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Abstract. In order to have a good estimate of the cur-
rent forcing by anthropogenic aerosols, knowledge on past
aerosol levels is needed. Aerosol optical depth (AOD) is a
good measure for aerosol loading. However, dedicated mea-
surements of AOD are only available from the 1990s on-
ward. One option to lengthen the AOD time series beyond
the 1990s is to retrieve AOD from surface solar radiation
(SSR) measurements taken with pyranometers. In this work,
we have evaluated several inversion methods designed for
this task. We compared a look-up table method based on
radiative transfer modelling, a non-linear regression method
and four machine learning methods (Gaussian process, neu-
ral network, random forest and support vector machine) with
AOD observations carried out with a sun photometer at an
Aerosol Robotic Network (AERONET) site in Thessaloniki,
Greece. Our results show that most of the machine learning
methods produce AOD estimates comparable to the look-
up table and non-linear regression methods. All of the ap-
plied methods produced AOD values that corresponded well
to the AERONET observations with the lowest correlation
coefficient value being 0.87 for the random forest method.
While many of the methods tended to slightly overestimate
low AODs and underestimate high AODs, neural network

and support vector machine showed overall better correspon-
dence for the whole AOD range. The differences in produc-
ing both ends of the AOD range seem to be caused by differ-
ences in the aerosol composition. High AODs were in most
cases those with high water vapour content which might af-
fect the aerosol single scattering albedo (SSA) through up-
take of water into aerosols. Our study indicates that ma-
chine learning methods benefit from the fact that they do
not constrain the aerosol SSA in the retrieval, whereas the
LUT method assumes a constant value for it. This would also
mean that machine learning methods could have potential in
reproducing AOD from SSR even though SSA would have
changed during the observation period.

1 Introduction

The Fifth Assessment Report of the Intergovernmental Panel
on Climate Change states that the most significant source of
uncertainty in the projections of climate is related to aerosols
(IPCC, 2013). One significant contribution to this uncer-
tainty comes from the fact that without the knowledge of
the aerosol burden in the past, we are not able to estimate
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the current forcing of anthropogenic aerosol. For example,
the effect of changes in the current aerosol emissions on cli-
mate depends on the background aerosol load during the pre-
industrial era (e.g. Andreae and Rosenfeld, 2008; Carslaw et
al., 2013). In addition, the current estimates of past aerosol
emissions are highly uncertain (Granier et al., 2011), thus
increased knowledge on historical aerosol levels would in-
crease our ability to estimate the present day aerosol radiative
forcing.

One limiting factor in determining the properties of global
aerosol in the past has been that observations of aerosol
radiative effects have been limited to fairly recent peri-
ods. For example, the aerosol optical depth has mainly
been measured using sun photometers and the most widely
known ground-based network of sun photometers is Aerosol
Robotic Network (AERONET; Holben et al., 1998). Al-
though, AERONET already contains over 700 stations glob-
ally, with a fairly good spatial coverage compared to many
other observation networks, it still lacks in temporal cov-
erage, having provided aerosol optical properties and AOD
only since 1990s and reaching the current status in recent
years. The earliest records of satellite-based AOD are pro-
vided by TOMS (total ozone mapping spectrometer, e.g. Tor-
res et al., 2002) and AVHRR (Advanced Very High Resolu-
tion Radiometer, Geogdzhayev et al., 2005) from 1979 and
1983 onwards respectively. However, neither one of these in-
struments were specifically designed to retrieve aerosol prop-
erties. The more recent dedicated aerosol sounders, such as
ATSR (The Along Track Scanning Radiometer 2, Llewellyn-
Jones and Remedios, 2012), MODIS (Moderate Resolution
Imaging Spectroradiometer, Levy et al., 2010), VIISR (Visi-
ble Infrared Imaging Radiometer Suite, Jackson et al., 2013)
and MISR (Multi-angle Imaging SpectroRadiometer, Kahn
and Gaitley, 2015) offer data from 1995, 2000 and 2002 on-
wards respectively. It is therefore apparent that neither sun
photometer nor satellite records of AOD are available for all
the decades where industrialization has had a significant ef-
fect on the aerosol load.

