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Abstract. Wind extraction from stratospheric ozone (O3) as-
similation is examined using a hybrid ensemble 4-D varia-
tional assimilation (4DVar) shallow water model (SWM) sys-
tem coupled to the tracer advection equation. Stratospheric
radiance observations are simulated using global observa-
tions of the SWM fluid height (Z), while O3 observations
represent sampling by a typical polar-orbiting satellite. Four
ensemble sizes were examined (25, 50, 100, and 1518 mem-
bers), with the largest ensemble equal to the number of dy-
namical state variables. The optimal length scale for ensem-
ble localization was found by tuning an ensemble Kalman
filter (EnKF). This scale was then used for localizing the
ensemble covariances that were blended with conventional
covariances in the hybrid 4DVar experiments. Both optimal
length scale and optimal blending coefficient increase with
ensemble size, with optimal blending coefficients varying
from 0.2–0.5 for small ensembles to 0.5–1.0 for large en-
sembles. The hybrid system outperforms conventional 4DVar
for all ensemble sizes, while for large ensembles the hy-
brid produces similar results to the offline EnKF. Assim-
ilating O3 in addition to Z benefits the winds in the hy-
brid system, with the fractional improvement in global vec-
tor wind increasing from ∼ 35 % with 25 and 50 members
to ∼ 50 % with 1518 members. For the smallest ensembles
(25 and 50 members), the hybrid 4DVar assimilation im-
proves the zonal wind analysis over conventional 4DVar in
the Northern Hemisphere (winter-like) region and also at
the Equator, where Z observations alone have difficulty con-
straining winds due to lack of geostrophy. For larger ensem-
bles (100 and 1518 members), the hybrid system results in
both zonal and meridional wind error reductions, relative to
4DVar, across the globe.

1 Introduction

The extraction of wind information from stratospheric ozone
(O3) assimilation using a 4-D data assimilation (DA) system
is an attractive prospect, given the paucity of direct wind ob-
servations in the stratosphere. The tracer–wind relationship
has been examined with a variety of DA systems including
the extended Kalman filter (EKF; Daley, 1995, 1996), 4-D
variational assimilation (4DVar; Riishøjgaard, 1996; Peuch
et al., 2000; Andersson et al., 2007; Peubey and McNally,
2009; Semane et al., 2009; Han and McNally, 2010; Dragani
and McNally, 2013; Allen et al., 2013, 2014), and ensem-
ble Kalman filter (EnKF; Milewski and Bourqui, 2011; Allen
et al., 2015). While idealized studies have shown strong po-
tential for wind extraction from tracer assimilation, attempts
to assimilate O3 using realistic numerical weather prediction
(NWP) systems have produced mixed results (see Allen et
al., 2015, for a discussion). In an effort to understand the
problem in more detail, we previously developed a shallow
water model (SWM) test case representing Northern Hemi-
sphere (NH) winter stratosphere conditions. Assimilation ex-
periments using both 4DVar (Allen et al., 2014; hereinafter
A14) and EnKF (Allen et al., 2015; hereinafter A15) not only
showed that tracer assimilation is useful for wind extraction
but also raised issues such as sensitivity to measurement er-
rors, localization, and choice of DA state variables, as well
as the problem of imbalance.

Another approach to evaluating O3–wind interaction in
DA is to blend the 4DVar static covariance with flow-
dependent ensemble covariance within the 4DVar. This hy-
brid 4DVar method is becoming increasingly popular at op-
erational NWP centers (Buehner et al., 2010; Bonavita et
al., 2012; Clayton et al., 2013; Kuhl et al., 2013; Kleist and
Ide, 2015). In this paper, we extend our previous work by
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examining O3–wind interactions using a hybrid 4DVar sys-
tem within the SWM framework. Tuning of the length scale
for the ensemble covariance localization and the covariance
blending parameter are examined, in addition to probing the
limits of wind extraction with a large-ensemble experiment.

The layout of the paper is as follows. Section 2 describes
the SWM hybrid 4DVar system and the experimental de-
sign. Section 3 describes hybrid results using both small and
large ensembles, relative to the size of the state vector. Sec-
tion 4 presents a discussion of the optimal assimilation exper-
iments. Sections 5 and 6 provide a summary and conclusions,
respectively.

2 Model description

2.1 Forecast model, truth run, and observations

The forecast model is the spectral SWM described in A14
and A15. For this paper, the model was run at a lower res-
olution of triangular truncation T21 (64 longitudes× 32 lat-
itudes, for a Gaussian grid spacing of ∼ 5.6◦ at the Equa-
tor) rather than T42 (which was used in A14 and A15) in
order to facilitate a large number of tuning experiments and
to allow the full background error covariance to be stored in
active memory. To accommodate the lower resolution, the
horizontal fourth-order diffusion coefficient was increased
from 5.0× 1015 to 8.9× 1016 m4 s−1, which maintains an e-
folding damping for the highest wave number of approxi-
mately 1 day. Other settings are the same as in A15, includ-
ing a 10 km global mean height and time step of 120 s.

