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Abstract. An idealized diffusion–evaporation model of time-
dependent mixing between a cloud volume and a droplet-
free volume is analyzed. The initial droplet size distribution
(DSD) in the cloud volume is assumed to be monodisperse.
It is shown that evolution of the microphysical variables and
the final equilibrium state are unambiguously determined by
two non-dimensional parameters. The first one is the poten-
tial evaporation parameter R, proportional to the ratio of the
saturation deficit to the liquid water content in the cloud vol-
ume, that determines whether the equilibrium state is reached
at 100 % relative humidity, or is characterized by a complete
evaporation of cloud droplets. The second parameter Da is
the Damkölher number equal to the ratio of the characteristic
mixing time to the phase relaxation time. Parameters R and
Da determine the type of mixing.

The results are analyzed within a wide range of values ofR
and Da. It is shown that there is no pure homogeneous mix-
ing, since the first mixing stage is always inhomogeneous.
The mixing type can change during the mixing process. Any
mixing type leads to formation of a tail of small droplets in
DSD and, therefore, to DSD broadening that depends on Da.
At large Da, the final DSD dispersion can be as large as 0.2.
The total duration of mixing varies from several to 100 phase
relaxation time periods, depending on R and Da.

The definitions of homogeneous and inhomogeneous
types of mixing are reconsidered and clarified, enabling a
more precise delimitation between them. The paper also
compares the results obtained with those based on the classic
mixing concepts.

1 Introduction

Cloud physics typically investigates two types of turbulent
mixing: homogeneous and extremely inhomogeneous (e.g.,
Burnet and Brenguier, 2007; Andrejczuk et al., 2009; De-
venish et al., 2012; Kumar et al., 2012). The concept of ex-
tremely inhomogeneous mixing in clouds was introduced by
Latham and Reed (1977), Baker and Latham (1979), Baker
et al. (1980) and Blyth et al. (1980). According to this con-
cept, mixing of cloud air and sub-saturated air from cloud
surrounding results in complete evaporation of a fraction of
cloud droplets, whereas the size of other droplets remain un-
changed. The studies of extremely inhomogeneous mixing
were closely related to investigation of different mechanisms
underlying enhanced growth of cloud droplets and warm pre-
cipitation formation (Baker et al., 1980; Baker and Latham,
1982). The concept of homogeneous mixing suggests that
all the droplets partially evaporate, so the liquid water con-
tent decreases while the droplet concentration remains un-
changed (Lehmann et al., 2009; Pt1). The significance of the
concepts of homogeneous and inhomogeneous mixing goes
far beyond formation of large-sized droplets. In fact, these
concepts are closely related to the mechanisms involved in
formation of droplet size distributions (DSD) in clouds and to
the description of this formation in numerical cloud models.
A detailed analysis of the classical concepts of homogeneous
and extremely inhomogeneous mixing is given by Korolev et
al. (2016, hereafter Pt1).

Mixing in clouds includes two processes: mechanical mix-
ing caused by turbulent diffusion and droplet evaporation ac-
companied by increasing relative humidity. The relative con-
tribution of these processes can be evaluated by compari-
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son of two characteristic timescales: the characteristic mix-
ing timescale τmix ∼ L

2/3ε−1/3 (where L is the characteris-
tic linear scale of an entrained volume and ε is the dissipa-
tion rate of turbulent kinetic energy) and the time of phase
relaxation τpr = (4πDr̄N)−1 (where N is droplet concentra-
tion in a cloud volume, r̄ is the mean droplet radius and D
is the diffusivity of water vapor) characterizing the response
of the droplet population to changes in humidity (the list of
notations is given in Appendix). The choice of the phase re-
laxation time as the characteristic timescale of mixing is dis-
cussed by Pinsky et al. (2016) (hereafter referred to as Pt2)
and will be further elaborated below.

Mixing is considered homogeneous if τmix/τpr� 1. At the
first stage of mixing, the initial gradients of the microphys-
ical and thermodynamic variables rapidly decrease to zero.
By the end of this stage, the fields of temperature, humid-
ity (hence, the relative humidity, RH) and droplet concentra-
tion are spatially homogenized and all the droplets within
the mixing volume experience the same saturation deficit.
During the relatively lengthy second stage, droplets evapo-
rate and increase the relative humidity in the volume. It was
shown that homogeneous mixing takes place at scales below
about 0.5 m (Pt2).

At spatial scales larger than ∼ 0.5 m, τmix/τpr > 1 and the
spatial gradients of RH remain for a long time. Consequently,
droplets within the mixing volume experience different sub-
saturations, thus the mixing is considered inhomogeneous.
At τmix/τpr� 1, the mixing is considered extremely inho-
mogeneous.

According to the classical conceptual scheme, during the
first stage of extremely inhomogeneous mixing a fraction of
droplets is transported into the droplet-free entrained vol-
ume and evaporates completely. The evaporation continues
until the evaporating droplets saturate the initially droplet-
free volume. At the second stage, turbulent mixing between
the cloud volume and the initially droplet-free (but already
saturated) volume homogenizes the gradients of droplet con-
centration and other quantities. Since both volumes are sat-
urated, mixing does not affect droplet sizes. As a result, the
final (equilibrium) state is characterized by the relative hu-
midity RH= 100 % and the DSD shape similar to that before
mixing, but with a lower droplet concentration. The same
result (a decrease in droplet concentration but unchanged
droplet size) is expected in cases of both monodisperse and
polydisperse initial DSD. Since the DSD shape does not
change, the characteristic droplet sizes (i.e., the mean square
radius, the mean volume radius and the effective radius) do
not change either in the course of extremely inhomogeneous
mixing.

Thus, according to the classical concepts, the final equi-
librium state with RH= 100 % is reached either by a partial
evaporation of all droplets (homogeneous mixing) or a total
evaporation of a certain portion of droplets that does not af-
fect the remaining droplets (extremely inhomogeneous mix-
ing) (Lehmann et al., 2009; Pt1).

In analyses of in situ measurements, the observed data
are usually compared with those expected at the final state
of mixing as assumed by the classical mixing concepts.
If droplet concentration decreases without a corresponding
change in the characteristic droplet radius, the mixing is
considered “extremely inhomogeneous”. If the characteris-
tic droplet radius decreases with an increase of the dilu-
tion level while droplet concentration decreases insignifi-
cantly, the mixing is identified as “homogeneous”. If both
the characteristic droplet radius and the droplet concentration
change, the mixing is considered as “intermediate”. Quanti-
tative evaluations of the microphysical processes specific for
intermediate mixing remain largely uncertain.

As was discussed in Pt2, the final states of mixing sug-
gested by the classical concepts are only hypothetical. To
understand the essence of the final equilibrium states of mix-
ing and evaluate the time needed to reach them, it is nec-
essary to consider the time evolution of DSD in the course
of mixing process. Time-dependent process of homogeneous
mixing was analyzed in Pt2. It was shown that in important
cases of wide polydisperse initial DSDs, the final state sub-
stantially differs from that hypothesized by the classical con-
cepts.

In this study, which is a Pt3 of the set of studies, we ana-
lyze the time-dependent process of inhomogeneous mixing.
The structure of the paper is as follows. The main concept
and the basic equations for time-dependent inhomogeneous
mixing are described in Sect. 2. Analysis of non-dimensional
diffusion–evaporation equations is presented in Sect. 3. The
design and the results of simulations of non-homogeneous
mixing are outlined in Sects. 4 and 5. A discussion clarifying
the concepts of homogeneous and inhomogeneous mixing is
presented in concluding Sect. 6.

2 The main concept and the basic equations

During mixing of cloud volume and entrained air volume, the
following two processes determine the change of the micro-
physical and thermodynamical variables: turbulent diffusion
resulting in mechanical smoothing of the gradients of tem-
perature, water vapor and droplet concentration, and droplet
evaporation accompanied by phase transformation. In this
study, inhomogeneous mixing is investigated based on the
analysis and solution of a 1-D diffusion–evaporation equa-
tion. To our knowledge, the idea of using a diffusive model of
turbulent mixing to describe the mixing process was first pro-
posed by Baker and Latham (1982). A diffusion–evaporation
equation was also analyzed by Jeffery and Reisner (2006). In
order to get a more precise understanding of the physics of
the mixing process the analysis is performed under the fol-
lowing main simplifying assumptions:

a. Turbulent mixing is analyzed neglecting vertical mo-
tions of mixing volumes, droplet collisions and droplet
sedimentation.
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Figure 1. The schematic illustration of the 1-D mixing problem
considered in the study. The initial state at t = 0 is illustrated. The
left volume of length L/2 is a saturated cloudy volume; the right
volume is a non-saturated air volume from the cloud environment.

b. The total mixing volume is assumed adiabatic.

c. Mixing is assumed to take place only along the x-
direction, i.e., a 1-D task is considered;

d. The initial DSD in the cloud volume is assumed
monodisperse.

Other assumptions and simplifications are discussed below.
A schematic illustration of the initial conditions used in

the study is shown in Fig. 1. Two air volumes are assumed to
mix: a cloud volume (left) and a droplet-free volume (right),
each having the linear size of L/2. The value of L is as-
sumed within the range of several tens to a few hundred me-
ters. The mixing starts at t = 0. The cloud volume is initially
saturated S1 = 0, the initial droplet concentration is N1 and
the initial liquid water mixing ratio is q1 =

4πρw
3ρa

N1r
3
0 . In the

droplet-free volume the initial conditions are RH2 < 100 %
(i.e., S2 < 0), N2 = 0 and q2 = 0. Therefore, the initial pro-
files of these quantities along the x axis are step functions

N(x,0)=
{
N1 if 0≤ x < L/2
0 if L/2≤ x < L (1a)

S(x,0)=
{

0 if 0≤ x < L/2
S2 if L/2≤ x < L (1b)

q(x,0)=
{
q1 if 0≤ x < L/2
0 if L/2≤ x < L (1c)

The initial profile of droplet concentration is shown in Fig. 1.
In this study, averaged equations are used. We do not con-
sider mixing at scales below several millimeters. At the
scales of averaging, there exist clear definitions of droplet
concentration, supersaturation and other “macro scale” quan-
tities. The mixing is assumed to be driven by isotropic turbu-
lence within the inertial sub-range where the Richardson’s
law is valid. Accordingly, turbulent diffusion (turbulent mix-
ing) is described by a 1-D equation of turbulent diffusion

with a turbulent coefficient K . The turbulent coefficient is
evaluated as proposed by Monin and Yaglom (1975)

K(L)= Cε1/3L4/3. (2)

In Eq. (2), C is a constant. Equation (2) is valid in case tur-
bulent diffusion is considered, i.e., at scales where molecular
diffusion can be neglected.

