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Abstract. Atmospheric deposition of anthropogenic soluble

iron (Fe) to the ocean has been suggested to modulate pri-

mary ocean productivity and thus indirectly affect the cli-

mate. A key process contributing to anthropogenic sources

of soluble Fe is associated with air pollution, which acidi-

fies Fe-containing mineral aerosols during their transport and

leads to Fe transformation from insoluble to soluble forms.

However, there is large uncertainty in our estimate of this an-

thropogenic soluble Fe. In this study, for the first time, we

interactively combined laboratory kinetic experiments with

global aerosol modeling to more accurately quantify anthro-

pogenic soluble Fe due to air pollution. Firstly, we deter-

mined Fe dissolution kinetics of African dust samples at

acidic pH values with and without ionic species commonly

found in aerosol water (i.e., sulfate and oxalate). Then, by

using acidity as a master variable, we constructed a new

empirical scheme for Fe release from mineral dust due to

inorganic and organic anions in aerosol water. We imple-

mented this new scheme and applied an updated miner-

alogical emission database in a global atmospheric chem-

istry transport model to estimate the atmospheric concen-

tration and deposition flux of soluble Fe under preindustrial

and modern conditions. Our improved model successfully

captured the inverse relationship of Fe solubility and total

Fe loading measured over the North Atlantic Ocean (i.e.,

1–2 orders of magnitude lower Fe solubility in northern-

African- than combustion-influenced aerosols). The model

results show a positive relationship between Fe solubility

and water-soluble organic carbon (WSOC) / Fe molar ra-

tio, which is consistent with previous field measurements.

We estimated that deposition of soluble Fe to the ocean in-

creased from 0.05–0.07 Tg Fe yr−1 in the preindustrial era to

0.11–0.12 Tg Fe yr−1 in the present day, due to air pollution.

Over the high-nitrate, low-chlorophyll (HNLC) regions of

the ocean, the modeled Fe solubility remains low for min-

eral dust (< 1 %) in a base simulation but is substantially

enhanced in a sensitivity simulation, which permits the Fe

dissolution for mineral aerosols in the presence of excess ox-

alate under low acidity during daytime. Our model results

suggest that human activities contribute to about half of the

soluble Fe supply to a significant portion of the oceans in the

Northern Hemisphere, while their contribution to oceans in

high latitudes remains uncertain due to limited understand-

ing of Fe source and its dissolution under pristine conditions.

1 Introduction

Changes in supply of nutrients such as bioavailable iron (Fe)

from the atmosphere to the ocean have altered oceanic carbon

uptake, but significant uncertainties remain on the magnitude

of this effect (Ciais et al., 2013). Thus improved quantifica-

tion of atmospheric delivery of bioavailable Fe is essential to

quantify the long-term carbon sink (Jickells et al., 2005). The

present study focuses on “potentially” bioavailable Fe, which

includes colloidal materials and aqueous species (often oper-

ationally defined as soluble Fe). The response of the aerosol

Fe solubility (i.e., soluble Fe / total Fe) to air pollution is a

key uncertainty in our understanding of the biogeochemical

cycle of Fe, marine ecosystem, and climate (Mahowald et al.,

2009; Shi et al., 2012; Hajima et al., 2014).

Atmospheric processing of mineral dust has been hypoth-

esized to be an important source of soluble Fe to the oceans

because of acidic condition in aerosol water (Zhuang et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



86 A. Ito and Z. Shi: Anthropogenic bioavailable Fe deposition

1992; Meskhidze et al., 2003). Previous chemical transport

models have used mineral dissolution rates and stoichiomet-

ric numbers of Fe in minerals to estimate Fe release rates

from mineral aerosols (Meskhidze et al., 2005; Solmon et

al., 2009; Ito and Feng, 2010; Ito, 2012). Laboratory stud-

ies of mineral dust have demonstrated that the Fe release

rates used in previous global models were much slower than

the measurements during a typical aerosol lifetime of 2–

7 days (Mackie et al., 2005; Shi et al., 2011). In labora-

tory works, the enhanced dissolution rates of elements from

phyllosilicate minerals have been observed during the initial

period when metals are incongruently dissolved in solution

(e.g., Malmström and Banwart, 1997; Brandt et al., 2003).

Much slower quasi-steady-state dissolution rates after 10–

14 days are typically observed for aluminosilicate minerals

in acid solutions (Amram and Ganor, 2005; Lowson et al.,

2005; Golubev et al., 2006; Rozalén et al., 2008; Bibi et al.,

2011). Recent atmospheric chemical transport models have

adopted the initial period of enhanced Fe release rate for the

proton-promoted dissolution (Ito and Xu, 2014; Myriokefali-

takis et al., 2015). In previous studies which implemented the

proton-promoted Fe dissolution with no organic ligand, the

Fe dissolution was significantly suppressed due to the dust al-

kalinity, particularly in the Southern Hemisphere (Meskhidze

et al., 2005; Ito and Feng, 2010; Johnson et al., 2010; Ito and

Xu, 2014). Currently, ferric sulfate is treated as water-soluble

Fe in oil combustion aerosols at emission (Ito, 2013, 2015;

Myriokefalitakis et al., 2015; Wang et al., 2015).

Previous laboratory studies suggest that different acid

types and photochemical reactions affect proton-promoted

Fe dissolution rates of mineral dust, in addition to the

types of Fe species associated with mineral source materi-

als (Cwiertny et al., 2008; Fu et al., 2010; Rubasinghege et

al., 2010). However, these studies were conducted in the ab-

sence of ammonium salts, such as sulfate, which are ubiq-

uitous in aerosol water. Some of the anions in aerosol water

are known to be effective inorganic ligands, which form the

complexes with Fe in solution (Cornell and Schwertmann,

2003). In batch experiments, the mineral dissolution rate at

high dust / liquid ratio can be influenced by a different abil-

ity of these anions to form soluble complexes with metals

(Hamer et al., 2003). Thus the effect of decrease of the activ-

ity of Fe3+ on the Fe dissolution rates via the formation of

aqueous complexes needs to be assessed in laboratory exper-

iments to constrain the degree of suppression used in models.

Recently, global atmospheric transport model studies have

emphasized the role of oxalate for promoting Fe dissolu-

tion from Fe-containing aerosols (Luo and Gao, 2010; John-

son and Meskhidze, 2013; Ito, 2015; Myriokefalitakis et

al., 2015) (see the Supplement). Moreover, oxalate-promoted

dissolution of Fe is suppressed at low concentrations of ox-

alate near strong Fe sources (Ito, 2015), because excess ox-

alate is necessary to induce significant Fe dissolution (Chen

and Grassian, 2013). These modeling studies highlighted the

importance of oxalate-promoted Fe dissolution for mineral

dust over the remote oceans. However, a constant oxalate-

promoted dissolution rate with time for mineral dust has been

prescribed in previous models regardless of different disso-

lution behaviors in different Fe types, due to a lack of exper-

imental data for oxalate-promoted Fe dissolution kinetics.

Here, we conducted a series of laboratory experiments to

examine how inorganic and organic ligands in solution (i.e.,

sulfate and oxalate) affect Fe dissolution rates in mineral

dust. The experimental data were then used to derive a new

Fe release scheme, which is implemented in a global chemi-

cal transport model to quantify the effect of atmospheric pro-

cessing of mineral aerosols on Fe mobilization. This study

incorporates the proton- and oxalate-promoted Fe dissolution

schemes for the mineral aerosols in our model (Ito, 2015).