There have been, however, recent studies where aerosol
load has been indirectly retrieved from global surface solar
radiation (SSR) or separately from direct and diffuse radia-
tion measurements, which cover much longer time periods
than sun photometer and satellite observations of AOD. Re-
cently, Kudo et al. (2011) and Lindfors et al. (2013) used
radiation measurements taken with pyranometers and pyrhe-
liometers to estimate AOD. Lindfors et al. (2013) demon-
strated that AOD can be estimated by using SSR and wa-
ter vapour information and a look-up table (LUT) gener-
ated with a radiative transfer code. Their method produces
AOD estimates that have 2/3 of the results within ±20 or
±0.05 % of collocated AERONET AODs. Because pyra-
nometer SSR measurements have been since 1950s over the
globe, the usage of AOD estimates based on SSR measure-
ments would enable us to construct AOD time series that go
several decades back in time.

Since the 1990s machine learning methods have made
their way to atmospheric sciences and have been used e.g.
in satellite data processing, climate modelling and weather
prediction (Hsieh, 2009). Because of their ability to retrieve
parameters from data that have strongly non-linear relation-
ships, they have the potential to retrieve AOD from a com-
bination of solar radiation measurements and auxiliary data
such as water vapour content (WVC) and solar zenith angle
(SZA), similarly to what was done by Lindfors et al. (2013)
using a radiative transfer-based approach. The aim of the
present work is to investigate how well machine learning
methods are able to estimate AOD from pyranometer ob-
servations by evaluating their performance in comparison
with a radiative transfer-based look-up-table approach. We
chose four different methods: neural network (NN, McCul-
loch and Pitts, 1943), random forest (RF, Breiman, 2001),
Gaussian process (GP, Santner et al., 2013) and support vec-
tor machine (SVM, Smola and Schölkopf, 2004) and com-
pared them against a look-up table and a non-linear regres-
sion method (NR, Bates and Watts, 1988). The performance
of these methods was evaluated with AERONET AOD ob-
servations in Thessaloniki, Greece, after the AOD estimates
were derived with SSR observations. Non-linear regression
has been successfully used in multiple studies within aerosol
and atmospheric sciences (e.g. Huttunen et al., 2014; Ahmad
et al., 2013). Of these machine learning methods, neural net-
works (NNs) have been actively used in different types of ap-
plications in atmospheric sciences. For example, it has been
applied to retrieve aerosol properties from remote sensing in-
struments (Olcese et al., 2015; Taylor et al., 2014). More-
over, Foyo-Moreno et al. (2014) uses NNs to indicate that a
ratio between solar diffuse radiation and normal direct irra-
diance is the most adequate parameter for estimating AOD
from solar radiation measurements. There have been, how-
ever, recent studies where aerosol load has been indirectly
retrieved from global surface solar radiation (SSR) or sepa-
rately from direct and diffuse radiation measurements, which
cover much longer time periods than sun photometer and
satellite observations of AOD. Recently, Kudo et al. (2011)
and Lindfors et al. (2013) used radiation measurements taken
with pyranometers and pyrheliometers to estimate AOD. The
study by Olcese et al. (2015) is similar to ours in the sense
that they use alternative data together with neural network
approach in an attempt to retrieve AOD at an AERONET site.
In their study, they fill in missing AOD values (e.g. due to
cloud cover) at one AERONET station based on trajectories
and AOD observed on another site. To our knowledge, the
rest of the analysed methods have not been used to retrieve
aerosol properties directly from observations.

2 Data and methods

We compared the ability of several methods to estimate
AOD, based on SSR and water vapour measurements (and
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SZA that can be readily determined for any given time and
location) against AERONET AOD measurements at 500 nm
(henceforth AOD) taken at Thessalonki, Greece. This site
was chosen for this study, because it has all the necessary
high quality measurements from a 10-year time period, be-
cause it is the same site to which Lindfors et al. (2013)
applied their LUT approach. Furthermore, the location has
varying aerosol concentrations and relatively high AOD val-
ues throughout the year.

