

Supplement of

Evaluation of regional isoprene emission factors and modeled fluxes in California

Pawel K. Misztal et al.

Correspondence to: Pawel K. Misztal (pkm@berkeley.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

S1. Ecoregion codes (Legend to Figure 1)

Legend

- Isop flux available
- Isop flux unavailable

ca_eco_i4
CA_Ecoregion_level4

LA_KEY
13aa Sierra Nevada-Influenced Semiarid Hills and Basins
13bb Sierra Valley
13cc Upper Owens Valley
13dd Mono-Adobe Valleys
13ee Bishop Volcanic Tableland
13hh Lahontan and Tonopah Playas
13ii Tonopah Basin
13v Tonopah Sagebrush Foothills
13x Sierra Nevada-Influenced Ranges
13y Sierra Nevada-Influenced High Elevation Mountains
13aa Eastern Mojave Basins
13bb Eastern Mojave Low Ranges and Arid Foothills
13cc Eastern Mojave Mountain Woodland and Shrubland
13dd Arid Valleys and Canyonlands
13ee Mojave Playas
13ff Amargosa Desert
13gg Death Valley/Mojave Central Trough
13hh Mattole Flat/Badwater Basin
13ii Western Mojave Basin
13kk Western Mojave Low Ranges and Arid Foothills
13mm Western Mojave High Elevation Mountains
13nn Mojave Lava Fields
13oo Mojave Sand Dunes
13aa Coastal Lowlands
11 Northern Franciscan Redwood Forest
11 King Range/Mattole Basin
11k Coastal Franciscan Redwood Forest
11l Fort Bragg/Fort Ross Terraces
11m Point Reyes/Farallon Islands
11n Santa Cruz Mountains
11o San Mateo Coastal Hills
4d Cascade Subalpine/Alpine
4e High Southern Cascades Montane Forest
4f Low Southern Cascades Mixed Conifer Forest
4g California Cascades Eastside Conifer Forest
4h Southern Cascades Foothills
5a Sierran Alpine
5b Northern Sierra Subalpine Forests
5c Northern Sierra Upper Montane Forests