We also examine quasi-photo-reductive dissolution scheme

for mineral aerosols in a sensitivity simulation. Determina-

tion of Fe dissolution for different types of Fe requires three

key parameters of Fe release rate, degree of suppression, and

Fe content. We implement three-stage kinetic process for

the Fe dissolution scheme to dust aerosols. We use the up-

dated version of the mineralogical database for Fe content

in soils (Journet et al., 2014). To assess model assumptions

for Fe dissolution, the calculated Fe solubility is evaluated

against field observations in relation to total Fe loading and

water-soluble organic carbon (WSOC) over the North At-

lantic Ocean (Wozniak et al., 2013, 2015). The model esti-

mates “anthropogenic” soluble Fe supply from both dust and

combustion sources to the oceans in association with changes

in air quality based on the Intergovernmental Panel on Cli-

mate Change (IPCC) emission data set. We use the term

“anthropogenic” soluble Fe here as primary soluble Fe from

oil combustion aerosols and secondary soluble Fe from both

dust and combustion aerosols, due to the changes in emis-

sions from fossil fuel use and biofuel combustion between

the preindustrial era and the present day (Ito et al., 2014).

2 Laboratory experiments

In this study, we used the same Tibesti dust sample as in Shi

et al. (2011). We followed a similar methodology to that in

Shi et al. (2011). Please see the Supplement for more de-

tails. In order to determine the Fe dissolution kinetics in

dust aerosol water, which contains organic ligands (e.g., ox-

alate) and a high concentration of inorganic ions (e.g., sul-

fate), four sets of time-dependent dissolution experiments

were performed, as summarized in Table 1. The Fe disso-

lution experiments include the following:

– Experiment 1: a dust / liquid ratio of 1 g L−1 in 0.05

and 0.005 mol L−1 sulfuric acid solution only (i.e.,

no (NH4)2SO4) (pH= 1.3, ionic strength I = 0.15 M;

pH= 2.1, I = 0.015 M). The pH values in highly acidic

solutions were estimated from molality and the activity

coefficient, which were calculated using the E-AIM III

aqueous solution simulator (Wexler and Clegg, 2002).
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Table 1. Summary of Fe dissolution experiments performed in this study.

Experiment pH Dust / liquid ratio (g L−1) Ammonium salt Oxalate [H+] (mol L−1)

Experiment 1 1.3 1 0 0 0.1

Experiment 1 2.1 1 0 0 0.01

Experiment 2 2 1 1 mol L−1 (NH4)2SO4 0 0.1

Experiment 2 3.1 1 1 mol L−1 (NH4)2SO4 0 0.01

Experiment 2 0.9 1 3 mol L−1 NH4Cl 0 0.1

Experiment 2 2 10 1 mol L−1 (NH4)2SO4 0 0.1

Experiment 3 2 1 1 mol L−1 (NH4)2SO4 0.03 mol L−1 0.1

Experiment 3 3.1 1 1 mol L−1 (NH4)2SO4 0.03 mol L−1 0.01

Experiment 4 2 0.06 0 0 0.01

Experiment 4 2 10 0 0 0.01

Experiment 4 2 50 0 0 0.01

The pH values in highly acidic solutions and with high ionic strength (I > 3 M) were estimated from molality and activity coefficient, which were

calculated using E-AIM III aqueous solution simulator (Wexler and Clegg, 2002). Thus the calculated pH values are different from molality for H+.

– Experiment 2: a dust / liquid ratio of 1 g L−1 in 0.05 and

0.0005 mol L−1 sulfuric acid solution with 1 mol L−1

(NH4)2SO4 (pH= 2 and I = 3.15 M; pH= 3.1 and

I = 3.015 M) only (i.e., no oxalate) and in 0.1 mol L−1

HCl solution with 3 mol L−1 NH4Cl (ionic strength

I = 3.2 M) (pH= 0.9; note that the activity coefficient

for H+ in this solution is higher than 1), and at a

dust / liquid ratio of 10 g L−1 in 0.05 mol L−1 sulfu-

ric acid solution with 1 mol L−1 (NH4)2SO4 (pH= 2,

I = 3.15 M). The pH values with high ionic strength

(I > 3 M) were estimated using the E-AIM III thermo-

dynamic model (Wexler and Clegg, 2002).

– Experiment 3: a dust / liquid ratio of 1 g L−1 in 0.05

and 0.0005 mol L−1 sulfuric acid solution with both

1 mol L−1 (NH4)2SO4 and 0.03 mol L−1 of oxalate

(as sodium oxalate) (pH= 2, I = 3.15 M; pH= 3.1,

I = 3.015 M). The chosen amount of oxalate is based on

the molar ratio of oxalate and sulfate in ambient PM2.5

samples (Yu et al., 2005).

– Experiment 4: a dust / liquid ratio of 60 mg L−1,

10 g L−1 and 50 g L−1 in 0.005 mol L−1 sulfuric acid

solution (pH 2). The pH was continuously monitored

during the experiments at four different dust / liquid ra-

tios (i.e., 60 mg L−1, 1 g L−1, 10 g L−1, and 50 g L−1),

and once the pH change was more than 0.1 pH unit,

acids were added to decrease the pH to 2. This aims to

determine how different dust / liquid ratios affect the Fe

dissolution kinetics in comparison with experiment (1)

(1 g L−1).

3 Model description

This study uses the Integrated Massively Parallel Atmo-

spheric Chemical Transport (IMPACT) model (Rotman et

al., 2004; Liu et al., 2005; Feng and Penner, 2007; Ito et al.,

2007, 2012, 2014, 2015; Lin et al., 2014; Xu and Penner,

2012; Ito, 2015). The model is driven by assimilated meteo-

rological fields from the Goddard Earth Observation System

(GEOS) of the NASA Global Modeling and Assimilation Of-

fice (GMAO). Simulations were performed with a horizontal

resolution of 2.0◦× 2.5◦ and 59 vertical layers with a top

boundary at 0.01 hPa using meteorological fields for the year

2010 (and 2011 for the comparison with the field measure-

ments).

We run the model with emissions of primary aerosols and

precursor gases of secondary aerosols such as sulfate, nitrate,

ammonium, and oxalate for the preindustrial era and the

present day to disentangle the naturally and anthropogeni-

cally perturbed components (Table 2), as described in Ito

et al. (2014). The emission data sets for anthropogenic ac-

tivities such as fossil fuel use and biofuel combustion are

taken from the historical emissions for IPCC Fifth Assess-

ment (AR5) report for the preindustrial era and the present

day (Lamarque et al., 2010). The present-day estimates for

mineral aerosols from arid and semiarid regions as well as

combustion aerosols from biomass burning are used together

with anthropogenic emission changes (Ito and Xu, 2014;

Ito et al., 2015; Ito, 2015). The same natural emissions of

dimethylsulfide (DMS), sulfur dioxide (SO2), nitrogen ox-

ides (NOx), volatile organic compounds (VOCs), and am-

monia (NH3) are used for both periods in our simulations, as

we use the same meteorological data set. Thus Fe dissolution

due to natural acidity is not included in the “anthropogenic”

fraction of soluble Fe, as in Ito and Xu (2014).