Since the total mixing volume is adiabatic, the fluxes of
different quantities through the left and right boundaries of
the volume are equal to zero at any time instance, i.e.,

∂N(0, t)
∂x

=
∂N(L, t)

∂x
= 0;

∂q(0, t)
∂x

=
∂q(L, t)

∂x
= 0;

∂qv(0, t)
∂x

=
∂qv(L, t)

∂x
= 0, (3)

where qv is the water vapor mixing ratio.
During mixing, droplets in the mixing volume experience

different subsaturations, therefore, the initially monodisperse
DSD will become polydisperse. The droplets that were trans-
ported into the initially droplet-free volume will undergo ei-
ther partial or complete evaporation. The evaporation leads
to a decrease in both droplet size and droplet concentration.

The basic system of equations that describes the processes
of diffusion and of evaporation which occur simultaneously
is to be derived. The first equation is written for value 0 de-
fined as

0 = S+A2q. (4)

This value is conservative in a moist adiabatic process, i.e.,
it does not change during phase transitions (Pinsky et al.,

2013, 2014). In Eq. (4), the coefficient A2 =
1
qv
+

L2
w

cpRvT 2

is a weak function of temperature that changes by ∼ 10 %
when temperatures change by ∼ 10 ◦C (Pinsky et al., 2013).
In this study, it is assumed that A2= constant. In Eq. (4),

q =
4πρw
3ρa

∞∫
0
r3f (r)dr is the liquid water mixing ratio and

f (r) is the DSD. The quantity 0 obeys the diffusion equa-
tion

∂0(x, t)

∂t
=K

∂20(x, t)

∂x2 (5)

with the boundary conditions ∂0(0,t)
∂x
=

∂0(L,t)
∂x
= 0 and the

initial profile at t = 0

0(x,0)=
{
A2q1 if 0≤ x < L/2
S2 if L/2≤ x < L (6)

Therefore, function 0(x,0) is positive in the left volume, and
negative in the right volume.

Since 0 does not depend on phase transitions, Eq. (5) can
be solved independently of other equations. The solution of
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Figure 2. An example of 0(x, t) evolution during mixing.

Eq. (5) with initial conditions (Eq. 6) is (Polyanin and Zait-
sev, 2004)

0(x, t)=

∞∑
n=0

an exp
(
−

Kn2π2t

L2

)
cos

(nπx
L

)
=

1
2
(S2+A2q1)+ (A2q1− S2)

∞∑
n=1

sin(nπ/2)
nπ/2

exp
(
−

Kn2π2t

L2

)
cos

(nπx
L

)
, (7)

where the Fourier coefficients of expanding the step func-
tion (Eq. 6) are

a0 =
1
2
(A2q1+ S2) (8a)

an = (A2q1− S2)
sin(nπ/2)
nπ/2

,n= 1,2, . . . (8b)

An example of spatial dependencies of 0(x, t) at different
time instances during the mixing is shown in Fig. 2. One
can see a decrease in the initial gradients and a tendency
to establish a horizontally uniform value of 0. Since the
initial volume was divided into two equal parts, the diffu-
sion leads to formation of a constant limit value of function
0(x,∞)= 1

2 (0(0,0)+0(L,0)).
The second basic equation is the equation for diffusional

droplet growth, taken in the following form (Pruppacher and
Klett, 2007):

dσ
dt
=

2S
F
, (9)

where σ = r2 is the square of droplet radius and F =
ρwL

2
w

kaRvT 2+
ρwRvT
es (T )D

. The value of coefficient F is considered con-
stant in this study. The solution of Eq. (9) is

σ(t)=
2
F

t∫
0

S(t ′)dt ′+ σ0. (10)

The third main equation describes the evolution of DSD. In
the following discussion, the DSD will be presented in the

form g(σ ) which is the distribution of the square of the ra-
dius. This formulation directly utilizes the property of the dif-
fusion growth equation (Eq. 9) according to which the time
changes of DSD are reduced to shifting the distributions in
the space of square radii, while the shape of the distribu-
tion remains unchanged. The standard DSD f (r) is related
to g(σ ) as f (r)= 2r · g(r2).

The normalized condition for g(σ ) is

N =

∞∫
0

g(σ )dσ, (11)

where N is the droplet concentration. Using DSD g(σ ), the
liquid water mixing ratio can be presented as integral

q =
4πρw

3ρa

∞∫
0

σ 3/2g(σ )dσ. (12)

The 1-D diffusion–evaporation equation for the non-
conservative function g (σ ) can be written in the form
(Rogers and Yau, 1989)

∂g(σ )

∂t
=K

∂2g(σ )

∂x2 −
∂

∂σ

(
dσ
dt
g(σ )

)
(13)

where the first term on the right-hand side of Eq. (13) de-
scribes changes in the DSD due to spatial diffusion, while the
second term on the right-hand side describes changes in the
DSD due to evaporation. Substitution of Eq. (9) into Eq. (13)
leads to the following equation

∂g(x, t,σ )

∂t
=K

∂2g(x, t,σ )

∂x2 −
2S(x, t)
F

∂g(x, t,σ )

∂σ
. (14)

To close Eq. (14), Eq. (4) should be used in the form

S(x, t)= 0(x, t)−A2q(x, t), (15)

where q(x, t) is calculated according to Eq. (12). Equa-
tions (12, 14, 15) constitute a closed set of equations allowing
calculation of g(x, t,σ ).

To proceed to the equations for DSD moments, let us de-
fine a moment of DSD g(σ ) of order α as

mα = σα =

∞∫
0

σαg(σ )dσ. (16)

Multiplying Eq. (14) by σα , integrating within limits [0. . .∞]
and assuming that σαg(σ )→ 0 when σ →∞, yield a recur-
rent formula for the DSD moments

∂mα(x, t)

∂t
=K

∂2mα(x, t)

∂x2 +α
2S
F
mα−1(x, t). (17)

Eq. (17) provides a recurrent relationship between the DSD
moments of different orders. A similar relationship was dis-
cussed by Pinsky et al. (2014) while analyzing diffusion
growth in an ascending adiabatic parcel.
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In particular, the equation for the liquid water mixing ratio
that is a moment of the order of α = 3

2 can be written as

∂q(x, t)

∂t
=K

∂2q(x, t)

∂x2 +
4πρwN(x, t)r̄(x, t)

Fρa
S(x, t), (18)

where the mean radius r̄(x, t)= m1/2
m0

.
In the general case, Eq. (18) is not closed, since concen-

trationN(x, t) and r̄(x, t) are unknown functions of time and
spatial coordinates.

The characteristic time of evaporation and of supersatura-
tion change is the phase relaxation time (Korolev and Mazin,
2003)

τpr =
ρaF

4πρwA2Nr̄
. (19)

Using Eq. (19), Eq. (18) can be rewritten as

∂q(x, t)

∂t
=K

∂2q(x, t)

∂x2 +
1

τpr(x, t)

[
1
A2
0(x, t)− q(x, t)

]
=K

∂2q(x, t)

∂x2 +
1

A2τpr(x, t)
S(x, t). (20)

From Eqs. (20) and (15), the equation for supersaturation can
be written in the following simple form

∂S(x, t)

∂t
=K

∂2S(x, t)

∂x2 −
S(x, t)

τpr(x, t)
. (20a)

Eqs. (20) and (20a) show that changes in the microphysical
variables are determined by the rate of spatial diffusion (the
first term on the right-hand side of these equations) and of
evaporation (the second term on the right-hand side).

3 Analysis of non-dimensional equations

Spatial diffusion and evaporation depend on many parame-
ters. It is best to start the analysis from the basic equation
system presented in a non-dimensional form. A timescale
corresponding to the initial phase relaxation time in a cloud
volume can be defined as

τ0 =
ρaF

4πρwA2N1r0
(21)

and the non-dimensional time is t̃ = t/τ0. Other non-
dimensional parameters to be used are: the non-dimensional
phase relaxation time

τ̃pr = τpr/τ0 =
N1r0

N(̃x, t̃)r̄ (̃x, t̃)
, (22a)

the normalized liquid water mixing ratio which is equal to
the normalized liquid water content

q̃ =
q

q1
, (22b)

the normalized supersaturation

S̃ =
S

A2q1
, (22c)

the non-dimensional conservative function

0̃ =
0

A2q1
, (22d)

the normalized square of droplet radius

σ̃ =
σ

r2
0
, (22e)

the normalized droplet concentration

Ñ =N/N1 (22f)

and the non-dimensional DSD

g̃(̃σ )=
r2

0
N1
g(σ ) (22g)

with normalization Ñ =
1∫

0
g̃(̃σ )dσ̃ . The definition (Eq. 22g)

means that the integral of a non-dimensional initial size dis-
tribution over the normalized square radius is equal to unity.