2.1 Pyranometer measurements of surface solar
radiation

SSR has been measured at Thessaloniki since January 1993
with a CM21 pyranometer manufactured by Kipp and Zonen.
The instrument is located on the roof of the Physics Depart-
ment at the Aristotle University of Thessaloniki (40.63◦ N,
22.96◦ E), ca. 60 m above sea level. The data are sampled
every 1–2 s and every minute the average and standard de-
viation of the samples are recorded (see more details from
Lindfors et al., 2013). The calibration of the pyranometer
has been confirmed to stay within the quoted manufacturer
accuracy (Bais et al., 2013).

2.2 AERONET measurements

AERONET is a network of sun and sky scanning radiome-
ters that measure direct sun and sky radiance at several
wavelengths, typically centred at 340, 380, 440, 500, 670,
870, 940 and 1020 nm, providing measurements of various
aerosol-related properties (Holben et al., 1998). From direct
sun measurements we exploited AOD and WVC data. When
sky radiance measurements are also included, more detailed
aerosol properties such as single scattering albedo (SSA)
and asymmetry parameter (gg) can be retrieved (Dubovik et
al., 2000). In the evaluation of the machine learning meth-
ods we used Level 2.0 (cloud-screened and quality assured)
AERONET direct sun measurements of AOD and WVC for
Thessaloniki. The Cimel sun photometer is located on the
roof of the Physics Department in the close vicinity of the
pyranometer discussed above. From the inversion products,
to interpret some of our results in more detail, we used
level 1.5 (cloud-screened) retrievals. However, when we se-
lected the data from the Level 1.5 inversion product, we ap-
plied all the other level 2.0 AERONET criteria except for the
AOD threshold. In other words, we applied the same rigorous
quality control that is required for Level 2 data, but we only
relaxed the requirement for AOD at 440 nm to range from 0.4
to 0.1, in order to have more reliable measurements for our
data analysis.

2.3 Cloud-screening of the pyranometer measurements
and collocation with the AERONET measurements

Cloud screening is a crucial factor in the analysis, thus only
contribution of aerosols are considered, not clouds. The SSR

data were at first cloud screened in order to ensure that only
clear-sky measurements were included in the analysis (see
Lindfors et al., 2013, for more details). However, during the
analysis of the data it became evident that even after the ini-
tial cloud screening, the SSR data still included observations
that deviated significantly from the main body of the obser-
vations. Since there is a high probability that these outliers in
the data were caused e.g. by cloud contamination, we applied
additional screening to the data. Thus, we removed the clear
outliers of possibly undetected clouds, in our case those ob-
servations that deviated by more than ±20 W m−2 from the
exponential regression fit (SSR= a× exp(−b×AOD)+ c,
where a, b and c are regression constants). This additional
screening was applied through regression of SSR against
AOD for a given range of SZA (within ±0.5◦). It has to be
noted that these data were only a small fraction of all the data
that remained after the cloud screening and it is very unlikely
that the additional cloud screening would affect the main re-
sults and the conclusions of our study.

The SSR values were collocated for each AOD with the
±1 min difference, averaged and finally normalized for the
Sun–Earth distance corresponding to 1 January. The train-
ing data set for the machine learning methods contained the
years 2009–2014 and the validation (verification) data set
years 2005–2008. These periods were selected because we
wanted to verify whether the methods could provide reason-
able AOD estimates for a period other than the training pe-
riod. The training data set covered approximately 2/3 and the
validation data set 1/3 of the whole data. For all methods
the input parameters are SSR, WVC and SZA and they pro-
duce AOD estimates. Table A1 in Appendix A summarizes
the statistics of maximum, minimum, average, SD and me-
dian for the input and the output parameters. Table A1 shows
that AOD is larger for the validation data set, although the
maximum value is larger for the training.