The truth run (TR) is similar to that used in A14 and A15.
The system is initialized with a zonal jet with maximum wind
of 60 m s−1 in the NH, which is in geostrophic balance with
the fluid height. A time-dependent topographic forcing is ap-
plied over the first 20 days. The shape of the forcing is the
same as in A14 and A15 (i.e., a zonal wave number 1 moun-
tain centered at 45◦ N), but the mountain height is increased
from 1250 to 1750 m to allow greater dynamical variability
in the T21 system. After day 20, the topography is flat for
the rest of the TR; since the assimilation begins on day 20,
there is no topography during the DA experiments. We use
the same forecast model for the TR and the DA (i.e., “iden-
tical twin” experiments), making our results a best-case sce-
nario. The results are therefore likely to be overly optimistic.

Observations of O3 and fluid height (Z) were generated
by sampling the TR with the same frequency as in A15. The
O3 observations mimic Aura Microwave Limb Sounder sam-
pling (one observation every 24.5 s), while Z observations
are pseudo-random in space and time, with the same sam-
pling frequency. One change from A15 is that we increased
the error standard deviations to 0.3 parts per million volume
(ppmv) instead of 0.08 ppmv for O3, and 200 m instead of
50 m for height. The 200 m error for Z corresponds to ap-
proximately 1 K, using the scaling explanation in A15. Ex-

Figure 1. Schematic diagram of hybrid system. The 4DVar uses a
6 h window, while the offline EnKF uses a 20 min window. At the
beginning of the analysis window, information is passed from the
EnKF to 4DVar by blending the covariances.

periments assimilating either Z only (referred to as “Z as-
similation”) or Z and ozone (referred to as “Z/O3 assimila-
tion”) are performed.

2.2 Ensemble Kalman filter

The EnKF is described in detail in A15. Briefly, it is a
“perturbed observations” EnKF (Houtekamer and Mitchell,
1998; Evensen, 2003), with data assimilated in 20 min
batches. The EnKF analysis equation can be solved using
different combinations of control variables. In this study, we
use streamfunction, velocity potential, Z, and O3 (the EnKF-
ψχ system), which was shown in A15 to have less imbal-
ance than when zonal and meridional wind are used as the
horizontal flow variables (also discussed in Kepert, 2009).
To avoid filter divergence, we apply a state space covari-
ance inflation factor (Anderson, 2007) to the background en-
semble before assimilating observations. The inflation fac-
tor is designed to alter the global average ensemble spread
in the streamfunction to match the global root mean square
error (RMSE) in the streamfunction. We also apply the ele-
mentwise (Schur product) localization (e.g., Houtekamer and
Mitchell, 2001) using Eq. (4.10) of Gaspari and Cohn (1999).

2.3 Hybrid 4DVar

The SWM 4DVar DA system is described in A14. The 4DVar
minimizes a standard cost function using the accelerated
representer approach (Xu et al., 2005; Rosmond and Xu,
2006) with a perfect model assumption. The conventional
initial background error covariance Bcon

0 is calculated using
an analytic formulation that employs wind–geopotential cor-
relations based on approximate geostrophic balance on an
f plane, i.e., constant Coriolis parameter with latitude (Da-
ley, 1991; Daley and Barker, 2001). There is no coupling be-
tween O3 and dynamical variables in Bcon

0 , but coupling be-
tween these variables does develop implicitly over the 4DVar
time window. The background error standard deviations are
adaptively tuned to match the globally averaged error stan-
dard deviations (with respect to the TR), as discussed in A14.
The tangent linear model is also run at T21 resolution with
the same diffusion coefficient and time step as in the nonlin-
ear model. The 4DVar system runs with a 6 h update cycle,
and the 6 h analysis at the end of one window is used to ini-
tialize the analysis at the start of the subsequent window.
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Figure 2. (a) Global RMSE of the zonal wind (in m s−1) and (b) wind extraction potential (in %) for the optimal 100-member hybrid 4DVar
for Z/O3 assimilation. Black circles indicate the values at the start of the assimilation experiment.