5d Northern Sierra Mid-Montane Forests
5e Northern Sierra Lower Montane Forests
5f Northeastern Sierra Mixed Conifer-Pine Forests
5g Central Sierra Mid-Montane Forests
5h Central Sierra Lower Montane Forests
5i Eastern Sierra Great Basin Slopes
5k Eastern Sierra Mojavean Slopes
5l Southern Sierra Subalpine Forests
5m Southern Sierra Mid-Montane Forests
5n Southern Sierra Lower Montane Forest and Woodland
5o Tehachapi Mountains
5n Tuscan Flows
6aa Eastern Hills
6ab Pleasant Valley/Kettleman Plain
6ad Temblor Range/Elk Hills
6ad Grapevine Transition
6af Tehachapi Foothills
6af Salinas Valley
6ag Northern Santa Lucia Range
6ah Southern Santa Lucia Forest and Woodland
6ai Northern Santa Lucia Range
6aj Southern Santa Lucia Range
6ak Peso Robles Hills and Valleys
6al Salinas-Cholame Hills
6am Cuyama Valley
6an Carrizo Plain
6ao Caliente Range
6ap Solomon-Purisima-Santa Ynez Hills
6aq Santa Maria/Santa Ynez Valleys
6ar Upper Sacramento River Alluvium
6b Northern Sierran Foothills
6b Southern Sierran Foothills
6d Camanche Terraces
6d Tehama Terraces
6f Foothill Ridges and Valleys
6g North Coast Range Eastern Slopes
6h Western Valley Foothills/Dunnigan Hills
6i Clear Lake Hills and Valleys
6j Mayacamas Mountains
6l Napa-Sonoma-Lake Volcanic Highlands
6l Napa-Sonoma-Russian River Valleys
6m Sonoma-Mendocino Mixed Forest
6n Bodega Coastal Hills
6p Bay Flats
6q Suisun Terraces and Low Hills
6r East Bay Hills/Western Diablo Range
6s San Francisco Peninsula
6u Livermore Hills and Valleys
6v Upper Santa Clara Valley
6w Monterey Bay Plains and Terraces
6x Leeward Hills/Western Diablo Range
6y Gabbs Range
6z Diablo Range
78a Rogue/Illinois/Scott Valleys
78d Serpentine Siskiyous
78e Inland Siskiyous
78g Klamath River Ridges
78h Border High-Siskiyous
78i Western Klamath Low Elevation Forests
78j Western Klamath Montane Forests
78k Eastern Klamath Low Elevation Forests
78l Eastern Klamath Montane Forests
78m Marble/Salmon Mountains-Trinity Alps
78n Scott Mountains
78o Klamath Siskalpine
78p Pit River
79a Outer North Coast Ranges
79b High North Coast Ranges
7a Northern Terraces
7b North Valley Alluvium
7c Butte Sink/Sutter and Colusa Basins
7d Southern Hardpan Terraces
7e Sacramento/Feather Riverine Alluvium
7f Sutter Buttes
7g Yolo Alluvial Fans
7h Yolo/American Basin
7j Delta
7k Lodi Alluvium
7l Stockton Basin
7m San Joaquin Basin
7n Manteca/Merced Alluvium
7o Westside Alluvial Fans and Terraces
7p Granite Alluvial Fans and Terraces
7q Panache and Cantua Fans and Basins
7r Tulare Basin/Fresno Slough
7s Kern Terraces
7t South Valley Alluvium
7u Antelope Plain
7v Southern Clayey Basins
80d Pluvial Lake Basins
80g High Lava Plains
80j Semiarid Uplands
81a Western Sonoran Mountains
81b Western Sonoran Mountain Woodland and Shrubland
81c Western Sonoran Basins
81d Sand Hills/Sand Dunes
81e Upper Coachella Valley and Hills
81f Imperial/Lower Coachella Valleys
81g Lower Colorado/Gila River Valleys
81h Sonoran Playas
81i Central Sonoran/Colorado Desert Mountains
81j Central Sonoran/Colorado Desert Basins
81k Arizona Upland/Eastern Sonoran Mountains
85a Santa Barbara Coastal Plain and Terraces
85b Oxnard Plain and Valleys
85d Los Angeles Plain
85f Degan Coastal Terraces
85g Degan Coastal Hills and Valleys
85g Degan Western Granitic Foothills
85g Moreno/Boundary Mountain Chaparral
85i Northern Channel Islands
85j Southern Channel Islands
85k Inland Valleys
85l Inland Hills
85m Santa Ana Mountains
88a Western Transverse Range Lower Montane Shrub and Woodland
88b Western Transverse Range Montane Forest
8c Arid Montane Slopes
8d Southern California Subalpine/Alpine
8e Southern California Lower Montane Shrub and Woodland
8f Southern California Montane Conifer Forest
8g Northern Transverse Range
8g Klamath/Goose Lake Basins
9h Fremont Pine/Fir Forest
9i Southern Cascades Slope
9j Klamath Juniper Woodland/Devils Garden
9k Shasta Valley
9l Pit River Valleys
9m Warner Mountains
9n High Elevation Warner Mountains
9o Like Tableland
9p Modoc/Lassen Juniper-Shrub Hills and Mountains
9q Adin/Horsehead Mountains Forest and Woodland
9r Adin/Dixie Low Hills
9s Modoc Lava Flows and Buttes
9t Old Cascades

Figure S1. Legend to Figure 1 describing ecoregion codes.

S2. MEGAN architecture and main differences between versions

The main differences of MEGAN v.2.1 to MEGAN v.2.04 are:

- 1) v2.04 does not have soil moisture or CO2 response (but these were not used for MEGAN v.2.1 simulations in this study);
- 2) MEGAN v.2.04 uses a different emission factor database and has different light response algorithms (which are nearly the same for isoprene and mostly impact other compounds);
- 3) MEGAN v.2.04 uses different parameters in the canopy environment model.