The non-dimensional distance and the non-dimensional
time are defined as

x̃ = x/L; t̃ = t/τ0. (22h)

A widely used non-dimensional parameter showing the com-
parative rates of diffusion and evaporation is the Damkölher
number:

Da=
τmix

τ0
=

L2

Kτ0
, (23)

where

τmix =
L2

K
(24)

is the characteristic timescale of mixing. Using the non-
dimensional parameters listed above, Eq. (20) can be rewrit-
ten in a non-dimensional form as

∂q̃(̃x, t̃)

∂ t̃
=

1
Da

∂2q̃ (̃x, t̃)

∂x̃2 +
1

τ̃pr(̃x, t̃)

[
0̃(̃x, t̃)− q̃ (̃x, t̃)

]
=

1
Da

∂2q̃ (̃x, t̃)

∂x̃2 +
1

τ̃pr(̃x, t̃)
S̃(̃x, t̃) (25)

where

q̃ (̃x, t̃)=
N(̃x, t̃)σ 3/2

N1r
3
0

=

∞∫
0

σ̃ 3/2g̃(̃x, t̃ , σ̃ )dσ̃ . (26)
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The initial conditions and the boundary conditions should be
rewritten in a non-dimensional form as well. For instance, the
normalized initial condition for the non-dimensional func-
tion q̃ (̃x,0) can be derived from Eqs. (1c) and (22b)

q̃ (̃x,0)=
{

1 if 0≤ x̃ < 1/2
0 if 1/2≤ x̃ < 1 (27)

The solution for 0̃(̃x, t̃) obtained by a normalization of solu-
tion (Eq. 7) is

0̃(̃x, t̃)=
1
2
(1+R)+ (1−R)

∞∑
n=1

sin(nπ/2)
nπ/2

exp
(
−
n2π 2̃t

Da

)
cos(nπx̃) , (28)

where

R =
S2

A2q1
(29)

is a non-dimensional parameter referred to, hereafter, as a po-
tential evaporation parameter (PEP). The PEP is proportional
to the ratio of the amount of water vapor that should evapo-
rate in order to saturate the initially droplet-free volume (that
is determined by S2) to the initial available liquid water q1 in
the cloud volume. The solution of Eq. (28) at t̃→∞ depends
only on parameter R.

0̃(̃x,∞)=
1
2
(1+R) (30)

The importance of PEP that determines a possible final state
was illustrated in Pt1. PEP is also the sole parameter enabling
calculation of the normalized mixing diagram for homoge-
neous mixing (Pt2). In this study, we consider cases when
R < 0 since S2 < 0, i.e., when droplets can only evaporate in
the course of mixing.

The solution of Eq. (25) and the type of mixing depends on
the values of two non-dimensional parameters, namely, Da
and R. Thus, when R = S2

A2q1
<−1, 0̃(̃x,∞) < 0. It means

that the initially droplet-free volume V2 is too dry and all
the droplets in the mixing volume evaporate completely. At
the final equilibrium state RH< 100 %, i.e., S(x,∞) < 0. If
R = S2

A2q1
>−1, 0̃(̃x,∞) > 0. This means that the mixed

volume in the final state contains droplets, i.e., the mixing
leads to an increase of the volume with droplets, i.e., the
cloud volume. At the final equilibrium state, RH= 100 %
(i.e., S(x,∞)= 0). The case when |R| =

∣∣∣ S2
A2q1

∣∣∣= ∣∣S̃2
∣∣� 1

corresponds to either RH close to 100 % (i.e., S2 is close to
zero) (this case corresponds to the degenerated case consid-
ered in Pt1), and/or to the case when the liquid water mixing
ratio in the cloud volume is large. In case |R| � 1, the second
term on the right-hand side of Eq. (25) is much smaller than
the first term, and the mixing is driven by turbulent diffusion
only.

In case Da→ 0 (often considered as homogeneous mix-
ing), at the beginning of the mixing the diffusion term is
much larger than the evaporation term, the second term on
the right-hand side of Eq. (25). As mixing proceeds, within
a short time period the total homogenization of all the vari-
ables in the mixing volume is established and all the spa-
tial gradients become equal to zero. At this time instance,
the first term on the right-hand side becomes equal to zero,
and the second term on the right-hand side of Eq. (25), de-
scribing droplet evaporation, becomes dominant. Thus, the
analysis of the Eq. (25) shows that mixing consists of two
stages. The first mixing stage is a short stage of inhomoge-
neous mixing and the longer second stage of homogeneous
mixing. The evolution of the microphysical variables during
homogeneous mixing is described in detail in Pt2.
Da→∞ corresponds to extremely inhomogeneous mix-

ing, according to the classic concept. In this case, the dif-
fusion term is much smaller than the evaporation term, so
evaporation takes place under significant spatial gradients
of RH. At Da=∞, the adjacent volumes do not mix at all
and remain separated. This is equivalent to the existence of
two independent adiabatic volumes. Another interpretation
of the limiting case Da=∞ is an infinite fast droplet evap-
oration. Both scenarios at Da→∞ indicate simplifications
in the definition of the extremely inhomogeneous mixing. At
intermediate values of Da, mixing is inhomogeneous, when
both turbulent diffusion and evaporation contribute simulta-
neously to formation of the DSD.

Using Eqs. (14) and normalization (22f), the equations for
the non-dimensional size distribution can be written as

∂g̃(̃x, t̃ , σ̃ )

∂ t̃
=

1
Da

∂2g̃(̃x, t̃ , σ̃ )

∂x̃2

+
2
3

[
0̃(̃x, t̃)− q̃ (̃x, t̃)

] ∂g̃(̃x, t̃ , σ̃ )
∂σ̃

. (31)

Eq. (31) is solved with the following initial conditions

g̃(̃x,0, σ̃ )=
{
δ(̃σ − 1) if 0≤ x̃ < 1/2
0 if 1/2≤ x̃ ≤ 1 (32)

where δ(̃σ − 1) is a delta function.
Table 1 presents the list of all the non-dimensional vari-

ables used in this study and the ranges of their variation. It is
shown that six parameters determining the geometrical and
microphysical properties of mixing can be reduced to two
non-dimensional parameters, which enables a more efficient
analysis of mixing. The ranges of parameter variations in Ta-
ble 1 correspond to the simplifications used in the study (the
initial DSD is monodisperse and RH≤ 100 %).
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Table 1. Main parameters of the problem and their non-dimensional forms∗.

Quantity Symbol Non-dimensional form Range of normalized values

Time t t̃ = t
τ0

[0. . .∞]
Distance x x̃ = x

L
[0. . .1]

Square of drop radius σ σ̃ = σ

r2
0

[0. . .1]

Droplet concentration N Ñ = N
N1

[0. . .1]
Liquid water mixing ratio q q̃ =

q
q1

[0. . .1]

Distribution of square of drop radius g(σ ) g̃(̃σ )=
r2
0
N1
g(σ )

Conservative function 0 0̃ = 0
A2q1

[−∞. . .1]

Supersaturation S S̃ = S
A2q1

[−∞. . .0]

Relaxation time τpr τ̃pr =
τpr
τ0

[1. . .∞]

Damkölher number Da Da= τmix
τ0
=

L2

Kτ0
[0. . .∞]

Potential evaporation parameter (PEP) R R =
S2
A2q1

[−∞. . .0]

∗ All normalized values depend on the initially given values of L, N1, r0, A2, S2 and K .

4 Design of simulations

4.1 Damköhler number in clouds

The characteristic mixing time τmix can be evaluated using
Eqs. (2) and (24)

τmix =
1
C
ε−1/3L2/3. (33)

There is significant uncertainty regarding the evaluation of
τmix and Damköhler number, Da, in clouds, which is largely
related to the choice of coefficient C in expression (33).
These values differ in different studies: C = 10 (Jeffery and
Reisner, 2006); C = 1 (Lehmann et al., 2009) and C ≈ 0.2
(Monin and Yaglom, 1975) and Boffetta and Sokolov (2002).

According to Lehmann et al. (2009), the values of Da in
clouds of different types range from to 0.1 to several hundred.
Thus, estimation of Da in clouds may vary within a wide
range up to a few orders of magnitude. Da values in stra-
tocumulus clouds can be similar or even higher than those in
cumulus clouds, since both τmix and τpr in stratiform clouds
are larger than in cumulus clouds.

In our simulations, we compare the evolution of the micro-
physical parameters within a wide range of Da (from 1 up to
500) and of R (from−1.5 up to−0.1). Da= 1 represents the
case closest to homogeneous mixing, while Da= 500 indi-
cates extremely inhomogeneous mixing.

4.2 Numerical method

Calculations were performed using MATLAB solver
PDEPE. We solve the equation system (Eq. 31) for normal-
ized DSD g̃(̃x, t̃ , σ̃j ) with the initial condition (Eq. 32) and
the Neumann boundary conditions

∂g̃(0, t̃ , σ̃j )
∂x̃

=
∂g̃(1, t̃ , σ̃j )

∂x̃
= 0, (34)

where j = 1. . .24 are the bin numbers on a linear grid of
square radii. The number of grid points along the x̃ axis was
set equal to 81.

In calculation of the last term on the right-hand side of
Eq. (31), the normalized supersaturation S̃ was calculated
first using the normalized conservative equation

S̃(̃x, t̃)= 0̃(̃x, t̃)− q̃ (̃x, t̃), (35)

where 0̃(̃x, t̃) is calculated using Eq. (28). Then, this term
was formulated using Eq. (9) as

2
3
S̃(̃x, t̃)

∂g̃(̃x, t̃ , σ̃j )

∂σ̃j

≈

g̃
(
x̃, t̃ , σ̃j +

2
3 S̃1̃t

)
− g̃

(̃
x, t̃, σ̃j

)
1̃t

. (36)

Therefore, at each time step, the DSD g̃ first was shifted to
the left of the value 2

3 S̃1̃t , where 1̃t is a small time in-

crement chosen so that
∣∣∣ 2

3 S̃max1̃t

∣∣∣≤ 1σ̃
2 . Next, the shifted

DSD was remapped onto the fixed square radius grid σ̃j .
We used the remapping method proposed by Kovetz and
Olund (1969), which conserves droplet concentration and
LWC. After remapping, the differences between the new and
old DSDs were recalculated. The new values of LWC were
then determined using new values of DSD and Eq. (26).
MATLAB utility PDEPE automatically chooses the time step
needed to provide stability of calculations.