For the horizontal correlation used in Bcon
0 , we found

that the function used in A14 (single-order auto-regressive
(SOAR) function with 1000 km length, sloping up to
1500 km in the tropics; see A14, Fig. 1a) was near optimal
for the current experiments, even though the observations
used in this study are much sparser than in A14. Single-
observation experiments revealed that increasing the length
scale in the Bcon

0 introduces more gravity waves into the
SWM system. The imbalance is minimized with smaller
length scales, since the f plane assumption is more accu-
rate. Reformulating the analytic balance for larger correlation
lengths, or applying either a digital filter or nonlinear normal
mode initialization within the variational solver, may further
optimize the system. However, this is beyond the scope of
the current paper.

To run the hybrid system (see Fig. 1 for schematic dia-
gram), we first perform a 10-day EnKF simulation. We then
run the hybrid 4DVar over the same 10-day period in which
the ensemble covariance, Bens

0 = X′X′T/(Nens− 1), is cal-
culated at the start of each 6 h window using the ensemble
states X′. The prime indicates perturbation from the ensem-
ble mean, the superscript T indicates transpose, and Nens in-
dicates the ensemble size. The ensemble covariance is then
blended together with Bcon

0 using Bhybrid
0 = (1−α)Bcon

0 +

αS◦Bens
0 . Here α is a blending coefficient between 0 and 1, S

is the localization function, and the open circle indicates the
Schur product. Using the offline EnKF facilitates running the
hybrid system with a range of parameters without having to
compute the ensemble each time. Tests in which the EnKF is
re-centered about the 4DVar analysis at the beginning of each
cycle, as it would be done in an operational setting, produce
similar results.

The experimental design is similar to A14 and A15. The
DA experiments begin 20 days into the TR (day 20, 0 h),
with the initial state defined as the TR state that is offset 6
h from the initial time (i.e., day 20, 6 h). This initial 6 h off-
set, or mismatch, between the TR and the initial background
fields is the source of the initial background error. The ini-
tial wind errors range from∼ 2–3 m s−1 in the extratropics to
∼ 3–6 m s−1 in the tropics (see thin black lines in Figs. 9 and

10). We then perform 10-day assimilation experiments and
compare the final wind errors with the initial wind errors. To
illustrate how the wind errors evolve with time, Fig. 2a shows
the global RMSE of the zonal wind over a 10-day DA period
(the meridional wind shows a similar trend) for one of the hy-
brid 4DVar experiments. The wind error starts at∼ 3.3 m s−1

but drops rapidly over the first several days before leveling
out near day 6, suggesting that the system is well spun-up
after ∼ 6 days of assimilation. Figure 2b shows the wind ex-
traction potential (WEP), which is a normalized diagnostic
relating the analyzed RMSE of the vector wind to the ini-
tial RMSE of the vector wind (a WEP value of 100 % indi-
cates perfect winds, while 0 % indicates no improvement).
Details of the WEP calculation are provided in A15. One
slight difference is that in this study the RMSE of the vector
wind included an area-weighting factor that was not applied
in Eq. (6) of A15. Figure 2b shows the WEP starts at zero but
increases rapidly over the first several days, before leveling
out at ∼ 83 % by day 10 of the assimilation experiment.

There are two main “tuning” parameters that we are con-
sidering for this study: the ensemble covariance localiza-
tion length scale (L) and the hybrid blending coefficient (α).
While the localization length used in the hybrid blending
does not have to match what is used in the EnKF, sensitiv-
ity tests showed that using the same length for both pro-
vides optimal or near-optimal results. Therefore in the ex-
periments for this paper the same length is always used for
both. Note that, since inflation is automatically adjusted in a
self-consistent manner with the TR, it does not require tun-
ing.

The A15 paper quantified imbalance due to erroneous
gravity wave modes that enter the EnKF system via imbal-
ance in the analysis increments. Since the TR is virtually
free of gravity waves due to the nature of the topographic
forcing, any imbalance is considered to be unwanted noise.
The imbalance can be reduced by judicious choice of flow
variables and by tuning the localization length. In addition,
A15 showed that application of nonlinear normal mode ini-
tialization (NMI) as a post-processing diagnostic improved
the analysis in the EnKF system. In the NMI approach,
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Figure 3. Wind extraction potential (WEP, in %) as a function of localization length scale calculated from offline EnKF experiments assim-
ilating Z (top row) and Z/O3 (bottom row) for ensembles with 25, 50, 100, and 1518 members (columns 1, 2, 3, and 4, respectively). Solid
(dotted) lines indicate results without (with) NMI post-processing. Vertical red lines denote the length scale that resulted in the maximum
WEP (without NMI post-processing).

the SWM state is first decomposed into three different nor-
mal mode types: eastward gravity waves, westward gravity
waves, and rotational waves. The state is then adjusted using
the Machenhauer (1977) condition, which reduces the time
tendencies of the complex amplitudes of the gravity wave
modes. We apply five iterations to solve the nonlinear bal-
ance equation using a cutoff frequency of 1.0 day−1. This
removes much of the imbalance and results in better agree-
ment with the TR. For each of the experiments in this study
(4DVar, EnKF, and hybrid), we therefore also compare re-
sults with and without NMI post-processing.