Previously, Ito and Xu (2014) used the mineralogical

database compiled by Nickovic et al. (2012) and Fe content

for hematite (69.9 %), illite (4.0 %), smectite (11 %), kaoli-
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Table 2. Global Fe emission (Tg Fe yr−1) estimated for different

types of Fe-containing aerosols.

Species Preindustrial era Present day

Dust 69 (98 %) 69 (98 %)

Oil combustion 0 (0 %) 0.022 (0.03 %)

Coal combustion 0.28 (1.0 %) 0.69 (1.0 %)

Biomass burning 0.66 (0.9 %) 0.66 (0.9 %)

Total Fe 70 71

Note: the parentheses represent the percentage of each source of Fe to total

Fe. The initial Fe solubility (58± 22 %) is used to estimate primary

soluble Fe emission for the oil combustion aerosols only (Ito, 2015). We

also examined the initial Fe solubility of mineral dust (0.1 %) in an

additional sensitivity simulation (Hand et al., 2004; Ito and Xu, 2014).

Insoluble Fe can be transformed into secondary soluble Fe via atmospheric

processing of Fe-containing mineral dust (see the text) and combustion

aerosols (Ito, 2015).

nite (0.24 %), and feldspars (0.34 %) (Journet et al., 2008).

Here, the updated global database of mineral composition

and Fe content for hematite (69.9 %), goethite (62.8 %), il-

lite (4.3 %), smectite (2.6 %), kaolinite (0.23 %), chlorite

(12.3 %), vermiculite (6.71 %), and feldspars (0.34 %) in

clay- and silt-sized soils (CASE 1 in Journet et al., 2014)

was used to estimate the emissions of Fe and calcite in dust

aerosols. The size distribution at emission follows the mass

fractions of emitted soil particles in Kok (2011). The mass

fluxes of mineral dust at emission are interpolated to repre-

sent four model size bins (radius: < 0.63, 0.63–1.25, 1.25–

2.5, and 2.5–10 µm) with the theoretical expression (Ito et

al., 2012). The mineral fractions in clay- and silt-sized soils

are also distributed in the four size bins following the brittle

fragmentation theory after Scanza et al. (2015). All the Fe-

containing minerals are found in the clay-sized soils, while

only three minerals (i.e., goethite, chlorite, and feldspars) are

in the silt-sized soils (Journet et al., 2014). Thus Fe content

averaged in size bins 1–3 (3.6 %) is higher than the largest

one (2.3 %), in contrast to constant Fe content (3.1 %) with

size in previous version. As a result, global Fe emission from

dust (69 Tg yr−1) is slightly smaller than that estimated in

the previous version (79 Tg yr−1) (Ito, 2015). The sum of

Fe emission in the smaller size from bin 1 to bin 3 in this

study (25 Tg yr−1) is larger than that in the previous version

(22 Tg yr−1). Consequently, smaller dust particles may trans-

port more Fe to remote regions relative to larger particles.

The mineral dust aging process with the formation of solu-

ble materials in aerosol and cloud water (e.g., sulfate, nitrate,

ammonium, and oxalate) is explicitly simulated in the model

(Ito and Xu, 2014; Ito, 2015). The values of the pH of the

aerosol water used in the calculations of the dissolution rates

are estimated for all of the wet aerosols in each size bin, as

in Ito and Xu (2014). The aqueous-phase chemical reactions

for the formation of oxalate are the same as described by Lin

et al. (2014), except for the treatment of the Fe chemistry in

aerosol and cloud water as in Ito (2015). Thus Fe(III)–oxalate

complex is the major form of Fe in modeled solution. The

photolysis of Fe–oxalate complex can contribute to a signifi-

cant oxalate sink in cloud water influenced by ship emissions

(Sorooshian et al., 2013; Wang et al., 2014). On the other

hand, a complexation of Fe(II) with stronger organic ligands

from fossil fuel combustion may be important for the stabil-

ity of Fe dissolved in rainwater (Kieber et al., 2005; Willey

et al., 2015). Here, we focus on the acid mobilization of rel-

atively insoluble Fe in Fe-containing minerals to soluble Fe.

Because of the lack of knowledge regarding the specific lig-

ands and formation rates of Fe-organic complexes, Fe chem-

istry is disabled in cloud and rainwater but implemented for

Fe-containing wet aerosols in four size bins to obtain good

agreement regarding oxalate with the observations over the

ocean (see Fig. S3 in Ito, 2015). The deposition velocities of

soluble Fe depend on the aerosol types and size bins, and they

follow the aging of the parent aerosols in the atmosphere (Ito

and Xu, 2014). Here, we developed a new Fe release scheme

in mineral dust (see Sect. 4) to improve the previously used

scheme (Ito and Xu, 2014). The new scheme is implemented

in the IMPACT model for simulations in Sect. 5.

4 Development of a new Fe dissolution scheme based

on new experimental results

In our model, Fe release from aerosols due to chemical

processing is calculated based on an online simulation of

aqueous-phase chemistry (Ito and Feng, 2010; Ito, 2012,

2015; Ito and Xu, 2014). Ito and Xu (2014) developed an Fe

dissolution scheme that considers the types of Fe species as-

sociated with mineral source materials, mainly based on the

measurements by Shi et al. (2011). Following their studies,

three Fe pools are characterized by ferrihydrite, nano-sized

Fe oxides, and heterogeneous inclusion of nano-Fe grains in

aluminosilicates (e.g., illite, smectite, and chlorite). Here we

developed a new Fe dissolution scheme, which considers our

laboratory experimental data sets regarding (1) the formation

of Fe inorganic and organic complexes in solution and (2) the

formation of surface complexes between oxalate and Fe ox-

ides, following Ito (2015) for combustion aerosols.

Figures 1 and S1 in the Supplement demonstrate the

effects of inorganic anions to form soluble complexes

with Fe at different dust / liquid ratios on dissolution rates

measured in acidic solution. Figure 1 shows that the

pH= 2 (0.05 M H2SO4, 1 M (NH4)2SO4, red triangles)

and pH= 2.1 (0.005 M H2SO4, green diamonds) cases at

1 g dust L−1 have significantly different Fe dissolution rates.