5 Results of simulations

5.1 Full evaporation case

First, we consider the case R =−1.5, when all the cloud wa-
ter evaporates completely. This process corresponds to the
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Figure 3. Horizontal dependencies (upper row) and x̃− t̃ dependencies (lower row) of normalized supersaturation at Da= 1, Da= 50 and
Da= 500 and at R =−1.5. Panel (b) is plotted in semi-log scale.

Figure 4. The same as in Fig. 3, but for normalized LWC. Left bottom panel is plotted in semi-log scale.

cloud dissipation caused by mixing with the entrained dry
air. At the final state, RH is expected to be uniform and neg-
ative over the entire mixing volume.

Figure 3 shows spatial and time changes of S̃ for Da= 1,
50 and 500. At the final state for all three cases S̃ =−0.25,
which is in agreement with the analytical solution of Eq. (30).
The final negative value indicates that all the droplets com-
pletely evaporated during mixing. At Da= 1 (Fig. 3a, b), two
stages of supersaturation evolution can be identified. The first
short stage with t < 0.4τpr is the period of inhomogeneous
mixing, when the gradients of RH persist. By end of the sec-

ond stage of about 14τpr, the equilibrium state is reached.
Thus, at small Da both types of mixing take place. In the
cases of Da= 50 and Da= 500, the spatial gradients exit
during the entire period of mixing until the equilibrium state
is reached (approximately 50τpr and 300τpr, respectively)
(Fig. 3c, d, e, f). Therefore, at these Da mixing is inhomo-
geneous during entire mixing.

Figure 4 shows spatial changes (upper row) and changes
in x̃− t̃ coordinates (lower row) of normalized LWC for the
same case as in Fig. 3. These diagrams demonstrate a signif-
icant difference in the evaporation rates at different Da val-
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Figure 5. Dependencies of normalized values of droplet concentration on normalized LWC at different Da and R =−1.5. Blue symbols
mark the center of the cloudy volume (̃x = 1/4), red symbols mark the interface between the cloudy volume and the dry volume (̃x = 1/2),
and black crosses mark the center of the initially droplet-free volume (̃x = 3/4). Symbols are plotted at different time instances. Symbols at
t = 0 show initial values of droplet concentration and LWC at the three values of x̃. Arrows show the direction of movement of the points
at the diagram with time. Point “A” marks the beginning of the spatially homogeneous stage, t̃ = Tmix. Point “F” marks the final state. The
dashed line indicates the relationship between Ñ and q̃ in extremely inhomogeneous mixing (according to the classical concept).

ues. Complete evaporation (LWC= 0) is reached at Da= 1,
50 and 500 by about 12, 22 and 120 relaxation time periods,
respectively.

Analysis of Figs. 3 and 4 allows one to introduce two char-
acteristic time periods: (1) period Tmix during which the spa-
tial gradients of the microphysical parameters persist, and
mixing is inhomogeneous, and (2) period Tev during which
droplet evaporation takes place. Both time periods are dimen-
sionless and normalized using τ0. Time period Tev is equal
either to the time of complete droplet evaporation (when
R <−1.0) or to the time period during which the saturation
deficit in the mixing volume becomes equal to zero (or close
to zero if R >−1.0), i.e., evaporation is actually terminated.
Quantitative evaluations of Tmix and Tev will be given in
Sect. 5.3. At t̃ < Tmix, droplets in the mixing volume experi-
ence different saturation deficits. Toward the end of time Tmix
the saturation deficit becomes uniform over the entire mixing
volume because of mechanic mixing. At Da= 1, the homog-
enization of the saturation deficit and all the microphysical
variables takes place during a very short time of about 0.5τpr,
and then the evaporation of droplets is assumed to take place
under the same subsaturation conditions, so Tmix� Tev.

Figure 4a, b show that at t̃ ≈ 0.35, normalized LWC drops
down from 1 to 0.4. Since the average value of the normal-
ized LWC in the mixing volume is equal to 0.5 (see the ini-
tial condition in Eq. 27), 20 % of the droplet mass evaporates
during this short inhomogeneous period. Thus, despite being
quite short, inhomogeneous mixing stage plays an important
role even at Da= 1.

Since at t = 0 the mixing volume is not spatially homo-
geneous by definition, there is always a period while spa-
tial inhomogeneity exists. With increasing Da, the duration
of the inhomogeneous stage increases and the duration of
the homogeneous stage decreases. At Da= 500, homoge-
nization of the saturation deficit requires 250τpr, which is
twice as long as the time of complete droplet evaporation,
i.e., Tmix ≈ 2Tev. This means that at Da= 500, droplet evap-
oration takes place in the presence of the spatial gradients of
supersaturation. After complete evaporation of droplets, spa-
tial gradients of the water vapor mixing ratios remain. This
kind of mixing is regarded as inhomogeneous.

At Da= 50, the time of complete evaporation is approxi-
mately equal to the time of supersaturation homogenization,
i.e., Tmix ≈ Tev. In this case, as at Da= 500, the droplets ex-
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Figure 6. Time evolution of DSD during droplet evaporation at Da= 1 (upper row) and Da= 50 (bottom row). In each panel, the normalized
DSD are shown at different values of horizontal coordinate x̃. Different panels show DSD at different time instances.

perience different saturation deficit within the mixing vol-
ume, so mixing is inhomogeneous at Da= 50.

The differences in droplet evaporation at different Da can
be seen in Fig. 5, showing the relationships between Ñ and
q̃ plotted with a certain time increment, so that each sym-
bol in the diagrams corresponds to a particular time instance.
These symbols form curves. Each panel of Fig. 5 shows three
curves corresponding to different x̃: the center of the initially
cloud volume (̃x = 1/4); the center of the mixing volume
(̃x = 1/2) and the center of the initially droplet-free volume
(̃x = 3/4). The directions of the time increase are shown by
arrows along the corresponding curves. The initial points of
the curves corresponding to t̃ = 0 are characterized by values
q̃ = 1 and Ñ = 1 at x̃ =1/4, and by values q̃ = 0 and Ñ = 0
at x̃ = 3/4 .

The behavior of the Ñ − q̃ relationship provides impor-
tant information about mixing process. At t̃ < Tmix, there are
spatial gradients of Ñ and q̃, i.e., Ñ and q̃ are different at
different x̃. This means that the three curves at t̃ < Tmix do
not coincide. At t̃ > Tmix, the spatial gradients of Ñ and q̃
disappear and the three curves coincide. When the curves
do not coincide, mixing is inhomogeneous, and the coinci-
dence of the curves indicates that the mixing becomes ho-
mogeneous. In Fig. 5a and b (Da= 1 and Da= 5, respec-
tively), the curves coincide at point A corresponding to time
t̃ = Tmix.

Figure 5a, b show that at Da= 1 and Da= 5, mixing con-
sists of two stages: inhomogeneous and homogeneous. The
time instance t̃ = Tmix separates these two stages. In turn,

the period of homogeneous mixing (when evaporation is spa-
tially homogeneous) can be separated into two sub-periods.
During the first sub-period, droplets evaporate only partially
and q̃ decreases at the same droplet concentration. This sub-
period is very pronounced at Da= 1, when q̃ decreases
from about 0.4 to 0.1 at the unchanged droplet concentra-
tion. At the second sub-period, when q̃ < 0.1, droplets evap-
orate completely, beginning with smaller ones, so both the
droplet concentration and q̃ rapidly drop to zero. At Da= 5
(Fig. 5b), at the stage of homogeneous evaporation (that be-
gins at point “A”) the decrease in q̃ is accompanied by a de-
crease in Ñ .

At Da= 50 (Fig. 5c), curves corresponding to different
values of x̃ do not coincide, except at the final point “F”,
where Ñ = 0 and q̃ = 0. This means that horizontal gradients
exist during the entire mixing process and mixing is inhomo-
geneous till the final equilibrium state is reached. Droplets
penetrating into the initially droplet-free volume begin evap-
orating, so only a small fraction of droplets reaches the cen-
ter of the droplet-free volume, as seen in Fig. 5c, x̃ = 3/4
(black curve). Accordingly, at x̃ = 3/4 the droplet concen-
trations and q̃ reach their maxima (of 0.1 and 0.05, respec-
tively) and then decrease to zero. At Da= 500 (Fig. 5d), all
the droplets evaporate before reaching the center of the dry
volume, indicating an extremely high spatial inhomogeneity
of droplet evaporation. Hence, only two curves for x̃ = 1/4
and x̃ = 1/2 are seen in Fig. 5d.

Figure 5 also shows that the slopes of the curves describ-
ing the Ñ− q̃ relationships are different at different values of
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Figure 7. Profiles of normalized supersaturation at different Da and different R >−1.

x̃ and change over time. At large Da, the slopes of the curves
describing the dependencies Ñ − q̃ in the initially cloud vol-
ume are close to linear. However, the slope at a high value
of q̃ is still flatter than that at a low value of q̃. This can be
attributed to the fact that when q̃ is large, it decreases faster
than the concentration Ñ because some fraction of droplets
evaporate only partially. At the end of the mixing when q̃ is
small, Ñ decreases faster than q̃, because the droplet con-
centration is determined by the smallest droplets, while q̃ is
determined by larger droplets.

As was discussed in Pt1, according to the classical concept
of extremely inhomogeneous mixing, the ratio q/N remains
constant. For dimensionless Ñ and q̃, the scattering points
should be aligned along the 1 : 1 line. Therefore, the close-
ness of particular cases to the classical extremely inhomoge-
neous mixing can be evaluated by the deviation of the Ñ − q̃
curve from the 1 : 1 line. One can see that at Da= 500 the
Ñ − q̃ relationship is closer to linear.