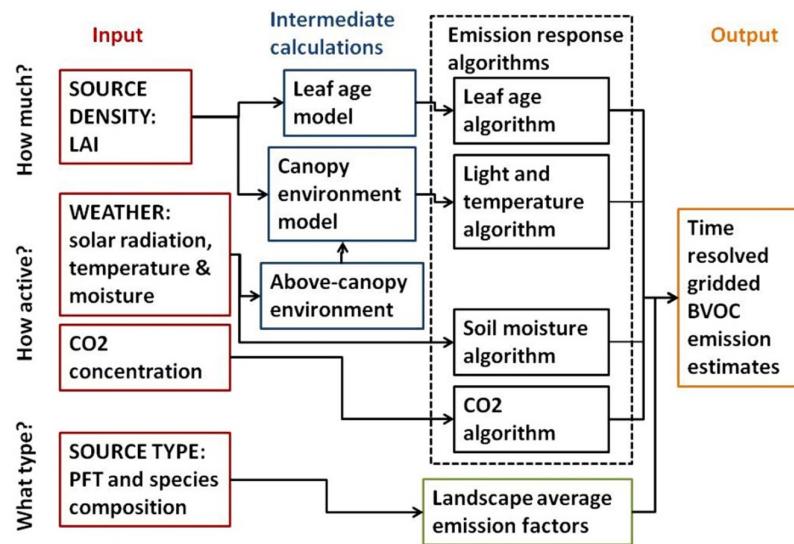
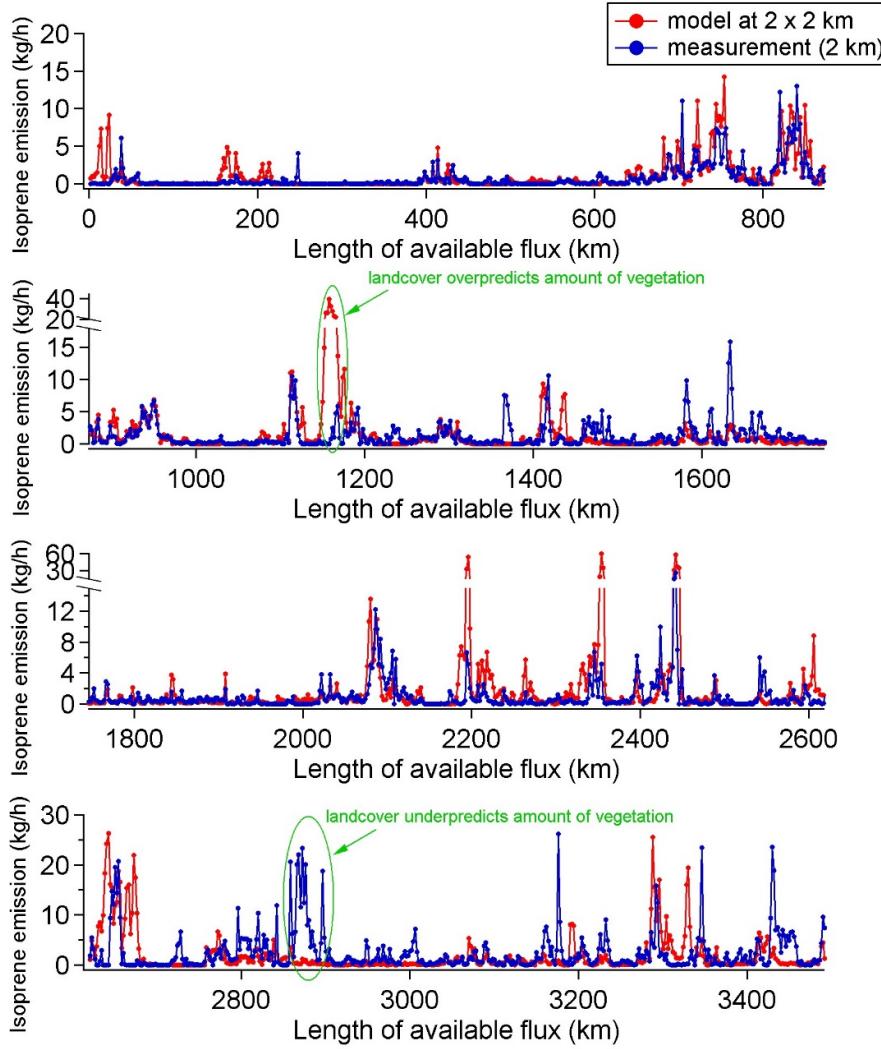



Figure S2. Schematic of MEGAN v.2.1 model components and driving variables (taken from Guenther et al., 2012).