2.4 LUT and NR methods for AOD retrievals

2.4.1 Radiative transfer model based look-up table
(LUT)

To retrieve AOD from SSR observations Lindfors et
al. (2013) produced a LUT based on radiative transfer simu-
lations. They simulated SSR in different atmospheric condi-
tions by varying AOD, WVC and SZA systematically. They
used a single aerosol model for all the simulations, and there-
fore called their AOD estimate as an effective AOD, which
is only a function of SSR, SZA and WVC. Other parame-
ters were assumed as constants, e.g. Ångström Exponent of
1.1, SSA at 500 nm of 0.92 (the SSA’s spectral pattern fol-
lows the rural background aerosol model by Shettle (1989),
where SSA changes from roughly 0.92 at 400 nm to 0.89
at 1000 nm). The asymmetry parameter was assumed wave-
length independent with a value of 0.68, while the albedo
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Table 1. Statistical characteristics of observed (AERONET) and predicted AOD by the methods of NR (non-linear regression), LUT (look-up
table), NN (neural network), RF (random forest), GP (Gaussian process), SVM (support vector machine) and some of their combinations
(averages without weights, e.g. NN, SVM combination is their average result). Correlation coefficient (R2), mean absolute deviation (MAD),
median and their ±20 % percentiles between the observed and predicted. Time consumptions with a recent average computer power of the
methods for training/estimation in the magnitude of seconds, minutes and hours. The number of observations is 10 684.

Method Average(SD) R2 MAD Median Fraction in ±20 % Time consumption

AERONET 0.240(0.147) 0.207
NR 0.228(0.123) 0.880 0.053 0.210 48.4 % seconds/< second
LUT 0.254(0.136) 0.920 0.046 0.236 52.6 % hours/minutes
NN 0.251(0.156) 0.920 0.044 0.212 59.1 % hours/< second
RF 0.225(0.116) 0.870 0.052 0.204 52.9 % tens of seconds/< second
GP 0.240(0.130) 0.927 0.041 0.213 60.8 % minutes/tens of seconds
SVM 0.242(0.150) 0.918 0.044 0.201 58.4 % tens of seconds/< second
NN, SVM 0.247(0.152) 0.924 0.043 0.207 59.7 %
NN, SVM, RF 0.240(0.138) 0.922 0.042 0.205 59.9 %
SVM, RF 0.234(0.131) 0.913 0.044 0.202 58.0 %
NN, RF 0.238(0.134) 0.916 0.043 0.207 59.0 %

was varying with wavelength and SZA. For a more detailed
description of the LUT method see Lindfors et al. (2013).

2.4.2 Non-linear regression method (NR)

The non-linear regression (NR) is a multivariate analysis
method which is used when the dependencies between the
study variables are not linear (Bates and Watts, 1988). NR is
useful especially when there are physical reasons for believ-
ing that the relationship between the response and the predic-
tors follows a particular functional form. Benefits of NR are
that it needs only moderate-sized samples of the studied phe-
nomena to give adequately precise results and as an output it
gives a simple but not predefined function for prediction. An
additional advantage of NR against the other methods pre-
sented in this paper is that once the parameters are estimated,
they can be used in similar cases without additional training
data. In this study we assume that AOD can be estimated as
a function of SSR, WVC and SZA. Multiple different formu-
lations for the NR function were tested and the function with
the best prediction ability found for this data is given by

AOD= b0+ b1exp
(

1
SZA

)
+ b2exp

(
1

SSR

)
+ b3exp

(
1

WVC

)
+ b4exp

(
1

SZA
+

1
SSR

)
+ b5 exp

(
1

SZA
+

1
WVC

)
+ b6 exp

(
1

SSR
+

1
WVC

)
. (1)

The coefficients b0–b6 were determined using R-software (R
Core Team, 2014) and are shown in Table A2.

2.5 Machine learning methods for AOD retrievals

2.5.1 Neural network (NN)

Artificial neural networks belong to the family of machine
learning methods (McCulloch and Pitts, 1943). As usual in
machine learning methods, the aim of an artificial NN is to
generate a mathematical model to represent the phenomenon
that is examined. The mathematical model of NN structure
specifically consists of interconnected neurons with numeric
weights. A typical NN model is multilayer perceptron (MLP)
(Rosenblatt, 1958), which is used in this study. A MLP net-
work consists of several neuron layers: an input layer, hidden
layers and an output layer. The weights and other parame-
ters of the model are tuned or trained with a specific training
data set containing input–output pairs of the phenomenon.
In this case the model inputs are SSR, WVC and SZA, and
the output is AOD. The training is executed with a training
algorithm and in this paper the Levenberg–Marquardt algo-
rithm is used (Hagan and Menhaj, 1994). A total of 20 NNs
were trained in this case. The NNs differed from each other
by the number of neurons in a hidden layer. Five networks
with the smallest prediction error within the training data set
were selected to the final committee of networks. The final
prediction of the NN model was computed as a median of
the outputs of all networks in the committee. For more infor-
mation on NNs see, for example, Bishop (1995).