Despite the fact that at R <−1 all the droplets within the
mixing volume evaporate, it is interesting to follow the DSD
evolution during this process. Figure 6 shows the time evolu-
tion of a normalized DSD at Da= 1 and Da= 50. One can
see a substantial difference in the DSD evolutions at differ-
ent Da. At Da= 1, different DSDs are formed very rapidly
at different values of x̃ (panel a). The widest DSD occurs at
x̃ = 1, i.e., at the outer boundary of the initially droplet-free
volume. This is natural, because the supersaturation deficit is
the highest at x̃ = 1. At t̃ > Tmix ≈ 0.4, DSD become simi-

lar at all values of x̃ (Fig. 6b). The DSD width continues to
increase due to partial droplet evaporation. This time period
corresponds to the horizontal segment of the Ñ − q̃ relation-
ship in Fig. 5a. Figure 6c shows the DSD at the stage when
a decrease in LWC is accompanied by a decrease in number
droplet concentration. The corresponding point in the Ñ − q̃
diagram at this time instance is quite close to the point “F” at
which Ñ = 0 and q̃ = 0.

At Da= 50, DSD are different at different x̃ during the
entire period of mixing. While DSD at x̃ > 0.5 are wide and
droplet evaporation is accompanied by a shift of DSD max-
imum to smaller droplet radii (this feature is typically at-
tributed to homogeneous mixing), the DSD maximum at x̃ <
0.5 (the initially cloud volume) shifts toward smaller radii
only slightly until t̃ = 3.17 (Fig. 6e). Further droplet evapo-
ration either leads to a complete evaporation (at x̃ ≥ 0.5) or
shifts the DSDs to smaller droplet sizes (panel f). The max-
imum droplet concentration takes place at x̃ = 0. Figure 6
shows that DSD shapes evolve substantially over time, al-
though the final state is characterized by complete droplet
evaporation.

5.2 Partial evaporation case

5.2.1 Evolution of the microphysical parameters at
different values of Da and R

Here we consider the process of mixing at R >−1, i.e.,
when not all the droplets evaporate completely. Figure 7
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Figure 8. Profiles of normalized LWC at different Da and at different R >−1.

shows the horizontal profiles of a normalized supersaturation
at different Da and R. One can see that in all cases, the fi-
nal state occurs when the equilibrium supersaturation S̃ = 0
(RH= 100 %). However, this final value is reached quite dif-
ferently depending on Da. At Da= 1, rapid mixing leads to
the formation of spatially homogeneous humidity and super-
saturation during a time period of a fraction of τpr. Then,
supersaturation within the mixing volume grows by evapo-
ration of droplets, which are uniformly distributed over the
entire mixing volume. This process of homogeneous mixing
was analyzed in detail in Pt2.

At Da= 500, changes in supersaturation take place largely
within the initially droplet-free volume. RH in the initially
cloud volume undergoes only small changes. This process
agrees well with the classical concept of extremely inhomo-
geneous mixing. However, a strong gradient of supersatura-
tion remains within the initially drop-free volume for a long
time (tens of τpr). At Da= 50, the situation is intermediate.
Mixing is intensive enough to decrease RH in the initially
cloud volume, but spatially uniform RH is established within
about 5–10τpr, increasing with an increase in |R|. After this
time instance, mixing takes place according to the homoge-
neous scenario.

Figure 8 shows the horizontal profiles of normalized LWC
at different Da and R. At the same R, the final equilibrium
values of LWC are identical, as follows from Eq. (30); LWC
decreases with an increase in |R|. At any Da, the decrease in
the LWC in the cloud volume is caused largely by diffusion
of droplets from the cloud volume into the initially droplet-
free volume.

At Da= 500, evaporation in the cloud volume is small be-
cause S̃ in these volumes is high during mixing (Fig. 7). At
Da= 1, the process of spatial homogenization takes place
during fractions of τpr, i.e., Tmix < 1. Then, during a rela-
tively lengthy period of 10τpr, evaporation decreases LWC
over the entire mixing volume, which is characteristic of
homogeneous mixing. At Da= 50, spatial homogenization
takes place during about Tmix ≈ 15. This is a slightly shorter
time than it takes to establish the final equilibrium stage Ttot.
Different Da cases reach equilibrium at different times. The
process of reaching a final uniform LWC lasts for 100τpr at
Da= 500 and for about τpr at Da= 1.

Figure 9 shows the profiles of the normalized droplet con-
centrations at different Da and R. In contrast to LWC, the fi-
nal concentration depends both on Da and R. Hence, profiles
at different Da can have different shapes at the same value of
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Figure 9. Profiles of normalized droplet concentration at different Da and at different R >−1.

R. At R =−0.1 (which corresponds to high RH in the ini-
tially dry volume) none of the droplets evaporate, so the final
normalized droplet concentration is equal to Ñ = 1/2. This
means that all the droplets in the initially cloud volume are
now uniformly distributed between both mixing volumes. At
larger |R|, i.e., at lower RH in an initially droplet-free vol-
ume, some droplets evaporate completely. The final concen-
tration decreases with an increase in Da.

The physical interpretation of this dependence is clear. At
low Da, fast mixing leads to formation of a uniform RH
throughout the entire mixing volume, and this affects all the
droplets. At high Da, RH in the initially droplet-free vol-
ume remains low for a long time, and droplets that penetrate
can evaporate. Therefore, the fraction of completely evap-
orated droplets increases with Da: at R =−0.1 there are
no completely evaporated droplets at any Da. At R =−0.3
a decrease in the droplet concentration takes place only at
Da= 500, and at R =−0.5 the droplet concentration de-
creases already at Da≥ 50.

The comparative contributions of different factors in es-
tablishing the final states of mixing are well seen in Fig. 10
presenting the relationships between normalized concentra-
tion and normalized LWC at three values of x̃: 1/4 (center of

the cloudy volume), 1/2 and 3/4 (center of the initially dry
volume) at R =−0.5 and different values of Da. Figure 10
is analogous to Fig. 5, but plotted for R >−1.

At Da= 1 the mixing is very fast, which leads to a rapid
decrease in LWC and in the droplet concentration in the ini-
tially cloud volume and to an increase of these quantities in
the initially droplet-free volume. As a result of the rapid mix-
ing and homogenization, all the curves coincide at point “A”
(left panel). After this time instance, spatial homogeneous
evaporation takes place. Since at Da= 1 only partial, but not
total, droplet evaporation occurs, the droplet concentration
remains unchanged even while LWC decreases. At Da= 50
and Da= 500, the three curves coincide at the final point “F”
only. At Da= 500, the relationship between the droplet con-
centration and the mass becomes more linear (blue curve).
The linear dependence is consistent with the concept of ex-
tremely inhomogeneous mixing (see Pt1). Considerations re-
garding the closeness of the Ñ−q̃ relationship to the line 1 : 1
as a measure of inhomogeneity of mixing made at R <−1
are also valid for R >−1.

www.atmos-chem-phys.net/16/9273/2016/ Atmos. Chem. Phys., 16, 9273–9297, 2016
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Figure 10. Dependencies of normalized values of droplet concentration on normalized LWC at different Da and at R =−0.5. Blue circles
mark the center of the cloudy volume (̃x = 1/4), red symbols mark the initial interface (̃x = 1/2) and black crosses mark the center of the
initially dry volume (̃x = 3/4). Arrows show the direction of movement of the points with time. Point “F” marks the final stationary state
of the system. The dashed line indicates the relationship between Ñ and q̃ in extremely inhomogeneous mixing (according to the classical
concept).
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Figure 11. Examples of DSD evolution in the initially cloudy volume (̃x = 1/4) (upper row) and in the initially dry volume (̃x = 3/4) (lower
row) at R =−0.5 and at different values of Da.

5.2.2 Evolution of DSDs and the DSD parameters

Figure 11 presents examples of the DSD evolution at the cen-
ter of the initially cloud volume (̃x = 1/4) (upper row) and of
the initially droplet-free volume (̃x = 3/4) at R =−0.5 and
different values of Da. Several specific features of the DSD
are notable. As a result of the rapid mixing at Da= 1 (left
column), DSD become similar in both volumes already at
t = 0.317τpr (black lines). Further evolution is similar in both

volumes and is characterized by broadening of the DSD and
its shifting toward smaller droplet sizes. This shift means a
decrease in the mass at constant droplet concentration, which
is typical of homogeneous mixing.

The initially monodisperse DSDs become polydisperse.
The mechanism of the DSD broadening at Da= 1 is illus-
trated in Fig. 12, showing the DSD at the earlier, inhomoge-
neous stage at different x̃. One can see that within very short
periods when the spatial gradient of saturation deficit exists,
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Figure 12. DSD at different x̃ at the beginning of the mixing process for Da= 1 and R =−0.5.
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Figure 13. Spatial dependencies of the relative DSD dispersion at different time instances and at different values of Da and different R >−1.

droplets entering the initially droplet-free volume partially
evaporate, reaching their minimal size at x̃ = 1. In this way,
a polydisperse DSD forms. As the mixing proceeds, DSD
become spatially homogenized, as seen in the right panel of
Fig. 12.

At Da= 50 and Da= 500, the DSD shapes substantially
differ from those at Da= 1. There are two main differences:
the peak of the distribution shifts only slightly (at Da= 50)
or does not shift at all (at Da= 500). At the same time, the
DSD develops a long tail of small droplets. Since the mixing
rate at these values of Da is slow, droplets penetrating deeper
into the initially dry volume remain there for a long time and

get smaller. As a result, at moderate and large Da, a poly-
disperse DSDs form with droplet sizes ranging from zero to
1. Formation of a long tail of small droplets in case of inho-
mogeneous mixing was simulated in direct numerical simu-
lation (DNS) by Kumar et al. (2012), as well as by means of
“the explicit-mixing parcel model” (EMPM) (Krueger et al.,
1997; Su et al., 1998; Schlüter, 2006).