3 Results

3.1 Tuning the localization length

To examine the sensitivity of the 4DVar to the quality of
the ensemble covariance, the offline EnKF is run at dif-
ferent ensemble sizes. Three “small”-ensemble experiments
are performed with 25, 50, and 100 members, and one
“large”-ensemble experiment is performed with 1518 mem-
bers, which equals the number of degrees of freedom in the
T21 SWM dynamical system (i.e., excluding ozone). The
large-ensemble experiment is used to explore the maximum
benefit of ensemble covariance blending in the 4DVar sys-
tem, while the small-ensemble experiments test the perfor-
mance of limited, or more practical, ensemble sizes. To ini-
tialize the small (large) ensembles, we sampled the TR at 6 h
(36 min) intervals, starting at day 20. Experiments were also

performed with 2024 members, which equals the total num-
ber of degrees of freedom in the system, including ozone.
However, results were slightly worse than with 1518 mem-
bers. This was likely caused by inadequate initialization of
the large ensemble through sampling of the TR. Since the
TR does not have topographic forcing after day 20, the sys-
tem becomes less dynamically active as time progresses, and
therefore the initial ensembles for the large runs may not be
completely independent.

For the small ensembles, the tuning of the localization
length was performed using 10-day EnKF experiments with
a range of localization lengths, starting at 500 km and in-
creasing in 500 km increments until the 10-day WEP values
showed an obvious maximum. Due to intensive computation
time, the large-ensemble experiments were not finely tuned;
rather localization lengths of 10 000, 15 000, and 20 000 km
were tested. Tests with the large ensemble were also per-
formed with no localization, but results were slightly worse.
This may be caused by inadequacies of the initialization pro-
cedure, as explained above. Figure 3 shows the WEP as a
function of length for eight combinations of observations (Z
or Z/O3) and ensemble size (25, 50, 100, and 1518). Most
experiments show smoothly varying WEP as a function of
length, with a well-defined peak. At 25 members the peak is
narrow forZ/O3, while for 100 members andZ only the peak
is quite broad. The optimal lengths (i.e., producing maximum
WEP) are indicated by vertical red lines; see Table 1 for nu-
merical values. For the large ensembles, the WEP is not very
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Table 1. Results for the optimal runs (i.e., maximum wind extraction potential (WEP), in %), for each experiment. The localization length
(L) is provided along with WEP. Results with NMI applied as post-processing of the analysis fields are provided in parentheses.

Experiment L (km) WEP-EnKF (%) WEP-4DVar (%) WEP-hybrid (%) α (unitless)

Z 67.6 (69.1)
25 members 6000 (6000) 62.5 (63.9) 70.0 (71.0) 0.1 (0.1)
50 members 7500 (7500) 70.5 (71.1) 72.5 (73.8) 0.4 (0.9)
100 members 14 000 (13 500) 75.3 (75.7) 75.5 (76.5) 0.8 (0.8)
1518 members 15 000 (15 000) 77.5 (77.8) 78.3 (79.3) 1.0 (1.0)
Z/O3 77.1 (78.7)
25 members 3500 (5000) 73.9 (79.1) 81.3 (84.8) 0.3 (0.5)
50 members 5500 (6000) 78.3 (81.8) 82.2 (84.8) 0.2 (0.4)
100 members 7500 (8000) 84.9 (87.8) 86.3 (90.0) 0.5 (0.5)
1518 members 20 000 (20 000) 89.2 (90.3) 89.1 (90.7) 0.7 (1.0)

Figure 4. Wind extraction potential (in %) vs. blending coefficient for Z assimilation (top row) and Z/O3 assimilation (bottom row) for
ensembles with 25, 50, 100, and 1518 members (columns 1, 2, 3, and 4, respectively). Solid (dotted) lines indicate results without (with)
NMI post-processing. Vertical red lines denote the blending coefficients that resulted in the maximum WEP (without NMI post-processing).
Vertical dashed lines indicate range of blending coefficients that resulted in WEP values within 0.5 % of the maximum.

sensitive to localization length, since the ensemble is sam-
pling nearly all of the background error state.