The one with high ionic strength (red triangles, Fig. 1) has a

much higher dissolution rate than predicted by the small dif-

ference in the pH values. It is expected that one pH unit can

lead to 3–4 times difference in dissolution rates as shown

here and by Shi et al. (2011). The presence of complex-

ing ions such as sulfate in this case has the potential to ac-

celerate the dissolution rate by absorption or by complex-

ation with Fe dissolved in solution (Cornell and Schwert-

Atmos. Chem. Phys., 16, 85–99, 2016 www.atmos-chem-phys.net/16/85/2016/



A. Ito and Z. Shi: Anthropogenic bioavailable Fe deposition 89

Effect of ammonium sulfate

h
0 50 100 150 200 250 300 350

0

5

10

15

20

25

60 mg L   with no ammonium sulfate

1 g L   with ammonium sulfate

10 gL   with ammonium sulfate

1 g L   with no ammonium sulfate
F

e
 s

o
lu

b
ili

ty
 (

%
)

−1

−1

−1

−1

Figure 1. Comparison of Fe solubility in solution (%) mea-

sured at two different dust / liquid ratios of 1 g L−1 (red triangles;

pH= 2) and 10 g L−1 (blue squares; pH= 2) in 0.05 mol L−1 sul-

furic acid solution with 1 mol L−1 (NH4)2SO4 (I = 3.15 mol kg−1),

and dust / liquid ratios of 60 mg L−1 (black circles; pH= 2.1) and

1 g L−1 (green diamonds; pH= 2.1) in 0.005 mol L−1 sulfuric acid

solution without (NH4)2SO4.

mann, 2003). We observed a good agreement of measure-

ments between 1 g L−1 dust in 0.05 mol L−1 sulfuric acid so-

lution with 1 mol L−1 (NH4)2SO4 (pH= 2.0, red triangles)

and 60 mg L−1 dust in 0.005 mol L−1 sulfuric acid solution

without (NH4)2SO4 (pH= 2.1, black circles). Thus the so-

lution remains undersaturated with respect to Fe(III), be-

cause essentially all aqueous Fe(III) species (> 99 %) are

complexed with sulfate (i.e., FeSO+4 ) in 0.05 mol L−1 sul-

furic acid solution with 1 mol L−1 (NH4)2SO4 (pH= 2.0)

(Meskhidze et al., 2005; Ito, 2015). The higher dust / liquid

ratio at 10 g L−1 (blue squares) exhibits lower Fe dissolution

rate after the initial period of enhanced Fe release rate, pos-

sibly due to the re-adsorption of solution phase Fe onto the

particulate phase, as the solution with (NH4)2SO4 is under-

saturated with respect to Fe(III) (Spokes and Jickells, 1996;

Bibi et al., 2011).

Our data indicate that the addition of complexing agents

(i.e., sulfate in Fig. 1 and chlorite in Fig. S1) acceler-

ated dissolution of Fe minerals by binding Fe released

from the surface in solution (Zhang et al., 1985; Xu and

Gao, 2008). Almost identical slopes were found between

1 g dust L−1 in 0.05 mol L−1 sulfuric acid solution with 1 M

(NH4)2SO4 (pH= 2.0, red triangles) and 60 mg dust L−1 in

0.005 mol L−1 sulfuric acid solution without (NH4)2SO4

(pH= 2.0, black circles) during a typical aerosol lifetime

(Fig. 1). Thus we chose dust / liquid ratios of 1 g dust L−1

in sulfuric acid solution with 1 M ammonium sulfate to rep-

resent a proton-promoted Fe dissolution scheme for mineral

dust.

Figure 2 demonstrates the impact of oxalate on Fe disso-

lution rate (black circles). The addition of 0.03 M Na2C2O4

accelerated the dissolution of Fe in 1 g dust L−1 solution,

0.05 M H2SO4 or 0.005 M H2SO4, with 1 M (NH4)2SO4.

Dissolved Fe concentration was 60 % higher at 72 h in the

0.05 M H2SO4 and 1 M (NH4)2SO4 dust suspensions with

oxalate. It was over 100 % higher at 72 h in the 0.005 M

H2SO4 and 1 M (NH4)2SO4) dust suspensions when added

oxalate. The higher activity of protons can facilitate the

oxalate-promoted dissolution process by protonating the hy-

droxyl (OH) groups at the surface of hydrous Fe oxides,

thereby contributing to increasing the number of positively

charged surface sites. This increase promotes ligand adsorp-

tion, and weakening of the Fe–O bond, which permits the re-

action between oxalate and Fe sites by ligand exchange (Cor-

nell and Schwertman, 2003; Ramos et al., 2014). Although

the protonation of the ligands in solution increases at higher

activity of protons, the adsorption mechanism of HC2O−4 in-

volves the loss of a proton during the ligand-exchange ad-

sorption reaction or during the transfer process from bulk

solution to the mineral surface (Yoon et al., 2004). Conse-

quently, the amount of absorbed complex on the mineral sur-

face is higher in solutions at pH < 7 when the overall charge

at the reactive surface sites is positive, compared to that at

lower activity of protons (Zhang et al., 1985; Xu and Gao,

2008; Lanzl et al., 2012; Ramos et al., 2014). The surface

binding sites for adsorbed oxalate become saturated at high

proton and high oxalate concentrations, and thus oxalate-

promoted dissolution rates are almost independent of pH for

mineral dust (Yoon et al., 2004; Cama and Ganor, 2006;

Lanzl et al., 2012).

Experimental data in Fig. 3 demonstrate that the Fe re-

lease under higher dust / solution ratios is suppressed when

the solution becomes supersaturated with respect to Fe(III),

as observed by the decrease in the rate (black circles). At a

low dust / liquid ratio of 60 mg L−1 at pH 2.1 (H+ concen-

tration of 0.01 mol L−1), Fe dissolution continued even af-

ter 800 h. The rate of Fe dissolution decreased substantially

with increasing dust / liquid ratio. At a dust / liquid ratio of

50 g L−1, Fe dissolution stopped at 180 h and only 1.2 %

(10 µmol g−1) of the total Fe was dissolved, half of which

released in the first hour. The calculated thermodynamic sol-

ubility of this Fe pool at pH 2 is −3.34 (mol L−1 on a log

scale). This is comparable to the previously measured sol-

ubility of nanogoethite, which is −3.6 (mol L−1) at pH= 2

(see Fig. 7 in Shi et al., 2011). Thus this Fe pool likely in-

cludes ferrihydrite and reactive nano-Fe oxides aggregated

on the mineral surface. This is consistent with higher Fe sol-

ubility of 1.2 % as compared to that of the highly reactive Fe

(0.63 %) (Shi et al., 2011). Only 3.3 % of Fe was dissolved at

a dust / liquid ratio of 10 g L−1 and pH 2, and Fe dissolution

stopped at 180 h. The calculated solubility of the second Fe

pool is −3.55 (mol L−1). The above experimental data set is

used to determine the model parameters to predict the influ-

ence of solution saturation state on the Fe dissolution rates

(see Table 3 and discussion below).

Based on above laboratory results (Figs. 2 and 3), Fe dis-

solution from mineral dust aerosols is treated explicitly as

a kinetic process that depends on the pH, ambient tempera-
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Table 3. Constants used to calculate Fe dissolution rates for mineral dust, based on laboratory experiments.