Figure 13 shows the spatial dependencies of the DSD dis-
persion (ratio of DSD r.m.s. width and the mean radius) at
different time instances and different values of Da and R.
One can see that the dispersion increases with an increase
in Da and in |R|. This behavior can be accounted for by the

www.atmos-chem-phys.net/16/9273/2016/ Atmos. Chem. Phys., 16, 9273–9297, 2016
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Figure 14. Spatial dependencies of effective radius at different time instances and at different values of Da and different R >−1.

fact that the DSD broadening toward smallest droplet size in-
creases with the increase in Da and in |R|. The DSD disper-
sion increases with time and with an increase in x̃, i.e., fur-
ther into the initially droplet-free volume. At the same time,
spatial homogenization takes place, so at the final state at
R =−0.5 the DSD dispersion reaches 0.11 at Da= 1 and
about 0.2 at Da= 50 and Da= 500.

Observed DSD dispersion in different clouds typically
ranges from 0.1 to 0.4 (Khain et al., 2000; Martin et al.,
1994; Prabha et al., 2012) and can be caused by the follow-
ing factors: in-cloud nucleation (e.g., Khain et al., 2000; Pin-
sky and Khain, 2002), spatial averaging along aircraft tra-
verses (Korolev, 1995) and non-symmetry in droplet nucle-
ation/denucleation (Korolev, 1995). As seen in Fig. 13, this
dispersion may be also caused by mixing at cloud edges at
moderate and large Da. Hence, inhomogeneous mixing leads
to DSD broadening.

The effective radius, reff, is an important DSD character-
istic. According to the classical concept, reff remains un-
changed during extremely inhomogeneous mixing, whereas
decreases during homogeneous mixing. Figure 14 shows spa-
tial dependencies of reff at different time instances and differ-
ent values of Da and R. At R =−0.1 (high RH in the sur-
rounding volume) reff is similar for all values of Da. So, at

high R (i.e., close to zero), the behavior of reff does not allow
to distinguish between mixing types.

At a given R, the final reff increases with increasing Da.
For instance, at R =−0.5, reff at the final state differs from
the initial reff value by less than 6 % at Da= 500, while at
Da= 1 reff decreases by 20 %. At moderate and high Da,
large gradients of reff exist during the mixing process. How-
ever, the gradient is high only in the initially droplet-free
volume where reff decreases significantly due to the intense
evaporation of droplets. Besides, reff grows very rapidly in
the initially droplet free volume, so at high Da during most
of the mixing time reff within the mixing volume becomes
close to the initial reff value in the cloudy volume.

5.3 Delimitation between mixing types

Typically, the Da value is used as a criterion for delimitation
between mixing types. Da= 1 is usually used as a boundary
value separating homogeneous and inhomogeneous mixing.
As shown in Sect. 4, mixing always starts as inhomogeneous.
In the course of mixing, the initial spatial gradients decrease
and the air volumes either become identical or remain dif-
ferent. In the former case, the second mixing stage is ho-
mogeneous. If inhomogeneity persists until the equilibrium
state is established, mixing remains inhomogeneous during
the entire period. Both mixing stages can be characterized

Atmos. Chem. Phys., 16, 9273–9297, 2016 www.atmos-chem-phys.net/16/9273/2016/
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by duration, change in the droplet concentrations or LWCs,
and other quantitative characteristics. These characteristics
are functions of two non-dimensional parameters R and Da,
which can be calculated and used for delimitation between
mixing types. Since mixing between volumes may turn from
inhomogeneous into homogeneous before reaching the equi-
librium state, it is necessary to use some quantitative criteria
to delimit mixing types. Below, delimitation is performed for
R >−1 which corresponds to partial evaporation of droplets
by the end of mixing.

5.3.1 Characteristic time periods of mixing

Three characteristic time periods of mixing are distin-
guished: (a) mixing period Tmix, during which spatial gra-
dients are smoothing (may be also called the homogeniza-
tion period); (b) period Tev during which S < 0 and droplets
evaporate until saturation is reached and (c) the total mix-
ing period Ttot that lasts until the final equilibrium stage is
reached. In our analysis, all three periods are assumed to be
dimensionless quantities.

We use solution (28) for conservative function 0̃(̃x, t̃) to
define quantitatively time period Tmix. The deviation of the
solution from its final value 10̃ = 0̃(̃x, t̃)− 0̃(̃x,∞) at t̃→
∞ can be approximately estimated using the first term of the
series expansion as

∣∣10̃∣∣max ≈

∣∣∣∣(1−R) sin(π/2)
π/2

exp
(
−
π 2̃t

Da

)
cos(πx̃)

∣∣∣∣
max

= (1−R)
2
π

exp
(
−
π 2̃t

Da

)
. (37)

From Eq. (37) the estimation of Tmix can be written as

Tmix =−
Da
π2 ln

[
π

2(1−R)

∣∣10̃∣∣max

]
. (38a)

Suppose the value of the maximum deviation is
∣∣10̃∣∣max =

0.02. This is a small value compared to the initial leap of
function 0̃, which is equal to 1−R. At

∣∣10̃∣∣max = 0.02 the
duration of the non-homogeneous stage is evaluated as

Tmix =−
Da
π2 ln

[
0.01π
1−R

]
. (38b)

Several studies evaluate the evaporation time for droplets
of a particular size using the equation for diffusion growth
(e.g., Lehmann et al., 2009). In our study, the evaporation
time duration Tev is defined as the period during which the
maximum deviation of supersaturation from zero exceeds the
small value chosen as

∣∣1S̃∣∣max = 0.02:∣∣S̃(̃x,Tev)
∣∣≤ ∣∣1S̃∣∣max = 0.02. (39)

Although criterion (Eq. 39) is rather subjective, it has an ad-
vantage over the criterion used by Lehmann et al. (2009), as

Figure 15. Contours of normalized mixing duration times on Da−R
plane. (a) Mixing time Tmix, (b) evaporation time Tev, and (c) the
total duration mixing time Ttot.

Eq. (32) characterizes evaporation of the droplet population
taking into account the simultaneous increase in supersatura-
tion, but not of individual droplets of particular size at con-
stant S as in Lehmann et al. (2009).

At the end of the mixing, both the thermodynamic equi-
librium and the diffusion equilibrium are reached. Accord-
ingly, the total time of mixing Ttot is evaluated as the maxi-
mum of the two time periods needed to achieve equilibrium
Ttot =max {Tmix,Tev}. All the three characteristic time peri-
ods are normalized on the phase relaxation time, and, there-
fore, depend on the two non-dimensional parameters R and
Da. The contours of the characteristic time durations Tmix,
Tev and Ttot in the Da−R diagrams are shown in Fig. 15.

As follows from Eq. (38b), Tmix is proportional to Da. The
dependence of Tmix on R is not very strong, so Tmix slightly
decreases with increasingR. This can be attributed to the fact
that the lower the R, the smaller the initial inhomogeneity

www.atmos-chem-phys.net/16/9273/2016/ Atmos. Chem. Phys., 16, 9273–9297, 2016
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Figure 16. (a) The boundaries between mixing types on the Da−R plane designed according to criteria λ1 =
Tmix
Ttot

; (b) the boundaries

between mixing types on the Da−R plane designed according to criterion λ2 =
2〈̃q(Tmix)〉−1

R
(Eq. 41). Dashed lines indicate the line

corresponding to 2 % deviation from the initial mean volume radius.

of function 0̃ and the shorter the time to align this inhomo-
geneity is. At small Da (high rate of homogenization of the
volume), Tev depends largely on R. At large Da, Tev depends
substantially on Da, since the evaporation rate depends on
the number of droplets that diffuse to drier parts of the mix-
ing volume. A comparison of Fig. 15c with Fig. 15a and b
shows that at small Da, time Ttot is determined by Tev , while
at large Da, Ttot is determined by Tmix.

5.3.2 Determination of boundaries between the mixing
types on the R − Da plane

Several criteria can be proposed for delimitation between
mixing types. We consider these criteria for R >−1. As dis-
cussed above, mixing always starts as inhomogeneous and
late either become homogeneous or remains inhomogeneous
till the final equilibrium state is established. At small Da, the
homogenization takes place during Tmix < Ttot. The value of
time fraction λ1 of the inhomogeneous stage can serve as a
criterion for definition of homogeneous mixing. This formula
for the fraction can be written as

λ1 =
Tmix

Ttot
. (40)

The case λ1 ≤ 0.5, most of the time the mixing takes place
according the homogeneous scenario and such a regime is
reasonable to regard as homogeneous mixing. If λ1(R,Da)
changes within the range of 0.5< λ1 ≤ 1, mixing appears
to be intermediate. The criterion (Eq. 40) depends on the
non-dimensional parameters R and Da. Figure 16a shows
the boundaries separating mixing types on the Da−R plane.
These boundaries separate all plane into several zones. At
very small R, the duration of the phase transition is negligi-
bly small. According to criterion (Eq. 40), in this case mixing
should be considered inhomogeneous, irrespective of the Da
value.

Another criterion of delimitation between mixing types
can be determined from a comparison of LWC variation

rates due to different mechanisms. The mean normalized
LWC (which is equal to the mean normalized liquid water

mixing ratio) can be written as integral
〈̃
q(̃t)

〉
=

1∫
0
q̃ (̃x, t̃)dx̃.

The initial mean LWC is equal to 〈̃q(t = 0)〉 = 1
2 . The fi-

nal equilibrium LWC is equal to 〈̃q(t =∞)〉 = 1
2 (1+R)

(Eq. 30). The total amount of liquid water that evaporates in
the course of mixing can be quantified by the difference be-
tween these two values 〈̃q(t = 0)〉−〈̃q(t =∞〉 =− 1

2R. The
amount of liquid water evaporated in the course of the first
inhomogeneous mixing stage is calculated by the equation
〈̃q(t = 0)〉−〈̃q(Tmix)〉 =

1
2−〈̃q(Tmix)〉. Hence, parameter λ2

which is a ratio of

λ2 =
〈̃q(t = 0)〉− 〈̃q(Tmix)〉

〈̃q(t = 0)〉− 〈̃q(t =∞)〉
=

2 〈̃q(Tmix)〉− 1
R

(41)

can serve as another possible criterion for delimitation be-
tween mixing types. This ratio characterizes the fraction of
liquid water that evaporates at the initial inhomogeneous
stage. Condition λ2 < 0.5 in this case corresponds to homo-
geneous mixing, while condition 0.5≤ λ2 < 1 corresponds
to intermediate mixing. We regard the case λ2 = 1 as inho-
mogeneous mixing. Certainly, criterion λ2 depends on the
non-dimensional parametersR and Da. Figure 16b illustrates
delimitation between mixing types on the Da−R plane ac-
cording to criterion λ2.