2.5.2 Random forest (RF)

Random forest is a machine learning technique that may be
used for classification and non-linear regression (Breiman,
2001). RF for non-linear regression consists of an ensem-
ble of binary regression trees. Each of these trees is con-
structed using a randomized training scheme and is essen-
tially a piecewise constant fit to the training data set. The
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prediction of a RF model is obtained by averaging the regres-
sion tree predictions over the whole model ensemble. In this
study, the RF implementation from the Scikit–Learn machine
learning library (Pedregosa et al., 2011) was used. We used
(SSR, WVC, SZA, SSRxWVC, SSWxSZA, WVCxSZA) as
the RF model inputs and AOD as the output. A randomized
cross-validation scheme was used to find the optimal training
parameters for the RF. For more information on RFs see, for
example, Friedman et al. (2001).

2.5.3 Support vector machine (SVM)

Support vector machine (SVM) is a machine learning tech-
nique (Vapnik, 1995; Burges, 1998). In this study, we use
the standard SVM regression (SVR), the formulation based
on the commonly used ε-SVR with radial basis kernel func-
tion. For implementing the SVM the libsvm package was
used (Chang and Lin, 2011). The objective of ε-SVR is to
find a function that has at most ε deviation from the training
data set outputs. The training of an ε-SVR model is formu-
lated as a quadratic (convex) optimization problem in which
the Vapnik’s ε-insensitive loss function is minimized (e.g.
Vapnik, 1995). The ε-SVR model has two training parame-
ters that were used to control the training: the regularization
parameter, which controls the smoothness of the approxima-
tion function (sensitivity to noise) and the parameter ε, which
dominates the number of support vectors by governing the
accuracy of the approximation function. The determination
of SVM control parameters was solved by the means of a
grid search. For a more detailed description of the method,
the reader is referred to Smola and Schölkopf (2004).

2.5.4 Gaussian process (GP)

Gaussian process (GP) for machine learning is a generic su-
pervised learning method that may be used, for example, for
non-linear regression. In GP learning, the function inputs and
outputs are treated as Gaussian random variables and the cor-
relations between these variables are modelled. The predic-
tions given by a GP model are computed as conditional prob-
ability distributions given the training data and function in-
puts. As the prediction given by a GP model is a probability
distribution, the error estimates for the predicted point es-
timates are obtained automatically. In this study, the GP im-
plementation from the Scikit–Learn machine learning library
was used. The same inputs and output variables as with the
RF models were used in the GP training. The best perform-
ing correlation function training parameters were sought for
using maximum likelihood estimation. A total of 25 GP mod-
els were trained. The training of each model was carried out
using 2500 training data samples that were randomly sam-
pled from the full training data set. The five best performing
GP models were selected into the final GP model commit-
tee. The final prediction was computed as the median of the
predictions given by the GP models in the committee. For

Figure 1. Observed (AERONET) and predicted AOD using the
methods of (a) LUT (look-up table), (b) GP (Gaussian process),
(c) NN (neural network) and (d) SVM (support vector machine).
The colourbar indicates the absolute number of results in the ar-
eas with the interval of 0.01× 0.01. The 1 : 1 lines and linear
fits included. The number of observations is 10 684. The rela-
tion for the linear fits is estimated AOD= a1+ a2×AERONET
AOD, and the coefficients of the least square fits with their er-
rors are (a1, a2): 0.050(±0.001), 0.849(±0.004); 0.043(±0.001),
0.820(±0.003); 0.016(±0.001), 0.979(±0.004) and 0.018(±0.001),
0.936(±0.004), for LUT, GP, NN and SVM respectively.

more information on GPs for machine learning see, for ex-
ample, Welch et al. (1992), Rasmussen and Williams (2006),
and Santner et al. (2013).