Stage Species Scheme Rate constant ki (pH, T )a mc
i

Kd
eq ne

i

I Ferrihydrite Proton 7.13× 10−5exp[E(pH)b
× (1/298–1/T )] 1.1 1550 3

II Nano-Fe oxides Proton 1.43× 10−4exp[E(pH)b
× (1/298–1/T )] 1.6 42 2.75

III Aluminosilicates Proton 5.85× 10−8exp[E(pH)b
× (1/298–1/T )] 0.76 3.3 2.85

I Ferrihydrite Oxalate 4.61× 10−8exp[E(pH)b
× (1/298–1/T )] 0.069 1550f 3f

II Nano-Fe oxides Oxalate 1.28× 10−8exp[E(pH)b
× (1/298–1/T )] 0.069 1550f 3f

III Aluminosilicates Oxalate 1.68× 10−9exp[E(pH)b
× (1/298–1/T )] 0.056 1550f 3f

I Ferrihydrite Photoreduction 4.61× 10−8exp[E(pH)b
× (1/298–1/T )] 0.069

II Nano-Fe oxides Photoreduction 1.28× 10−8exp[E(pH)b
× (1/298–1/T )] 0.069

III Aluminosilicates Photoreduction 1.68× 10−9exp[E(pH)b
× (1/298–1/T )] 0.056

a ki (pH, T ) is the pH- and temperature-dependent “far-from-equilibrium” Fe dissolution rate of Fe-containing mineral dust (moles Fe g−1 s−1) for

each Fe dissolution scheme i. The parameters are fit to our measurements for African dust. The photo-induced dissolution rate of Fe compounds is

scaled to the photolysis rate of H2O2 calculated in the model, following Ito (2015). b E(pH)=−1.56× 103
× pH+ 1.08× 104. The parameters are fit

to the measurements for soils (Bibi et al., 2014). c mi is the reaction order with respect to aqueous phase protons, which was determined by linear

regression from our experimental data in the pH range between 2 and 3 for proton- and oxalate-promoted dissolution schemes. d Keq is the equilibrium

constant (mol2 kg−2) (Bonneville et al., 2004; Jang et al., 2007). e ni is the stoichiometric ratio (Bonneville et al., 2004; Jang et al., 2007). The

stoichiometric number of moles of Fe per mole of mineral is empirically determined for Fe dissolution rate as in the Eq. (1). f The formation of the

amorphous Fe(OH)3(s) suppresses the oxalate-promoted dissolution from mineral aerosols in the base simulations, while no such effect was considered

for quasi-light-induced reductive dissolution in the sensitivity simulation (i.e., f3 = 1).

ture, the degree of solution saturation, and competition for

oxalate between surface Fe and dissolved Fe in our model

(Table 3). The net Fe dissolution rates (6RFei in units of

moles of dissolved Fe per Fe gram of Fe-containing mineral

particle per second) for the proton-promoted (i = 1), oxalate-

promoted (i = 2), and quasi-photo-reductive (i = 3) Fe dis-

solution schemes can be empirically described using the fol-

lowing equation, which is similar to the formulation applied

for Fe-containing minerals (Zhang et al., 1985; Lasaga et al.,

1994; Hamer et al., 2003; Meskhidze et al., 2005; Lanzl et

al., 2012; Ito and Xu, 2014; Ito, 2015):

RFei = ki(pH,T )× a(H+)mi × fi × gi, (1)

where ki is the “far-from-equilibrium” (i.e., fi = 1 and gi =

1) Fe release rate (moles Fe g−1 s−1), a(H+) is the H+ ac-

tivity, mi represents the empirical reaction order for protons,

and fi and gi account for the suppression.

The Fe release rate, ki , is estimated for the proton- and

oxalate-promoted dissolution schemes by fitting the parame-

ters to our measurements in sulfuric acid and ammonium sul-

fate (experiment 2 and 3) with and without oxalate (Fig. 2).

Fe release from mineral dust under acidic conditions is char-

acterized by initial rapid Fe release and subsequent slow

Fe release (Desboeufs et al., 1999; Mackie et al., 2005;

Cwiertny et al., 2008; Shi et al., 2011). Since the typical life-

time of mineral dust is about a week, the initial rapid Fe

release rates are important for the atmospheric processing

of mineral dust. A three-stage kinetic model is used to de-

scribe the Fe release behavior of mineral dust: the first stage

is characterized by a rapid dissolution of hydrous ferric ox-

ide (HFO) on the surface of minerals, the second stage is an

intermediate stage of nano-sized Fe oxide dissolution from

the surface of minerals, and the third stage is the Fe release

from fine-grained materials, which are internally mixed with

aluminosilicate particles, as the mineral surface is slowly dis-

solved. Here, we prescribe the content of HFO (0.65 %) and

nano-sized Fe oxides (1.3 %) on the surface of minerals. The

content of HFO is similar to that of the highly reactive Fe

measured on the mineral surface and within the range of the

first Fe pool from 0.5 to 2.9 % (Shi et al., 2011). The content

of nano-sized Fe oxides is also within the range of the second

Fe pool from 1.0 to 3.5 %. The proton-promoted dissolution

rates for stage I and II are strongly dependent on pH. A com-

parable strong dependence on pH was also reported for nano-

sized hematite (Lanzl et al., 2012). The similarity in our Fe

release rates to those of illite suggests that Fe is mainly re-

leased from the reactive surface on Fe-containing minerals

by similar mechanisms to aluminosilicates (Fig. S2), which

involve inward movement of dissolution from the grain edges

(Brandt et al., 2003; Rozalén et al., 2008). Consequently, by

applying Eq. (1) for mineral dust, which was previously ap-

plied for combustion aerosols (Ito, 2015), we can avoid the

need to explicitly treat individual Fe-containing minerals to

represent dissolution processes that occur on the timescale of

dust aerosol lifetime.

The enhanced mineral dissolution in the presence of

chelating ligands such as oxalate has been attributed to both

the ligand adsorption at the surface of mineral and complex

formation in solution (Drever and Stillings, 1997). The dif-

ferences between with (i.e., measured overall rate) and with-

out oxalate (i.e., proton-promoted dissolution rate) can be at-

tributed to the surface complexation (i.e., oxalate-promoted

dissolution rate). We observed rates of oxalate-promoted dis-

solution to be almost independent of pH for stage I and III

(Table 3), but could not calculate the empirical reaction or-

der for stage II from the measurements. Lanzl et al. (2012)
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Figure 2. Comparison of Fe solubility in solution (%) predicted

using Eq. (1) with our measured Fe dissolution rates (a) with no

oxalate at pH= 2, 0.05 M H2SO4, 1 M (NH4)2SO4; (b) with no

oxalate at pH= 3.1, 0.005 M H2SO4, 1 M (NH4)2SO4; (c) with

oxalate at pH= 2.1, 0.05 M H2SO4, 1 M (NH4)2SO4, and 0.03 M

Na2C2O4; and (d) with oxalate at pH= 3.1, 0.005 M H2SO4, 1 M

(NH4)2SO4, and 0.03 M Na2C2O4. The red squares are calculated

using Eq. (1) from the rate constants used in this study at each

hour. The black circles are our measured data. The values of pH

in solution are calculated using E-AIM (Wexler and Clegg, 2002,

http://www.aim.env.uea.ac.uk/aim/aim.php).

found that this value was nearly independent of pH (< 4.0)

and particle size between 8 and 90 nm hematite (Zhang et

al., 1985). Thus we apply the same value to stage II as in

stage I. The calculations (red squares) reproduce the initial

rapid Fe release and subsequent slow Fe release due to the

proton- and oxalate-promoted Fe dissolution. The calcula-

tions also reproduce the enhancement in the Fe solubility due

to the effects of oxalate under acidic conditions, compared

with proton-promoted dissolution, as was observed for Ari-

zona test dust in previous study (Chen and Grassian, 2013).