Comparison of Fig. 16a and b shows that both criteria lead
to nearly similar separation of the Da−R plane into three
zones corresponding to homogeneous, intermediate and in-
homogeneous mixing. At the same time, the boundaries sep-
arating these zones are different depending on the delimi-
tation criterion used. Nevertheless, it can be concluded that
mixing can be considered homogeneous at Da below 4–10
and R <−0.1 and inhomogeneous at Da exceeding several
tens.

Terms “inhomogeneous mixing” (Burnet and Brenguier,
2007) and “extremely inhomogeneous mixing” (Lehmann et

Atmos. Chem. Phys., 16, 9273–9297, 2016 www.atmos-chem-phys.net/16/9273/2016/
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Figure 17. (a) Dependencies of the r.m.s. distance of the Ñ − q̃ relationship curve from straight line 1 : 1 suggested by classical concept of
extremely inhomogeneous mixing. The dependencies are plotted for different values of Da and R. (b) The same as to the left panel but for
r.m.s. deviations of the mean volume radius curve from that initial constant value assumed in the classical concept.

al., 2009; Gerber et al., 2008; Pt1) are used to denote the
mixing regime when the relationship between the normalized
values Ñ and q̃ is represented by a straight 1 : 1 line, which is
equivalent to the constant mean volume radius (in some stud-
ies, the effective radius is used instead of the mean volume
radius. According to the definition used in the present study,
extremely inhomogeneous mixing is the limiting case of in-
homogeneous mixing when Da→∞. Despite the fact that
the extremely inhomogeneous mixing is only an idealization
our approach allows to determine to what extent mixing can
be considered to be close to this limiting case. The measure
of inhomogeneity of mixing is the closeness of the Ñ−q̃ rela-
tionship to the 1 : 1 straight line (see discussion above related
to Figs. 5 and 10).

Figure 17a shows rms distance between the Ñ − q̃ rela-
tionship and the 1 : 1 straight line, depending on Da and R.
These dependences were calculated using the set of points
Ñi, q̃i uniformly distributed over spatial interval [0 1] and
time interval [0 Ttot]. The equation for estimation is δ =√

1
2M

M∑
i=1

(
Ñi − q̃i

)2, where M is the total number of points.

This distance corresponds to r.m.s. deviation of the normal-
ized mean volume radius from 1. The dependences of the
last deviation on Da and R and estimated as δ/3 are shown
in Fig. 17b. This estimation is based on the fact that the to-
tal mass of droplets is proportional to the cube of the mean
volume radius. As expected, the distance decreases with in-
creasing Da. At large R, all the curves coincide indicating
a degenerative case when type of mixing becomes indistin-
guishable.

We choose the value δ/3 equal to 0.02 to determine the
boundary of the extremely inhomogeneous mixing zone. The
value of 0.02 corresponds to droplet radii deviation of a few
tenths of a micron, which is so low that in in situ measure-
ments this case would always be attributed to extremely in-
homogeneous mixing. In Fig. 16 this boundary is marked by
the broken line. The boundary shows that the mixing at Da
exceeding several hundred can be attributed to the extremely

inhomogeneous. Between the boundary separating inhomo-
geneous mixing from the intermediate one and the boundary
separated inhomogeneous mixing from extremely inhomo-
geneous there exists a wide zone of inhomogeneous mixing
where the mean volume (or the effective) radius may drop
by 10 % and more (Fig. 14), and where the DSD dispersion
is substantial and the tail of small droplets is long enough
(Fig. 11). Mixing diagrams currently used for analysis of ob-
served data (N−q dependences in the final equilibrium state
of mixing) do not contain this zone which, therefore, has re-
mained unrecognized and uninvestigated.

6 Summary and conclusions

In this study, inhomogeneous turbulent mixing is investigated
using a simple 1-D model of mixing between a saturated
cloud volume and an undersaturated droplet-free volume.
The mixing is simulated by solving a diffusion–evaporation
equation written in the non-dimensional form. For simplic-
ity, the initial volumes of cloudy and droplet-free air were
assumed to be equal, and the initial DSD in the cloudy vol-
ume was assumed monodisperse.

Analysis of the diffusion–evaporation equation shows that
the time-dependent process of mixing and the final equilib-
rium state depend on two non-dimensional parameters. The
first parameter R, referred in this paper as potential evapora-
tion parameter (PEP) is proportional to the ratio between the
saturation deficit in the initially droplet-free volume and the
initial liquid water content in the cloudy volume. At R <−1,
the final state is characterized by complete droplet evapora-
tion and a spatially homogeneous saturation deficit, which
indicates dissipation of the cloudy volume. At R >−1, the
final state is characterized by existence of droplets and zero
saturation deficit (RH= 100 %). In this case, the cloud vol-
ume expands after mixing with the entrained air. At small
values of |R| (e.g., when RH in the entrained volume is
close to 100 %), the effect of droplet evaporation on micro-
physics is small, and, formally, this kind of mixing should
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be regarded as extremely inhomogeneous. Strictly speaking,
this is a degenerate case, when homogeneous and inhomo-
geneous mixing cannot be distinguished (see also Pt1). At
R = 0, the droplet population turns into a passive admixture
and its turbulent diffusion will be the same at different ther-
modynamic parameters.

The second parameter is the Damkölher number (Da),
which is the ratio between the characteristic mixing time
and the phase relaxation time. This parameter compares
the rates of spatial diffusion and evaporation. Parameter Da
(Eq. 23) logically appears in the non-dimensional form of the
diffusion–evaporation equation showing that Da is the ratio
of the mixing time defined as τmix =

L2

K
, to the initial drop

relaxation time. The expression for this non-dimensional pa-
rameter clearly shows that since we consider an ensemble of
evaporating droplets, the drop relaxation time evaluated just
before the mixing is the characteristic timescale of inhomo-
geneous mixing process. In several studies (e.g., Baker and
Latham, 1979; Burnet and Brenguier, 2007; Andejchuk et al.,
2009) a question was raised as to which timescale should be
used in formulation of the Damkölher number: the time of an
individual droplet evaporation at constant saturation deficit,
or the phase relaxation time. This study, as well Pt2 show that
the phase relaxation time is the answer. The mixing time is
introduced via the turbulent diffusion coefficient which is a
natural measure characterizing the diffusion rate and, in par-
ticular, determines the propagation rate of the fronts in the
fields of droplet concentration and other microphysical pa-
rameters. The turbulent diffusion coefficient is widely used
to describe mixing in cloud models at resolved scales.

The analysis was performed within a wide range of Da
(from 1 to 500) and of R (from −1.5 to −0.1). The final
LWC and the humidity in the mixing volume are determined
by the mass conservation and do not depend on Da (see also
Pt1 and Pt2). At the same time, the droplet concentration,
as well as the shape of DSD and their parameters strongly
depend on Da.

It is shown that the mixing of air volumes with initially dif-
ferent thermodynamical and microphysical parameters con-
sists of two stages characterized by two time periods: the
time during which microphysical characteristics become uni-
form over the total mixing volume Tmix, and the time during
which zero saturation deficit is reached (at R >−1), Tev. At
t̃ < Tmix, the spatial gradients of the microphysical values
remain and the mixing regime can be regarded as inhomo-
geneous. At t̃ > Tmix, droplet evaporation, if it occurs at all,
takes place within a spatially homogeneous medium, so all
the droplets in the mixing volume experience equal satura-
tion deficit. This regime can be regarded as homogeneous.
It is shown, therefore, that at small Da mixing between two
volumes that starts as inhomogeneous can become homoge-
neous towards the end of mixing.

This finding allows to delimit between mixing types. We
presented two quantitative criteria on the Da−R plane that

allow to delimit three mixing regimes: homogeneous, in-
termediate and inhomogeneous. These criteria are based on
comparison of the characteristic duration mixing and the
evaporation rates. According to the criteria, at Da below
about 5, mixing can be regarded as homogeneous, i.e., the
main microphysical changes take place during the homoge-
neous stage. At 5< Da< 50, the changes in the microphys-
ical parameters are more significant at the inhomogeneous
stage than at the homogeneous stage. In this case, the mix-
ing can be regarded as intermediate. Finally, at Da exceeding
several tens, the spatial microphysical gradients remain until
the final equilibrium stage is reached. In this case, the mixing
can be regarded as inhomogeneous. At Da exceeding a few
hundred the deviations from predictions based on the classi-
cal concept of extremely inhomogeneous become relatively
small, which justifies regarding this mixing to as extremely
inhomogeneous.

On the whole, the results of the present study are in line
with the classic concepts defining homogeneous and inho-
mogeneous mixing types. However, several important points
emerge from our work show serious limitations of classical
concepts. A comparison of the classical concepts and the
present study is presented in Table 2. Analysis of Table 2
shows the following.

a. In contrast to many studies that analyze only the hy-
pothetical final (equilibrium) state of mixing (Burnet
and Brenguier, 2007; Gerber et al., 2008; Morrison and
Grabowski, 2008; Hill et al., 2009), we consider the en-
tire time-dependent processes of mixing and evapora-
tion. At moderate and high Da, the mixing can last sev-
eral minutes. In in situ observations, we see mostly non-
equilibrium stages which may account for a rather wide
scattering of mixing diagrams even at the same values
of Da (e.g., Lehmann et al., 2009).