One main conclusion from these tests is that both optimal
length and optimal WEP increase with ensemble size. For
small-ensemble experiments, optimal lengths are also larger
for the Z only assimilation than for Z/O3 assimilation. At
100 members, the optimal length of 14 000 km for Z assimi-
lation is quite long; this is likely due to the large-scale struc-
ture of the Z fields in this experiment, combined with the
relatively low resolution T21 system. Application of NMI
increases the WEP for all ensemble sizes (see dotted lines
in Fig. 3 and Table 1), with a larger impact on the Z/O3 as-
similation. This is consistent with A15, which showed that
assimilation of O3 tends to produce more gravity waves than

Z only, where there was very little imbalance. For the small-
ensemble experiments with Z/O3, the optimal length scale
also increases when NMI is applied.

3.2 Tuning the hybrid blending coefficient

We next tune the blending coefficient in the hybrid 4DVar
system by performing 10-day experiments with values of α
ranging from 0.0 to 1.0, in 0.1 increments, for each of the
eight experiments. Figure 4 (top row) presents the WEP val-
ues for Z assimilation as a function of α (NMI results are
dotted lines). For each ensemble size, the optimal α is indi-
cated (vertical red line) in addition to the range of α values
that produce WEP within 0.5 % of the maximum (vertical
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Figure 5. Black circles indicate optimal blending coefficient, α
(unitless), as a function of ensemble size for Z assimilation (top)
and Z/O3 assimilation (bottom). The range values in red indicate
hybrid experiments with WEP values within 0.5 % of the maximum
WEP for each ensemble size.

dashed lines). This range provides an indication of the flat-
ness of the peak and the degree of flexibility in choosing α.
Plots of these ranges as a function of α are also provided in
Fig. 5.

For Z assimilation, the conventional 4DVar (α = 0) has
WEP= 67.6 % (69.1 % with NMI). For each ensemble size,
WEP initially increases with α, showing that ensemble co-
variances provide useful flow-of-the-day information in the
system. The optimal blending coefficient for Z assimilation
increases from 0.1 for 25 members to 1.0 for 1518 members
(see also Fig. 5). The latter result indicates that for a “per-
fect” ensemble (i.e., one that samples the entire error space)
the hybrid system benefits from using as much of the en-
semble covariance information as possible. This is expected,
since the large ensemble has the same number of degrees of
freedom as the dynamical state space of the SWM. The WEP
values for Z/O3 assimilation are provided in the bottom row
of Fig. 4. The optimal blending coefficient varies from 0.2
for 50 members to 0.70 for 1518 members (see also Fig. 5).
While the optimal blending coefficient increases monotoni-
cally for Z assimilation, for Z/O3 assimilation the coefficient
decreases from 25 to 50 members. The exact cause of this
behavior is unknown, but it may be due to tuning the sys-
tem with one length scale for both ozone and height. That

the optimal α for 1518 members is not exactly unity suggests
that the ensemble does not perfectly sample the entire error
space when O3 is included in the state. While the WEP for
conventional 4DVar (α = 0) is 78 %, the peak hybrid WEP
is ∼ 86 % for 100 members and ∼ 89 % for 1518 members.
As will be discussed below, the hybrid provides more benefit
over 4DVar when O3 is assimilated along with Z, suggesting
strong O3–wind correlations.

Figure 6 shows the amount of imbalance entering the sys-
tem for each experiment. Here we define “imbalance” as the
global root mean square difference in Z fields before and af-
ter NMI post-processing. For each ensemble size, the imbal-
ance varies with α and has a minimum value that decreases
with increasing ensemble size. Using more ensemble mem-
bers therefore results in less imbalance in the system. The
WEP values for Z assimilation indicate only a slight im-
provement when NMI is applied (dotted lines in Fig. 4). The
bulk of the improvements with ensemble size in the Z as-
similation experiments are likely due to more reliable infor-
mation in the larger ensembles, rather than to reduced imbal-
ance. As with Z assimilation, the minimum decreases with
ensemble size for Z/O3 assimilation (Fig. 6, bottom row).
For 25 members, the imbalance increases monotonically with
α, while for 1518 members the imbalance shows a minimum
at α = 0.7. There is a slightly larger benefit to applying NMI
for Z/O3 assimilation than for Z assimilation (dotted lines in
Fig. 4), particularly for small ensemble sizes.

4 Discussion of results with optimal tuning

We now compare the results from all three DA systems when
using the optimal hybrid tuning parameters. Figure 7 shows
the optimal 10-day WEP values for hybrid (blue) and EnKF
(black) for all ensemble sizes and for 4DVar (red). The hybrid
system outperforms the 4DVar, with WEP values increasing
with ensemble size for both Z and Z/O3 assimilation. The
hybrid outperforms the EnKF for small ensembles, while at
100 and 1518 members the results are similar. As ensem-
ble size increases, it will likely become more difficult for the
hybrid to beat the offline EnKF. There are therefore two lim-
iting values of the hybrid system. The case of one ensemble
member would be analogous to conventional 4DVar, while
for large ensemble size the hybrid results are limited by the
EnKF.