The activation energy for ki is described by a function of pH

and temperature for soils (Bibi et al., 2014). The Fe release

is suppressed by the degree of saturation, fi , and competi-

tion for oxalate between surface Fe and dissolved Fe, gi (Ito,

2015). We apply the same equation for mineral dust, gi , as in

Ito (2015). Thus excess oxalate is needed to form mononu-

clear bidentate ligand with surface Fe and promote Fe disso-

lution significantly (Chen and Grassian, 2013). The function

fi (0≤ fi ≤ 1) is given by

fi = 1− (aFe× a
−ni

H )/Keqi
, (2)
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Figure 3. Comparison of Fe solubility in solution (%) predicted

using Eq. (1) with the measured Fe dissolution rates at pH= 2,

0.005 M H2SO4, and dust / solution of (a) 60 mg L−1, (b) 1 g L−1,

(c) 10 g L−1, and (d) 50 g L−1. The red squares are calculated using

Eq. (1) from the equilibrium constant (mol2 kg−2) used in this study

at each hour. The black circles are our measured data. The frac-

tion of total dissolved Fe present as Fe(III) is prescribed at pH= 2

(0.2) in this calculation to emulate the experimental conditions,

while the photochemical redox cycling between Fe(III) and Fe(II)

in solution is explicitly simulated in our global model (Lin et al.,

2014). The large fraction of Fe(II) in solution under the dark condi-

tions is likely associated with the Fe dissolution of Fe(II)-containing

solids (Cwiertny et al., 2008). The initial fraction of Fe speciation

is not critical in estimating the Fe redox speciation in aerosol water,

because Fe(II) is quickly oxidized to Fe(III) in oxygenated water

(Deguillaume et al., 2010).

in which aFe is the concentration of Fe3+ in aerosol water

(mol L−1), ni is the stoichiometric ratio, and Keqi
is the equi-

librium constant measured.

Results of previous laboratory experiments in batch exper-

iments showed that oxalate had negligible effect on the Fe

dissolution of hematite at higher pH values (≥ pH= 5) under

dark conditions (Zhang et al., 1985; Xu and Gao, 2008; Lanzl

et al., 2012). The decrease in proton concentration (e.g., dur-

ing activation into cloud droplets or neutralization by carbon-

ate) could lead to formation of the amorphous Fe(OH)3(s)

that coats on the mineral surfaces (Shi et al., 2009, 2015) and

inhibits both the adsorption of oxalate and the detachment

of surface Fe–oxalate (Zhang et al., 1985; Jang et al., 2007;

Rozalén et al., 2014). This effect was not considered in previ-

ous modeling studies for mineral dust, leading to an overesti-

mation of oxalate-promoted Fe dissolution in mineral dust at

www.atmos-chem-phys.net/16/85/2016/ Atmos. Chem. Phys., 16, 85–99, 2016
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high pH (≥ 3) (Luo and Gao, 2010; Johnson and Meskhidze,

2013; Myriokefalitakis et al., 2015).

Paris et al. (2011) concluded that the light-induced reduc-

tive dissolution was not the principal process to explain the

increase in Fe solubility under low dissolved Fe and low ox-

alate concentrations. However, the Fe release from the re-

active surface on Fe-containing minerals was observed at

higher pH values (≥ 5) under high dissolved Fe and high ox-

alate concentrations and irradiation conditions (Lanzl et al.,

2012; Chen and Grassian, 2013). Two rate-limiting steps are

possibly involved in apparent contradictions at higher pH:

the adsorption of oxalate on the oxide surfaces at low dis-

solved Fe concentration (i.e., far from dissolution equilib-

rium) and the detachment of surface Fe–oxalate via photo-

induced ligand-to-metal charge transfer as dissolution equi-

librium is approached (Kraemer and Hering, 1997). To exam-

ine the uncertainty in Fe release at higher pH values, no pH

effect on the suppression of quasi-photo-induced Fe disso-

lution for mineral aerosols was considered in the sensitivity

simulation. In analogy to the combustion aerosols (Chen and

Grassian, 2013; Ito, 2015), we apply the same rate constant

to quasi-photo-induced dissolution as in oxalate-promoted

dissolution and we set f3 = 1 in Eq. (1). The quasi-photo-

induced dissolution rate is calculated by scaling the photoly-

sis rate of H2O2 estimated in the model, following Ito (2015).

The photo-degradation of oxalate due to photolysis of Fe–

oxalate complexes is simulated for Fe-containing aerosols in

aqueous chemistry (Lin et al., 2014; Ito, 2015).

5 Modeling results and discussion

The model-calculated concentrations of total and soluble Fe

in aerosols have been extensively compared with field ob-

servations (Ito and Feng, 2010; Ito, 2012, 2013, 2015; Ito

and Xu, 2014). Here, model-calculated daily average sur-

face concentrations of soluble Fe (red squares) were com-

pared with the measurements (black circles) during the 2010

and 2011 US GEOTRACES cruises over the North Atlantic

(Fig. 4) (Wozniak et al., 2013, 2015). The model-calculated

variability at each latitude and longitude represents the daily

variability during the sampling dates. The modeled soluble

Fe concentration exhibits a latitudinal variability which is

similar to that of the measurements, with low values over

the remote ocean (< 0.5 ng m−3), intermediate values near

the European continent, and high values near northern Africa

(> 5 ng m−3) (Fig. 4a). The modeled soluble Fe concentra-

tion shows a longitudinal variability which is also similar

to that of the measurements, with low values over the re-

mote ocean (< 0.5 ng m−3), intermediate values near North

America, and high values near northern Africa (> 2 ng m−3)

(Fig. 4b).

Figure 5 displayed the daily averaged, model-calculated

surface total aerosol Fe loading, Fe solubility, Fe / WSOC

molar ratio, and dust / combustion ratio for soluble Fe (red
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Figure 4. Comparison of simulated (red squares) and observed

(black circles) soluble Fe concentration (ng m−3) during the

(a) 2010 and (b) 2011 US GEOTRACES cruises over the North

Atlantic (Wozniak et al., 2013, 2015). The number of modeled data

points (84) is larger than the measurements (37), because each daily

average is calculated for each sampling date at each center of cruise

location.

squares) over the 2010 and 2011 US GEOTRACES cruise

tracks in comparison with the measurements (black circles)

by Wozniak et al. (2013, 2015). As previously reported in

Ito (2013), the oil combustion from shipping mainly con-

tributes to high Fe solubility at low Fe loading observed

over the high-latitude North Atlantic Ocean (Fig. 5a). In

this study, low Fe solubility near northern Africa was suc-

cessfully simulated. The internal mixing of alkaline minerals

with Fe-containing minerals in aqueous chemistry for min-

eral dust can lead to higher pH and thus suppress the Fe

dissolution near the source regions, compared to the exter-

nal mixing (Ito and Feng, 2010). The model predicts rela-

tively higher pH values for dust aerosols except submicron

particles near the source regions, because the dust alkalin-

ity reservoir (i.e., calcite) is able to buffer the acidification

(Fig. S3). While our model has incorporated the initial rapid

Fe release rate in acid solutions with oxalate explicitly, the

comparisons with observations support the suppression of Fe

dissolution under low acidity and low oxalate concentration

near the source region of dust aerosols.

The Fe / WSOC molar ratios in aerosols influenced by

combustion aerosols are 2–3 orders of magnitude lower than

those near northern Africa, which is also consistent with the

observations (Wozniak et al., 2013, 2015) (Fig. 5b). The aver-

aged WSOC concentration in our model (330± 470 ng m−3)

is consistent with the measurements (330± 290 ng m−3).