Note that time-dependent mixing was also considered
in several studies (e.g., Baker et al., 1980; Baker and
Latham, 1982; Jeffery and Reisner, 2006; Krueger et al.,
1997; Kumar et al., 2012) using different approaches
and numerical models. These studies, however, do
not contain analysis on non-dimensional diffusion–
evaporation equation.

b. It is also shown in the study that the slopes of the Ñ− q̃
relationship (between the normalized droplet concentra-
tion and LWC) tends to the 1 : 1 line with increasing Da.
The closeness can be considered as a measure of ex-
tremely inhomogeneous mixing in terms of the classi-
cal concept (see Pt1). It has been found that the slope of
the Ñ−q̃ relationship depends on the LWC and, accord-
ingly, on time. At large LWC, q̃ changes with time faster
than Ñ , while at low LWC the concentration changes
faster. Although mixing types are usually separated into
homogeneous and extremely inhomogeneous, we have
shown that there are wide ranges of Da and R at which
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Table 2. Comparison of analysis based on the classic concepts of mixing and the results of the present study.

Classical concept The present study

Only the final equilibrium state is typically analyzed;
results of in situ observations are interpreted assuming
the equilibrium state.

The mixing period can last several minutes and more.
The microphysical structure of the mixing volumes dur-
ing this period can differ substantially from that at the
final state

Types of mixing are separated into homogeneous and
extremely inhomogeneous.

There are the wide ranges of Da and R values, at which
mixing can be regarded as intermediate or inhomoge-
neous (but not extremely inhomogeneous).

Mixing can start as purely homogeneous Any mixing starts with the inhomogeneous stage

Homogeneous mixing leads to a DSD shift to small
droplet sizes

Homogeneous mixing does not always lead to the DSD
shift to small droplet sizes (Pt2). The shift depends on
the DSD shape.

Mixing can be analyzed within the framework of a
monodisperse DSD

Mixing always leads to formation of polydisperse DSD

In the course of homogeneous mixing, droplet concen-
tration remains constant

In the course of homogeneous mixing, droplet concen-
tration does not always remain constant (Pt2)

Extremely inhomogeneous mixing does not change the
DSD shape

Inhomogeneous mixing (including extremely inhomo-
geneous) leads to broadening of the DSD towards small
sizes

In the course of inhomogeneous mixing, the effective
radius remains constant

The effective radius varies only slightly (5–20 %) in the
initially cloud volume. The effective radius rapidly in-
creases in the initially droplet-free volume, approaching
the value of effective radius in the cloud volume. With
increasing Da, the difference between the values of the
effective radius in the initially cloud volume and that at
the final state decreases in agreement with the classic
concept.

mixing should be considered intermediate or inhomoge-
neous, but not extremely inhomogeneous. Within these
ranges the effective radius can change by more than
10–15 %. Standard mixing diagrams do not include this
range that, to our knowledge, has never been investi-
gated despite the fact that multiple in situ measurements
indicate its existence (e.g., Lu et al., 2014).

c. Many studies assume the existence of pure homoge-
neous mixing during which the initially monodisperse
DSD remains monodisperse. Our study shows that at
the very beginning, mixing is always inhomogeneous.
This inhomogeneous stage leads to the formation of
a polydisperse DSD that broadens in the course of
droplet evaporation. Hence, even at Da= 1 the initially
monodisperse spectrum becomes polydisperse.

d. It is shown that at small Da, mixing includes both inho-
mogeneous and homogeneous stages, which means that
type of mixing can change during the mixing process.

e. The classical concept assumes that the effective radius
always decreases during homogeneous mixing. Assum-

ing an initially monodisperse DSD, we have found this
conclusion largely valid, with the exception of small R.
At the same time, it was shown in Pt2 that during homo-
geneous mixing, the effective radius can decrease, re-
main constant or increase depending of the initial DSD
shape. Thus, a decrease in the effective radius during
mixing cannot always be considered an indication of
homogeneous mixing. Similarly, the invariability of the
effective radius during mixing in the process cannot al-
ways be considered an indication of extremely inhomo-
geneous mixing.

f. It is generally assumed that during homogeneous mix-
ing droplet concentration remains unchanged. In the
present study, as well as in Pt2, it is shown that
since mixing leads to a polydisperse DSD, the small-
est droplets may completely evaporate. At R <−1, the
DSD becomes very wide and all the droplets, the small-
est ones first, evaporate.

g. It is generally assumed that inhomogeneous mixing
does not alter DSD shape, but only decreases droplet
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concentration. The present study showed that inhomo-
geneous mixing significantly changes the DSD shape.
DSD were found to be quite different in different re-
gions of mixing volumes. The main feature is the DSD
broadening toward small droplet size, so the relative
dispersion grows up to 0.2–0.3. These values are quite
close to those observed in atmospheric clouds (Khain et
al., 2000). Elongated tails of small droplets during mix-
ing were simulated by Schlüter (2006) who described
turbulent diffusion following Krueger et al. (1997) and
Su et al. (1998) as well as Kumar et al. (2012) using
DNS. We see that formation of a polydisperse DSD is a
natural result of inhomogeneous mixing and, therefore,
inhomogeneous mixing is an important mechanism of
DSD broadening. A significant impact of mixing on
DSD shape was found identified in multiple studies, be-
ginning with Warner (1973).

h. The effective radius has been assumed to remain con-
stant during extremely inhomogeneous mixing. Our re-
sults indicate that, indeed, at the final equilibrium stage
at comparatively high RH the effective radius is close
to that in the initially cloudy volume (especially at high
Da). At the same time, we found that the effective radius
varies in size and is smaller in the initially droplet-free
volumes.

The results obtained in parts Pt1 and Pt2, and especially in
the current study (Pt3) dedicated to analysis of turbulent mix-
ing mechanisms in clouds determine the directions for fu-
ture work. Since the widely used mixing diagrams show only
a hypothetical equilibrium state, but not the instantaneous
state of mixing that likely correspond to transition periods,
the efficiency of the standard mixing diagrams is question-
able. Moreover, the standard diagrams miss a very important
mixing regime, namely, inhomogeneous mixing that occurs
between two limiting cases of homogeneous and extremely
inhomogeneous mixing (Fig. 16).

We believe that the results obtained will help to improve
understanding and interpretation of mixing process both in
in situ measurements and modeling. The approach allows

us to investigate the relationship between the main micro-
physical parameters typical of inhomogeneous mixing, that
differ from those in the limiting cases of extremely inho-
mogeneous mixing. In addition, utilization of polydisperse
DSD when solving diffusion–evaporation equation allows to
investigate the role of the initial DSD shape in mixing. In
situ measurements (e.g., Burnet and Brenguier, 2007; Ger-
ber et al., 2008; Lehmann et al., 2009) and numerical models
(Magaritz-Ronen et al., 2016) show a wide scattering of data
on the scattering diagrams. We expect that the location of
various points on the diagrams (e.g., r3

v vs. dilution rates) de-
pends on the shape of the initial DSDs and characterizes the
stage of mixing. The method applied in the study allows for
the investigation of evolution of DSD moments over space
and time.

Recently, there has been vigorous discussions concerning
the possible existence of a high humidity layer near cloud
edges that might affect mixing of cloud with its surroundings
(Gerber et al., 2008; Lehmann et al., 2009). In our opinion,
this layer does exist and forms as a result of turbulent mixing
of cloud with surrounding dry air, accompanied by complete
droplet evaporation. The approach developed in the present
paper allows one to analyze formation of such humid layers.

We believe that the results obtained in this study will foster
the development of physically grounded parameterization of
mixing in cloud models.

7 Data availability

Numerical codes of the model are available upon request.
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Appendix A: List of symbols

Table A1. List of symbols.

Symbol Description Units

A2
1
qv
+

L2
w

cpRvT 2 , coefficient nd

a0, an the Fourier series coefficients nd
C the Richardson’s law constant nd
cp specific heat capacity of moist air at constant pressure J kg−1 K−1

D coefficient of water vapor diffusion in the air m2 s−1

Da the Damkölher number nd
e water vapor pressure N m−2

es saturation vapor pressure above a flat water surface N m−2

F F =
ρwL

2
w

kaRvT 2 +
ρwRvT
es (T )D

, coefficient m−2 s

f (r) droplet size distribution m−4

g(σ ) distribution of square radius m−5

g̃(̃σ ) normalized distribution of square radius nd
ka coefficient of air heat conductivity J m−1 s−1 K−1

K turbulent diffusion coefficient m2s−1

L characteristic spatial scale of mixing m
Lw latent heat for liquid water J kg−1

mα moment of DSD of order α m−3

N droplet concentration
Ñ normalized droplet concentration nd
N1 Initial droplet concentration in a cloud volume m−3

p pressure of moist air N m−2

q liquid water mixing ratio kg kg−1

q1 Initial liquid water mixing ratio in a cloudy volume kg kg−1

qv water vapor mixing ratio kg kg−1

q̃ normalized liquid water mixing ratio equal to normalized LWC nd
r droplet radius m
r0 initial droplet radius m
r0 mean droplet radius m
rv mean volume radius m
R

S2
A2q1

, potential evaporation parameter (PEP) nd
Ra specific gas constant of moist air J kg−1 K−1

Rv specific gas constant of water vapor J kg−1 K−1

S e/ew − 1, supersaturation over water nd
S̃ normalized supersaturation nd
S2 Initial supersaturation in a dry volume nd
S̃max maximal normalized supersaturation nd
T temperature K
Tmix normalized duration of inhomogeneous stage nd
Tev normalized duration of evaporation nd
Ttot normalized duration of mixing nd
t time s
t̃ non-dimensional time nd
x distance m
x̃ non-dimensional distance nd
λ1, λ2 criteria of delimitation between the types of mixing nd
ε turbulent dissipation rate m2 s−3

0(x, t) conservative function nd
0̃ normalized conservative function nd
ρa air density kg m−3

ρw density of liquid water kg m−3

σ square of droplet radius m2

σ̃ normalized square of droplet radius nd
τpr phase relaxation time s
τ̃pr normalized phase relaxation time nd
τmix characteristic time of mixing s
τ0 Initial timescale s

“nd” denotes non-dimensional.
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