
corn	1.04	0.40	0.92
wheat	1.17	0.83	0.86

Table S2. Parameters used in the calculation of the amount of CFB.

a. The values were taken from Xie et al. (2011). b. The values were taken from Street et al. (2003)

and He et al. (2011). Parameters R, D, and E are related to Equation 4 in the text.

	Residue		CO EF		
location	type	measurement approach	$(g kg^{-1})$	Keterences	
China					
	crop residue	chamber	52.0±18.9	Ni et al. (2015)	
	Rice straw	tower	$53.2 \pm 17.9^{\ d}$	Zhang et al. (2013)	
	Rice straw	tower	$110.6 \pm 37.9^{\rm e}$	Zhang et al. (2013)	
	rice straw	chamber	87.1±30.3	McMeeking et al. (2009)	
	corn stalk	chamber	114.7 ± 12.4	Zhang et al. (2008)	
	wheat straw	chamber	141.2 ± 14.8	Zhang et al. (2008)	
	rice straw	chamber	64.2 ± 4.9	Zhang et al. (2008)	
	wheat straw	field measurement	60 ± 23	Li et al. (2007)	
	corn stalk	field measurement	53 ± 4.0	Li et al. (2007)	
Asia else					
India	wheat straw	field measurement	28 ± 20	Sahai et al. (2007)	
Thailand	rice straw	field measurement	97±8	Kim Oanh et al. (2011)	
Indonesia	rice straw	chamber	179.9 ± 39.8	Christian et al. (2003)	
Vietnam	rice straw	field measurement	104 ^d	Nguyen et al. (1994)	
Vietnam	rice straw	field measurement	189 ^e	Nguyen et al. (1994)	
Japan	wheat straw	chamber	42	Hayashi et al. (2014)	
Japan	wheat straw	chamber	77	Hayashi et al. (2014)	
Japan	rice straw	chamber	27	Hayashi et al. (2014)	
Japan	rice straw	chamber	59	Hayashi et al., (2014)	
Japan	rice straw	chamber	44	Miura and Kanno (1997)	
Japan	rice straw	chamber	70	Miura and Kanno (1997)	
USA					
USA	wheat straw	field measurement	26–64	Air Sciences Inc. (2003)	
USA	wheat straw		54	U.S.EPA. (1995)	
USA	rice straw	wind tunnel	32.2	Jenkins et al. (1998)	
USA	rice straw		41	U.S.EPA. (1995)	
Mexico	crop residue	airborne measurements	85.56 ± 33.75	Yokelson et al. (2011)	
Mexico	agricultural airborne measurements residues		92	Andreae and Merlet. (2001)	

Table S3. Summary of CO EFs from CFB reported in the literature (g kg⁻¹).

References:

- Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966.
- Air Sciences Inc. (ASI)., 2003. Final Report: Cereal-grain residue open-field burning emissions study, Project 152-02. Available at <u>http://www.ecy.wa.gov/programs/air/pdfs/FinalWheat</u> 081303.pdf (accessed 23 October 2013).
- Christian, T.J., Kleiss, B., R. J, Y., R, H., Crutzen, P.J., W. M, H., H.Saharjo, B., Ward, D.E., 2003. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research 108(D23), 4719.
- Hayashi, K., Ono, K., Kajiura, M., Sudo, S., Yonemura, S., Fushimi, A., Saitoh, K., Fujitani, Y., Tanabe, K., 2014. Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmospheric Environment 95, 36-44.
- He, M., Zheng, J., Yin, S., Zhang, Y., 2011. Trends, temporal and spatial characteristics, and uncertainties in biomass burning emissions in the Pearl River Delta, China. Atmospheric Environment 45, 4051-4059.
- Kim Oanh, N.T., Ly, B.T., Tipayarom, D., Manandhar, B.R., Prapat, P., Simpson, C.D., Sally Liu, L.-J., 2011. Characterization of particulate matter emission from open burning of rice straw. Atmospheric Environment 45, 493-502.
- Li, X., Wang, S., Duan, L., Hao, J., Li, C., Chen, Y., Yang, L., 2007. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology 41, 6052-6058.
- Jenkins, B., Baxter, L., Miles Jr, T., Miles, T., 1998. Combustion properties of biomass. Fuel Processing Technology 54, 17-46.
- McMeeking, G.R., Kreidenweis, S.M., Baker, S., Carrico, C.M., Chow, J.C., Collett, J.L., Hao,
 W.M., Holden, A.S., Kirchstetter, T.W., Malm, W.C., Moosmüller, H., Sullivan, A.P., Wold,
 C.E., 2009. Emissions of trace gases and aerosols during the open combustion of biomass in
 the laboratory. Journal of Geophysical Research 114, D19120
- Miura, Y., Kanno, T., 1997. Emissions of trace gases (CO₂, CO, CH4, and N₂O) resulting from rice straw burning. Soil Science and Plant Nutrition 43, 849-854.
- National Bureau of Statistics (NBS), 2015. China Statistical Yearbook 2014. China Statistics Press, Beijing. <u>http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm</u>

Nguyen, B., Putaud, J., Mihalopoulos, N., Bonsang, B., Doan, C., 1994. CH4 and CO emissions

from rice straw burning in South East Asia. Environmental Monitoring and Assessment 31, 131-137.

- Ni, H., Han, Y., Cao, J., Chen, L.-W. A., Tian, J., Wang, X., Chow, J. C., Watson, J. G., Wang, Q., and Wang, P.: Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China, Atmospheric Environment, 2015.
- Sahai, S., Sharma, C., Singh, D., Dixit, C., Singh, N., Sharma, P., Singh, K., Bhatt, S., Ghude, S., Gupta, V., 2007. A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India. Atmospheric Environment 41, 9173-9186.
- Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17(4), 1099.
- U.S.EPA, 1995. Compilation of air pollutant emission factors, AP-42, 5th ed., 2.5: Open burning, 1995. <u>http://www.epa.gov/ttn/chief/ap42/ch02/final/c02s05.pdf</u>
- Wang, S., and Zhang, C.: Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China, Sciencepaper online, 3, 329-333, 2008 (in Chinese).
- Xie, G., Han, D., Wang, X., Lii, R., 2011. Harvest index and residue factor of cereal crops in China. Journal of China Agricultural University 16, 1-8 (in Chinese).
- Yokelson, R.J., Burling, I., Urbanski, S., Atlas, E., Adachi, K., Buseck, P., Wiedinmyer, C., Akagi, S., Toohey, D., Wold, C., 2011. Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics 11, 6787-6808.
- Zhang, H., Ye, X., Cheng, T., Chen, J., Yang, X., Wang, L., Zhang, R., 2008. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmospheric Environment 42, 8432-8441.
- Zhang, Y., Shao, M., Lin, Y., Luan, S., Mao, N., Chen, W., Wang, M., 2013. Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China. Atmospheric Environment 76, 189-199.

Fig. S1 Crop field burning captured by MODIS along with the background of MODIS real-time true color map from Oct. 6th to 11th.

Fig. S2 The sensitivity experiments to mountain effects, including (a) the enclosing scope and sensitive configuration of remove behaviors for (b) both mountains of Taihang and Yanshan (R-TY), (c) Taihang Mountains (R-T) and (d) Yanshan Mountains (R-Y).

Fig. S3 The schematic pictures of mountains effect along with the topography of the NCP region. (a) Mountains block the airflows and cause pollutants accumulated at the foothill of mountains (Influence-2, block). (b) Mountains redirect the airflows, and cause pollutants move toward the downwind foothill areas (Influence-2, redirect). The 200-meter contour was highlighted with bold black line.