The higher Fe solubility measured in water (pH= 5.5) for

the excess WSOC with Fe-binding functionalities (e.g., –

COOH, –NH2) may suggest a potential role of the organic
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Figure 5. (a) Atmospheric loading of total aerosol Fe (ng m−3) versus Fe solubility for model estimates (red squares) and measurements

(black circles) over the cruise tracks. (b) The Fe / WSOC molar ratio versus Fe solubility for model estimates (red squares) and measurements

(black circles) over the cruise tracks. (c) The dust / combustion ratio for soluble Fe versus percent of soluble Fe in total Fe for model results

over the cruise tracks. The measurements are obtained from Wozniak et al. (2013, 2015). The number of modeled data points (84) is larger

than the measurements (37), because each daily average is calculated for each sampling date at each center of cruise location.

compounds in aerosols for the delivery of Fe to the ocean

in soluble form (Wozniak et al., 2013, 2015). Here, similar

plots can be obtained even with a constant WSOC concen-

tration at 330 ng m−3 (Fig. S4). The results indicate that the

variability in Fe solubility is nearly independent of the vari-

ability in WSOC concentration, possibly because of the ex-

cess ligands to stabilize Fe in solution at low Fe loading. The

use of our process-based model demonstrates that chemical

reactions and mixing with combustion aerosols are the main

mechanisms to cause the high Fe solubility at low Fe load-

ing in the North Atlantic (Fig. 5c). As previously discussed

in Ito (2013), this is consistent with the observations (e.g.,

Sedwick et al., 2007; Séguret et al., 2011).

The suppression of Fe dissolution under low proton and

low oxalate concentrations leads to the lower Fe solubility of

mineral dust deposited to the ocean (0.64–0.71 %) as a global

mean in the present day (Table 4), compared to those esti-

mated for mineral dust by previous modeling studies (1.4–

15 %; see Table 5 in Hajima et al., 2014). The Fe solubil-

ity for mineral dust varies spatially over the remote oceans,

due to the proton- and oxalate-promoted and quasi-photo-

reductive Fe dissolution (Fig. 6). The Fe solubility ranges

from 0.75 to 2 % over the North Atlantic and Pacific in the

present day (Fig. 6a and c), which is relatively consistent

with that used in conventional ocean biogeochemical mod-

els (1–2 %) (Jickells et al., 2005). The base simulations re-

sult in low Fe solubility (< 1 %) over the Southern Ocean

in the present day and significant portions of the ocean in

the preindustrial era, due to the suppression of Fe dissolution

under low proton concentrations (Fig. 6a and b). In contrast,

the sensitivity simulations for mineral aerosols (i.e., f3 = 1)

lead to higher Fe solubility (> 1 %) deposited to the remote

oceans of high-nitrate, low-chlorophyll (HNLC) regions such

as the subarctic North Pacific, the eastern equatorial Pacific,

and the Southern Ocean when quasi-photo-reductive disso-

lution was considered at higher pH values (Fig. 6c and d).

This is reflected in higher contribution of oxalate-promoted

(i = 2 and 3) dissolution to total soluble Fe deposition in the

sensitivity simulations for mineral aerosols, compared to that

in the base simulations (i = 2) (Fig. S5). We note that higher

contribution of proton-promoted dissolution (i = 1) near the

source regions may include the effect of oxalate on Fe dis-

solution via the suppression of mineral dissolution as well

as the soluble Fe content at emission. As a result, the proton-

promoted dissolution scheme contributed the majority of sol-

uble Fe deposition to the ocean, 90 % for the base case and

69 % for the sensitivity case. Since this Fe dissolution is not

only due to the proton-promoted dissolution by definition, we

also examined the effect of different assumption on the ini-

tial period of enhanced Fe release in an additional sensitivity

simulation, in which we use 0.1 % for the initial Fe solubil-

ity of mineral dust (Hand et al., 2004; Ito and Xu, 2014).

The model results show that the contribution of dissolution

scheme to total soluble Fe deposition depends on the assump-

tion on the initial Fe solubility at emission (Fig. S6). The

model results suggest that the initial soluble Fe content from

dust source regions such as South America (Patagonia), Aus-

tralia, and southern Africa may be important for the supply

of soluble Fe to the Southern Ocean. The proton-promoted

dissolution scheme contributed 77 % for the additional sen-

sitivity case, which is between our base and sensitivity simu-

lations.

The annually averaged rate of deposition of soluble Fe

from dust and combustion sources to the oceans is presented

in Fig. 7a and d for the base and sensitivity simulations, re-

spectively. The total Fe solubility (Fig. 7b and e) is higher

than that calculated from dust only over significant portions

of the open ocean. However, our modeled Fe solubility (0.1–

0.5 and 0.2–0.7 % for the base and sensitivity simulations,

respectively) is still low over the South Atlantic east down-

wind from the Patagonian dust source regions where previous

modeled Fe solubility deposited to the ocean (1.4–2.0 % by

Mahowald et al., 2009; 0.5–0.6 % by Johnson et al., 2010)

was significantly lower than that deduced from observations

(7.5–20 % by Baker et al., 2013). Our modeled Fe solubil-

ity for dry deposition over the Atlantic (1.1 %± 1.9 % and

1.2 %± 2.0 %) is in good agreement with the measurement

(2.1 %± 2.2 %), while that for wet deposition (3.4 %± 3.2 %

and 3.6 %± 3.3 %) is significantly lower than the measure-

ment (10.4 %± 4.6 %) (Baker et al., 2013). Moreover, our

www.atmos-chem-phys.net/16/85/2016/ Atmos. Chem. Phys., 16, 85–99, 2016
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Figure 6. Ratio (%) of the soluble to total Fe deposition for mineral dust in the (a) present day from base simulations, (b) the preindustrial

era from base simulations, (c) the present day from sensitivity simulations, and (d) the preindustrial era from sensitivity simulations. The

formation of the amorphous Fe(OH)3(s) suppresses the oxalate-promoted dissolution from mineral aerosols in the base simulations, while

no such effect was considered for quasi-light-induced reductive dissolution in the sensitivity simulation (i.e., f3 = 1).

Table 4. Annual deposition rates of total and soluble Fe (Tg Fe yr−1) from different sources to the ocean in the base, sensitivity, and additional

sensitivity simulations.