3 Results

3.1 Comparison of the methods

Table 1 shows the statistics of the AOD observed by
AERONET together with the statistical characteristics of the
predicted AOD for the years 2005–2008. From the table, we
can see that predicted values show good correlation against
the observations for all the methods. Predictions by RF had
the lowest correlation coefficient with a value of 0.87 while
the correlation coefficient for NR was only slightly larger,
0.88. For the best performing methods, LUT, GP, NN and
SVM, the correlation coefficients were approximately 0.92.
Their predicted AODs in comparison to AERONET AOD are
shown in Fig. 1. To visualize the distribution of the data, the
colourbar in Fig. 1 represents the number of observations for
each AOD interval of 0.005. Based on the different statistics
in Table 1, machine learning methods (NN, SVM, GP) pro-
duce a good match with AERONET data and they perform
equally well or better than the LUT method according to all
the metrics. Due to the fact that RF and NR are not able to
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Figure 2. Differences between predicted and observed
(AERONET) AOD for the methods: (a) LUT (look-up table),
(b) GP (Gaussian process), (c) NN (neural network) and (d) SVM
(support vector machine) with respect to the observed AOD. The
crosses indicate the means of each subgroup, the limits of the boxes
are 25, 50 and 75 % of the data, and the lines are plotted with
1.5 times the interquartile ranges.

produce as good estimates as the LUT method, they were left
out from the more detailed analysis.

Although these methods are able to predict the average
AOD with a good accuracy, they differ when we compare
their ability to predict different AOD levels. In Fig. 1, the
colourbar indicates the absolute number of results in the ar-
eas with the interval of 0.01× 0.01 (vertically and horizon-
tally) for AOD; in addition 1 : 1 lines and linear fits are in-
cluded. Based on the linear fits, NN appears to have the best
agreement with AERONET data for the whole AOD range.
As the average and median values of AERONET AOD are
0.240 and 0.207 respectively (Table 1), the main population
of the measurements is in the range of moderate AODs. The
machine learning methods are obviously weighted to per-
form best in this range of AODs. However, from Fig. 2,
which shows the absolute difference between AERONET
and predicted AOD, we can see that LUT and GP tend to
significantly underestimate AOD for AODs larger than 0.5,
while NN and SVM are able to reach smaller differences with
AERONET on average, although with larger overall variabil-
ities than LUT and GP. Although NN and SVM also start to
deviate from the observations at higher AODs, these devi-
ations are more modest in a relative sense as can be seen
from Fig. 3, which shows the relative difference between the
observations and predictions. All the methods overestimate
AOD in relative terms when AOD approaches zero (Fig. 3).
However, as Fig. 2 demonstrates, the absolute error is sys-
tematically very low in the small AOD region (AOD < 0.2).
NN and SVM are generalized better for large AODs than the
other methods, where the amount of data are small.
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Figure 3. The same as Fig. 2, but the vertical axis indicates the ratio
of the predicted to the observed (AERONET) AOD.

In Table 1, the four last rows represent the values for cases
where the results of machine learning methods are combined
by averaging them. As can be seen from the table, these com-
binations do not improve the estimates compared to the sta-
tistical values of individual methods.

3.2 The effect of water vapour on AOD predictions

Huttunen et al. (2014) showed that WVC and AOD typically
have a positive correlation. Therefore, we investigated how
the AOD estimates from different methods are affected by
WVC. Figure 4 shows the relative difference between the
predictions and measured AOD with respect to WVC. From
this figure, we can see that the LUT-based AODs are over-
estimated at the smallest and underestimated at the largest
WVC contents. The reason for this behaviour is that the LUT
method has been set to assume prescribed and constant prop-
erties for many relevant parameters that affect SSR (other
than AOD and WVC); e.g. aerosol single scattering albedo,
asymmetry parameter and surface albedo (Lindfors et al.,
2013). Consequently, the assumption of constant SSA in par-
ticular leads to WVC-dependent systematic bias of the LUT-
based AOD, as we will show next. The other methods are
closer to the ratio of 1 without such a systematic bias, ex-
cluding the SVM underestimation for the smallest WVC.