To quantify the added value of O3 relative to the baseline
system that assimilates Z only, Fig. 8 shows the difference
in global RMSE of the vector wind between the two sets of
runs (Z assimilation and Z/O3 assimilation). The RMSE of
the vector wind is calculated using Eq. (6) of A15, with the
addition of an area-weighting factor. Note that larger positive
numbers in Fig. 8 indicate smaller wind errors when adding
O3 to the system. The absolute difference (Fig. 8, left) shows
that in the 4DVar system (red lines) O3 reduces the wind error
by ∼ 0.32 m s−1. In the hybrid system (blue lines), the wind
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Figure 6. Imbalance (in m) vs. blending coefficient for Z assimilation (top row) and Z/O3 assimilation (bottom row) for ensembles with 25,
50, 100, and 1518 members (columns 1, 2, 3, and 4, respectively).

Figure 7. Solid circles with connecting lines indicate maximum
WEP (in %) as a function of ensemble size for Z assimilation (top)
and Z/O3 (bottom) assimilation. WEP is shown for EnKF (black)
and hybrid (blue). Red lines indicate the maximum WEP for 4DVar.

error reduction is larger at 25, 100, and 1518 members, and
similar at 50 members. With NMI applied (dotted lines), the
O3 benefit for the hybrid is larger than for 4DVar at all en-
semble sizes. In Fig. 8 (right) the error reduction is given as a
fractional reduction of the error when only Z is assimilated.
The reduction is ∼ 30 % for 4DVar, but increases to ∼ 36–
49 % for the hybrid (and up to ∼ 56 % for 100 members with
NMI). These results show that the added value of O3 to the
wind field is larger in the hybrid system than in 4DVar. This
highlights the benefits of having initial O3–wind covariances
in the hybrid system that are not available in conventional
4DVar. The EnKF results (black lines) are also included in
Fig. 8. Except for the large ensemble experiments, the rela-
tive benefit of adding O3 is smaller in the EnKF system than
in the hybrid. This suggests that the O3–wind interaction ben-
efits from both the ensemble covariances and the variational
DA approach.

Lastly, we examine the wind errors as a function of lat-
itude. Figure 9 shows initial zonal wind errors (thin black
lines) along with final 4DVar (red), hybrid (blue), and EnKF
(thick black) errors. All three systems show strong reductions
from the initial errors. For Z assimilation (top row), the 25-
member hybrid shows a zonal wind improvement over 4DVar
at high NH latitudes. Since the TR is topographically forced
with a mountain centered at 45◦ N, this result is not surpris-
ing. With 50 or more members, the hybrid provides addi-
tional improvement in the tropics and parts of the Southern
Hemisphere (SH). The hybrid Z assimilation also reduces
the meridional wind errors (Fig. 10, top row), ranging from
modest NH improvements at 25 members to global improve-
ments at 1518 members. The hybrid system shows gener-
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Figure 8. Differences in the global RMSE of the vector wind between experiments that assimilate Z only and experiments that assimilate
both Z and O3. For each ensemble size, the final RMSE of the vector wind is calculated for each experiment, and then the differences are
taken. Left: the absolute difference in m s−1. Right: the fractional difference (i.e., the difference shown in the left panel divided by the RMSE
of the vector wind for Z only) in %. Red is 4DVar, blue is hybrid, and black is EnKF. Solid circles indicate the values for each ensemble,
while solid (dotted) connecting lines differentiate results without (with) NMI post-processing. Note that larger positive numbers indicate
smaller errors due to adding O3.

ally smaller errors than the EnKF for 25 and 50 members,
but results for these two DA systems are similar at 100 and
1518 members, as also shown in Fig. 7. Application of NMI
does not alter the errors very much for Z assimilation.

The zonal wind errors for Z/O3 assimilation are plotted
in Fig. 9 (bottom row). For 25 members, the hybrid sys-
tem shows reduced errors in the NH and tropics, relative to
4DVar, while there are some slight increases in zonal wind
errors near 30 and 60◦ S. Why errors would increase at some
latitudes when adding ensemble information is unclear, but
it might be due to spurious correlations that are not local-
ized. Since the optimization of the length is based on glob-
ally averaged WEP, we might expect some regions to have
increased errors. An ensemble localization scale that varies
with latitude might be useful to consider here, but this is be-
yond the scope of this paper. As ensemble size increases, the
hybrid errors decrease, although even at 100 members hy-
brid errors are still slightly larger than 4DVar errors at 60◦ S.
At 1518 members, hybrid errors are smaller at all latitudes,
and the tropical peak seen in the 4DVar errors is consider-
ably reduced. This suggests that ensemble correlations be-
tween Z and wind in the tropics are more reliable than the
conventional correlations based on analytic balance assump-
tions. The hybrid system shows generally smaller errors than
the EnKF for Z/O3 assimilation at 25, 50, and 100 members,
but results are similar at 1518 members.