S3. Timeseries of simulated and observed emissions

In Figure S3, the time series of simulated and measured emissions are shown (plotted along the complete flight tracks).

Local similarities and discrepancies are observed in specific areas along the flight track and are discussed in the manuscript. Although there are different sources of uncertainty, the largest discrepancy occurs if the trees are significantly under or overrepresented, which could be due to fires, new growth, or incomplete landcover.

Figure S3. Time series for modeled and measured isoprene fluxes using the approximated circular footprint areas (only the data when flux was available are shown) along the full length of the flight tracks during the CABERNET campaign.

S4. The inverse G06 algorithm used in airborne emission factor derivation

In the original G06 algorithm (equation below), F_{G06} is the unknown, and BER is the known emission factor at standard temperature and PAR conditions. We inverse the equation so the BER is unknown and F is the airborne-derived surface flux. This BER is referred to as airborne basal emission factor (BEF) or just emission factor which represents the airborne flux inferred for the standard conditions of PAR=1000 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ and temperature = 30 °C.

$$F_{G06} = \text{BER} \cdot b_3 \cdot \exp[b_2 \cdot (P_{24} - P_0)] \cdot (P_{240})^{0.6} \cdot \frac{[b_1 - b_2 \ln(P_{240})] \cdot \text{PAR}}{\sqrt{1 + [b_1 - b_2 \ln(P_{240})]^2} \cdot \text{PAR}^2} \cdot b_5 \cdot \exp[b_6 \cdot (T_{24} - 297)] \cdot \exp[b_6 \cdot (T_{240} - 297)] \cdot \frac{C_{T2} \cdot \exp\left[C_{T1} \cdot \left(\frac{1}{T_{\text{opt}}} - \frac{1}{T}\right) \cdot \frac{1}{0.00831}\right]}{C_{T2} - C_{T1} \cdot \left[1 - \exp\left(C_{T2} \cdot \left(\frac{1}{T_{\text{opt}}} - \frac{1}{T}\right) \cdot \frac{1}{0.00831}\right)\right]}$$

$\underbrace{\phantom{F_{G06} = \text{BER} \cdot b_3 \cdot \exp[b_2 \cdot (P_{24} - P_0)] \cdot (P_{240})^{0.6} \cdot \frac{[b_1 - b_2 \ln(P_{240})] \cdot \text{PAR}}{\sqrt{1 + [b_1 - b_2 \ln(P_{240})]^2} \cdot \text{PAR}^2} \cdot b_5 \cdot \exp[b_6 \cdot (T_{24} - 297)] \cdot \exp[b_6 \cdot (T_{240} - 297)] \cdot \frac{C_{T2} \cdot \exp\left[C_{T1} \cdot \left(\frac{1}{T_{\text{opt}}} - \frac{1}{T}\right) \cdot \frac{1}{0.00831}\right]}_{\gamma_P}}_{\gamma_T} \cdot \left[1 - \exp\left(C_{T2} \cdot \left(\frac{1}{T_{\text{opt}}} - \frac{1}{T}\right) \cdot \frac{1}{0.00831}\right)\right]$

The micrometeorological variables include temperature close to the surface (T) and PAR. Previous 24 and 240-hour history of temperature and PAR are accounted for in T_{24} , P_{24} , T_{240} , P_{240} variables. The parameters of the algorithm were used as default (i.e. $C_{T1}=95$, $C_{T2}=230$, $T_{\text{opt}}=313$, $P_0=200$, $b_1=0.004$, $b_2 = 0.0005$, $b_3=0.0468$, $b_4=0.6$, $b_5=2.034$, $b_6=0.05$).

Supplementary references:

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci Model Dev, 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012.