Figure 5 shows measured SSR and LUT-based SSR for a
narrow set of SZAs (48.50–51.50◦). AOD is on the horizon-
tal axis, SSR on the vertical axis and WVC is shown with the
colourbar. From Fig. 5a it is evident that LUT incorporates
a strong WVC-dependent structure: for a given SSR level,
AOD decreases with increasing water vapour content. This
pattern follows from the assumption that the aerosol compo-
sition remains the same, i.e. it has a fixed SSA value. Thus
in the LUT method, increases in SSR absorption by water
vapour are compensated by decreases in aerosol extinction.
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Figure 4. The same as Fig. 3, but the ratio of predicted to measured
AOD is given as a function of the water vapour content (WVC).

In the real atmosphere, water vapour content also has im-
plications on aerosol composition and size. If all conditions
apart from water vapour remained constant, increase of water
vapour would also increase the uptake of water into aerosol
particles thus affecting the aerosol SSA. The effect of fixed
SSA is also visible in the way the LUT-based AOD estimates
are distributed (Fig. 5a). In Figure 5c we can see that for a
given AOD in the LUT, the highest WVC values always cor-
respond to the lowest SSR values. However, the same pattern
is not clearly visible either in the plot with the measured val-
ues (Fig. 5b) or in the plot with AOD from NN (Fig. 5d). This
indicates that although the machine learning methods do not
explicitly get any information about the possible systematic
covariability of WVC and SSA, they seem to be able to detect
it indirectly, at least to some extent.

To further illustrate this, Fig. 6a shows the AERONET
measurements of AOD and single scattering co-albedo,
1-SSA at 500 nm as a function of WVC. Here, to-
gether with the absorption strength by the water vapour,
we considered more illustrative to show the single
scattering co-albedo rather than SSA. In this plot,
SZA, SSR and season were limited respectively to
58◦< SZA < 62◦, 420 W m−2 < SSR < 460 W m−2, June–
August, allowing enough data with the limited parameters.
Thus, the plot illustrates the co-variability of WVC and SSA
for a limited range of surface solar radiation and SZA, for
conditions when the LUT method produces lower AOD val-
ues for higher WVC (Fig. 5a). However, Fig. 6a clearly
shows that an opposite relationship between AOD and WVC
is obtained by the measurements. Moreover, this pattern is
compensated by aerosol absorption (remember that in this
subset we constrained SSR), which decreases with increas-
ing WVC; this is likely related to the aerosol swelling by hy-
groscopic growth that increases the scattering of the aerosol.
Therefore, we can conclude from the measurements that be-
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Figure 5. Solar surface radiation (SSR), aerosol optical depth
(AOD) and water vapour content (WVC) for a fixed solar zenith
angle (48.50–51.50◦) for (a) look-up table (LUT) and (b) measure-
ments (Meas). The predicted AODs for (c) LUT and (d) neural net-
work (NN) are the same for SSR, WVC and SZA.

cause of the covariability of WVC and SSA in Thessaloniki,
the assumption of a fixed SSA in the LUT causes limitations
for predicting AOD, while the machine learning methods can
take into account, at least to some extent, this relationship in-
directly. Using radiative transfer modelling we demonstrated
the magnitude of these changes in water vapour and aerosol
absorption, as indicated in Fig. 6. Indeed, they induced oppo-
site effects of similar magnitude in surface solar irradiance.
For the base case, we simulated SSR with WVC of 2.8 cm
and 1-SSA of 0.06 (with SZA of 60◦ and AOD of 0.3) as in-
puts, resulting in 439.9 W m−2. When we increased the wa-
ter vapour column to 3.6 cm, the corresponding decrease in
SSR was about 6.8 W m−2. However, when we additionally
decreased the aerosol absorption (1-SSA) to 0.04, the differ-
ence to the base case shrank to 1.8 W m−2 and this remain-
ing amount can mostly be explained by the asymmetry pa-
rameter, which also exhibits a systematic dependence with
WVC (stronger forward scattering by particles grown in hu-
mid conditions).