For meridional winds (Fig. 10, bottom), the hybrid system
with Z/O3 assimilation has smaller errors than 4DVar in the
NH and in the midlatitude SH for small ensemble sizes, while
at large ensemble sizes the hybrid wind errors are smaller
than 4DVar errors at all latitudes. The EnKF shows generally
larger errors at small ensembles sizes than the hybrid, with a
peak at over 2 m s−1 near 20◦ S for 25 members. At large en-
semble sizes the hybrid and EnKF results are similar. Includ-

ing O3 in the DA system reduces the overall wind errors, par-
ticularly in the tropics. This is consistent with the EnKF re-
sults in A15, which showed reductions in tropical wind errors
when O3 was assimilated. This is important, since Z obser-
vations alone have difficulty constraining the tropical winds,
even in the hybrid system. But the O3–wind tropical correla-
tions have information that can reduce the wind errors there.
We note as a caveat, however, that we have not yet attempted
to include O3 chemistry in the system, which may limit the
tropical O3 gradients, particularly in the middle and upper
stratosphere. However, in the lower stratosphere, where the
O3 photochemical lifetime is long (except for ozone hole
conditions), we might expect hybrid O3 assimilation to pro-
vide a benefit particularly to the tropical winds. Chemistry
is also very important for determining the ozone distribution
in the lower stratosphere for polar ozone hole conditions. Fi-
nally, we note that application of NMI slightly reduces zonal
and meridional wind errors forZ/O3 assimilation for all three
DA systems. For 25 members, the reduction occurs at nearly
all latitudes, while for 1518 members the reduction is con-
fined to the extratropics.

5 Summary

The problem of wind extraction from tracer observations in
hybrid 4DVar data assimilation was examined in this study
using a shallow water model system coupled to an O3 advec-
tion equation. While previous studies (A14 and A15) exam-
ined conventional 4DVar and EnKF simulations, this study
combines the best of both systems by blending the ensemble
covariance with the conventional covariance at the beginning
of the variational assimilation window. The results show that
O3 provides added value in a system already constrained by
height (in lieu of temperature for the SWM) observations and
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Figure 9. Zonal wind errors (in m s−1) as a function of latitude for initial conditions (thin black), and final results for hybrid (blue), EnKF
(thick black), and 4DVar (red) for Z assimilation (top row) and Z/O3 assimilation (bottom row) for ensembles with 25, 50, 100, and 1518
members (columns 1, 2, 3, and 4, respectively). Solid (dotted) lines indicate results without (with) NMI post-processing.

that for small ensemble sizes, relative to the degrees of free-
dom in the state, the hybrid provides better results than either
conventional 4DVar or the EnKF.

Using a relatively low resolution system, we were able to
probe the limits of the benefit of hybrid covariance blend-
ing. Both the optimal localization length and the optimal
blending parameter generally increased with ensemble size,
so that with large ensemble size (spanning the dynamical
state space) the optimal blending is essentially 1.0. For small
ensembles (25 or 50 members), values of 0.2 to 0.5 pro-
duced better results. With large ensemble size, the hybrid
system produced wind errors comparable with the offline
EnKF, while for small ensemble size the hybrid results were
closer to 4DVar, suggesting limited benefits of hybrid blend-
ing. Overall, the hybrid outperforms the 4DVar, suggesting
value in combining high-rank conventional background error
covariance with localized ensemble flow-of-the-day informa-
tion when attempting wind extraction from tracers.

While wind extraction potential was highest for large en-
sembles, even small ensembles provided information that
benefited the hybrid system. We should note, however, that
the ensemble size relative to the state vector is much larger
than would currently be possible for a full 3-D NWP sys-
tem. Therefore we hesitate to extrapolate the results to a full
system. Another caveat is that the truth run we used was rel-
atively smooth, due to the large-scale forcing applied. This
may favor the 4DVar, since the tangent linear model (TLM) is
likely to do quite well in this regime (see, for example, TLM
errors in Fig. 3 of A14). Further tests with more complicated

flows, such as the case of barotropic instability, would be
valuable to examine the benefit of ensembles in highly non-
linear regimes.