Fe deposition Soluble Fe deposition

Source Preindustrial era Present day Preindustrial era Present day

Dust in base case 9.9 9.9 0.018 0.063

Dust in sensitivity case 9.9 9.9 0.034 0.070

Dust in an additional sensitivity case∗ 9.9 9.9 0.027 0.069

Biomass burning 0.12 0.12 0.028 0.026

Coal combustion 0.051 0.14 0.0046 0.011

Oil Combustion 0 0.017 0 0.011

∗ Assuming an initial Fe solubility of 0.1 %.

monthly averaged Fe solubility (1–4 %) in wet deposition is

an order of magnitude lower than that observed on the Ker-

guelen Islands in South Indian Ocean (82 %± 18 % by He-

imburger et al., 2013). This enhanced solubility may be due

to unidentified reactive organic species in cloud and rainwa-

ter which contain Fe-binding functionalities (e.g., –COOH,

–NH2) such as humic-like substances from biomass burn-

ing and biologically derived materials from the ocean (Para-

zols et al., 2006; Deguillaume et al., 2014; Ito et al., 2014,

2015). The role of humic-like substances in the complex-

ation and dissolution of Fe oxides over a wide pH range

has received considerable attention in recent literatures (Al-

Abadleh, 2015). The multiple ligands with high affinity for

Fe binding can wrest aqueous Fe from any Fe–oxalate com-

plexes, allow the oxalate ligand to react with the surface Fe

oxides, and assist the Fe–oxalate detachment from the sur-

face Fe oxides at intermediate pH (e.g., pH= 5) (Cheah et

al., 2003). Thus the consumption of oxalate due to photoly-

sis of the Fe–oxalate complex may be limited due to com-

plexation with stronger ligands in atmospheric water. On the

other hand, functional groups on the humic molecule are less

protonated at pH > 4 and increase the probability of coat-

ing of organic matters on the reactive mineral surfaces, and

thus they inhibit the oxalate-promoted dissolution (Drever

and Stillings, 1997). Clearly, more work is required to elu-

cidate the underlying mechanisms that promote Fe dissolu-
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Figure 7. Deposition of soluble Fe (ng Fe m−2 s−1) from dust and combustion sources to the oceans in the present day (a) from base simula-

tions and (d) from sensitivity simulations, Fe solubility in the present day (b) from base simulations and (e) from sensitivity simulations, and

ratio of increase from the preindustrial era to present day to soluble Fe deposition in the present day (c) from base simulations and (f) from

sensitivity simulations. The formation of the amorphous Fe(OH)3(s) suppresses the oxalate-promoted dissolution from mineral aerosols in

the base simulations, while no such effect was considered for quasi-light-induced reductive dissolution in the sensitivity simulation (i.e.,

f3 = 1).

tion in cloud and rainwater over the Southern Ocean in future

studies.

The contributions of anthropogenic soluble Fe deposition

to the present day are examined in Fig. 7c and f for the base

and sensitivity simulations, respectively. The soluble Fe de-

position from both mineral dust and fossil fuel combustion

sources due to changes in atmospheric pollution contributes

more than half of the total soluble Fe deposition over signif-

icant portions of the open ocean in the Northern Hemisphere

for the base simulations. The sensitivity simulations for min-

eral aerosols (i.e., f3 = 1) lead to higher soluble Fe deposi-

tion in both the present day and the preindustrial era (Table 4)

and result in lower anthropogenic soluble Fe deposition to the

HNLC regions, due to almost no pH dependency of the quasi-

photo-reductive dissolution. Of the total soluble Fe deposi-

tion from anthropogenic sources (excluding biomass burn-

ing) to the ocean (0.05–0.06 Tg Fe yr−1), 67–72 % is from

dust sources and 28–33 % is from fossil fuel combustion (Ta-

ble 4). In contrast, our model indicated higher contribution of

biomass burning aerosols in the preindustrial era (42–55 %

in total soluble Fe deposition to the ocean). However, sig-

nificant uncertainties remain on the magnitude of this source

strength (Luo et al., 2008; Ito, 2011, 2012, 2015; Wang et al.,

2015). It should be noted that anthropogenic soluble Fe input

is also sensitive to the soluble Fe content at emission. The

additional sensitivity simulation with the initial Fe solubil-

ity (0.1 %) for dust aerosols indicates smaller contribution of

anthropogenic component near the source regions (Fig. S7).

Our estimate of total Fe deposition to the ocean

(10 Tg Fe yr−1) is within the range of other models (Table 5).

Table 5. Comparison of total and soluble Fe deposition to the

oceans (Tg Fe yr−1) from different studies for the preindustrial era

and the present day.

Study Total Soluble Fe Soluble Fe

Fe (preindustrial) (current)

Base simulation 10 0.051 0.11

Sensitivity simulation 10 0.067 0.12

Luo et al. (2008) 11 0.10 0.21

Myriokefalitakis et al. (2015) 7.0 0.063 0.19

Jickells et al. (2005) 16 0.16–0.32

Ito (2015) 13 0.34

Wang et al. (2015) 8.4 0.17

Other models∗ 11–21 0.26–2.3

∗ The values are taken from a compilation of literatures (Hajima et al., 2014).

Our estimates of soluble Fe deposition to the oceans (0.05

and 0.07 Tg Fe yr−1 from the base and sensitivity simula-

tions, respectively) in the preindustrial era are in good agree-

ment with that of Myriokefalitakis et al. (2015) (Table 5). The

ratio of present-day soluble Fe deposition to the preindustrial

era from the base simulation (47 %) is in good agreement

with that estimated by Luo et al. (2008) (46 %), despite the

use of various dissolution schemes, emission data sets, and

atmospheric transport models. The sensitivity simulations,

which include the quasi-photo-reductive dissolution for min-

eral aerosols (i.e., f3 = 1), result in relatively small increases

in the soluble Fe deposition in the global ocean (0.077 and

0.122 Tg Fe yr−1 as a global mean in the preindustrial era and

present day, respectively). The global deposition is similar

between our base and sensitivity simulations, mainly because
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of the suppression of proton-promoted (i.e., f1) and oxalate-

promoted (i.e., g2) dissolution near the strong source regions

of mineral dust. This is reflected in lower Fe solubility (1.1–

1.2 % as a global mean), compared to those estimated by pre-

vious modeling studies (1.4–15 %; see Table 5 in Hajima et

al., 2014).

6 Conclusions

We have developed a new scheme of Fe dissolution, which

reproduced the proton- and oxalate-promoted dissolution be-

haviors of our experimental results for mineral dust. The

batch dissolution experiments provided the Fe dissolution

rates under far-from-equilibrium conditions and the param-

eters for degree of suppression as the saturation state ap-

proached equilibrium. Our model reproduced the slope of Fe

solubility vs. total Fe loading measured over the North At-

lantic Ocean. To investigate the uncertainty in the Fe dissolu-

tion associated with organic compounds, no pH effect on the

suppression of quasi-photo-induced Fe dissolution for min-

eral aerosols was considered in the sensitivity simulations.

The Fe release scheme allows us to reduce the number of

mineral tracers for implementation in the Earth system mod-

els. At lower proton activity and lower oxalate concentration

in aerosol water on dust particles near major dust sources,

both protons and oxalate had no significant effect on the Fe

dissolution in our model and thus resulted in the lower Fe sol-

ubility of mineral dust deposited to the ocean (0.64–0.71 %)

as a global mean in the present day. Fe release under more

acidic conditions in aerosol water due to air pollution re-

sulted in significant increases in soluble Fe deposition over

large portions of the open ocean in the Northern Hemisphere.

In our model, low Fe solubility is estimated for mineral dust

(< 1 %) over the Southern Ocean downwind from the dust

source regions. The differences between our base and sen-

sitivity simulations for mineral aerosols are notable for low

Fe loading over the remote HNLC regions such as the sub-

arctic North Pacific, the eastern equatorial Pacific, and the

Southern Ocean. However, the differences in Fe solubility

between different simulations are generally smaller than the

differences between different model estimates and measure-

ments. A comprehensive comparison of model-predicted Fe

and its related species with observations is therefore needed

to elucidate the high Fe solubility observed under pristine

conditions.

The Supplement related to this article is available online

at doi:10.5194/acp-16-85-2016-supplement.
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