The lower panel of Fig. 6 further illustrates the role of
fixed SSA in the observed WVC-dependent bias in the LUT
results, which can be avoided with the machine learning
methods. It shows the mean ratio of LUT-estimated and
AERONET-measured AOD on the right-hand side y axis as a
function of water vapour content (so essentially the same re-
sults shown by a box-plot in Fig. 4). Additionally, on the left-
hand side y axis, the single scattering albedo (estimated for
500 nm) from AERONET measurements is shown as a func-
tion of water vapour amount as well. This also demonstrates
that the over- and underestimations of the LUT method coin-
cide with SSA range that is under and over the assumed fixed
value of 0.92 (shown with red dashed line) respectively. Vis-
ibly, the ratio in the right-hand axis of Fig. 6b, reaches one
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Figure 6. (a) Aerosol optical depth (AOD), water vapour content
(WVC) and 1-SSA at 500 nm from the AERONET inversion sky
data. (b) SSA at 500 nm, WVC and the LUT’s predicted AOD di-
vided with the observational AOD (AERONET), with the red line
fixed to SSA (500 nm)= 0.92 (as in LUT).

not until SSA is roughly 0.93 instead of 0.92. Presumably,
SSA has actually a different wavelength pattern than the one
assumed in LUT.

4 Conclusions

We have used several inverse methods to retrieve aerosol op-
tical depth (AOD) from surface solar radiation (SSR) and wa-
ter vapour content (WVC) measurements (with correspond-
ing solar zenith angle data) taken in Thessaloniki, Greece.
Two traditional (look-up table and non-linear regression) and
four machine learning methods (Gaussian process, neural
network, random forest and support vector machine) were
used to retrieve AOD estimates for the years 2005–2008.
Then we compared the AOD estimates with collocated AOD
measurements by Aerosol Robotic Network (AERONET).
Our comparisons showed the following.

AOD estimates based on the LUT method agreed better
with AERONET than the NR estimates but apart from RF,
the machine learning methods produced AOD estimates that
were comparable or better than LUT.

NN and SVM methods reproduced good correspondence
to AERONET observations for both low and high AODs
while the rest of the methods tended to overestimate low
AODs and underestimate high AODs. The main reason for
the better performance of these machine learning methods
was that there were no constraints of the aerosol single scat-
tering albedo (SSA) in the retrieval. In other words, the meth-
ods do not need to explicitly make assumptions on the optical
aerosol properties of the atmosphere because they seem to be
able to indirectly account for the covariation of WVC and
SSA.

When compared with AERONET measurements, the best
AOD estimates were retrieved with the machine learning al-
gorithms, but only NN and SVM were also able to generalize
accurate estimates for large AODs.

The machine learning methods are sensitive to the selec-
tion of the training data set and other constraints, and are
generally valid only for the range of variables used for their
training; thus care needs to be taken when these methods are
employed.

These tools have the potential to be used in the retrieval
of AOD from SSR measurements to lengthen the time se-
ries of AOD. Historical AOD is essential in the estimation of
anthropogenic aerosol effects and in the evaluation of AOD
retrievals from space-borne instruments before the 1990s.

The intention of comparing different methods was to test
their ability in an “out-of-the-box” configuration. With this
in mind, methods were not particularly tuned to reach the
best possible results. It is very likely that e.g. optimizing the
free parameters used in each of the non-linear modelling ap-
proaches, their ability to reproduce observed AOD could be
further improved.
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Appendix A

Table A1. The statistics between the training and the validation data for the input and the output parameters. The units for SZA, SSR and
WVC are degrees, W m−2 and centimetres respectively.

Training:
Parameter Max Min Average SD Median

SZA 78.6 17.5 56.2 15.7 60.0
SSR 1071.9 120.5 522.7 247.1 479.6
WVC 4.12 0.23 2.23 0.73 2.29
AOD 1.06 0.01 0.22 0.12 0.20

Validation:
Parameter Max Min Average SD Median

SZA 78.7 17.5 60.6 14.7 65.3
SSR 1060.0 113.2 450.2 235.9 384.5
WVC 3.81 0.27 1.87 0.82 1.79
AOD 0.85 0.03 0.24 0.15 0.21

Table A2. The coefficient values of Eq. (1) and errors (SD) for the NR method.

Coefficients Estimate SD error

b0 1.716× 105 8.372× 102

b1 −1.696× 105 8.272× 102

b2 −1.715× 105 8.363× 102

b3 −1.206× 101 5.727× 10−1

b4 1.694× 105 8.264× 102

b5 5.145× 100 2.465× 10−1

b6 6.819× 100 3.728× 10−1
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