The issue of balance also plays a role in DA with the SWM
system. For small ensembles, imbalance generally increases
as more ensemble information is added. When nonlinear nor-
mal mode initialization is applied as a post-processing diag-
nostics, it benefits the winds in the hybrid system. The SWM,
with minimal diffusion and no other physical parameteriza-
tions, is much more sensitive to imbalance than a typical op-
erational system. How these results translate to operational
systems is unclear, but at minimum they may provide some
guidance as to when filtering (digital filter or NMI) may be
useful.

6 Conclusions

The present work culminates a series of three papers (A14,
A15, and the current work) examining the impact of tracer
assimilation on winds using three modern operational data
assimilation techniques (4DVar, EnKF, and hybrid 4DVar,
respectively). The overarching goal of the tracer assimila-
tion on winds is to use tracer data to fill the gaps in di-
rect wind observations, particularly in the upper troposphere,
stratosphere, and mesosphere. Since trace gas observations
are not generally available at sufficient resolution for deriv-
ing feature-track winds, they must be combined with model
background information to produce an analysis using a 4-
D data assimilation system. A pilot study using a full 3-D
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Figure 10. Same as Fig. 9 but for meridional wind.

NWP model with a 4DVar system (Allen et al., 2013) not
only showed that wind extraction from ozone assimilation
in the stratosphere is possible but also highlighted limita-
tions due to geophysical conditions, tracer observation qual-
ity and error specifications, and limited observing sampling
patterns. These results motivated the authors to pursue a more
detailed theoretical study of the problem using the shallow
water model framework with a variety of data assimilation
systems. Below we provide some overall reflections on the
SWM experiments and suggestions for future work.

In the first SWM study (A14), we examined the relative
benefit of assimilation of different tracers (ozone, nitrous ox-
ide, and water vapor) in a conventional 4DVar system. Since
the conventional 4DVar does not have correlations between
tracers and wind in the initial background error covariances,
the only way that tracer assimilation can affect the winds is
through the adjoint of the tangent linear model, which prop-
agates sensitivities of the cost function with respect to tracer
observations backwards in time. This approach is effective as
long as the background error covariances are correctly mod-
eled. The 4DVar system has an advantage over the ensemble
methods in that imbalance appears to play only a minor role.
The analysis increments also tend to be smoother than when
ensembles are used. One important conclusion of this study
was that wind extraction will be easier with certain tracer
characteristics (e.g., large background gradients and small
observation error standard deviations).

The second SWM study (A15), which took the EnKF ap-
proach, illustrated the benefits of using ensemble correlations
to propagate information from ozone observations to the dy-
namical variables. This proved to be very effective for ex-

tracting wind information from ozone, even in a relatively
data-rich environment. The issue of spurious gravity waves
played a larger role in EnKF than in 4DVar, due to imbal-
ance caused when localizing the covariance. Imbalance was
shown to be reduced by judicious choice of variables and in-
creased ensemble size. However, imbalance is still an issue
that needs to be studied further in the context of tracer assim-
ilation using ensemble methods.

The current study showed that the largest benefit to the
winds from ozone assimilation occurs in the hybrid 4DVar,
which combines the benefits of variational DA with flow-of-
the-day covariances generated from ensembles. While im-
balance is still an issue, the blending of ensemble covari-
ance with conventional covariance reduces the generation of
gravity waves. The additional tuning required in the hybrid
system does somewhat limit the applicability of the method.
However, much of the tuning (e.g., localization) will already
be performed in development of the 4DVar and EnKF (or
other ensemble approach) systems. The main additional re-
quirement is the tuning of the blending coefficient, which
can be coarsely done if the sensitivity is small. The overall
conclusion is that hybrid 4DVar offers the most promising
approach (of the three DA methods we examined) for tracer–
wind extraction in NWP.

Several future directions are being considered for this
work with the SWM system. We would like to examine the
effects of O3 photochemistry on the wind extraction. It is
likely that, when the photochemical lifetime is short, the abil-
ity to extract wind from O3 may be reduced, since advec-
tion is not the dominant term on the O3 continuity equation.
We would also like to test how this limited-resolution study
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scales upward to more realistic systems. Further work is
needed in separate tuning of the localization lengths for dif-
ferent variables, as well as filtering out gravity waves within
the hybrid 4DVar system. In addition, we would like to ex-
plore eliminating the tangent linear model and adjoint using
different ensemble variational approaches (e.g., Buehner et
al., 2010, 2013, 2015; Lorenc et al., 2015; Frolov and Bishop,
2016). Finally, we plan to apply what we have learned from
these SWM studies to devise experiments with an opera-
tional hybrid 4DVar system, building on the work of Allen et
al. (2013), who examined wind benefits from O3 assimilation
in a pre-operational version of the Navy Global Environmen-
tal Model 4DVar system.

7 Data availability

Model data are available upon request from the correspond-
ing author.
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