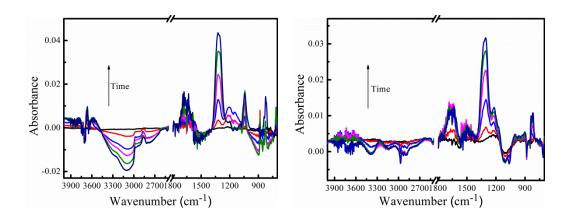
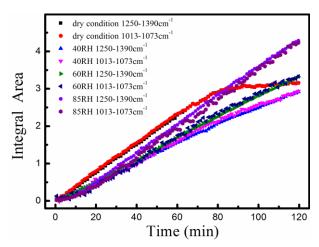
Supplement of Atmos. Chem. Phys., 16, 8081–8093, 2016 http://www.atmos-chem-phys.net/16/8081/2016/doi:10.5194/acp-16-8081-2016-supplement © Author(s) 2016. CC Attribution 3.0 License.


Supplement of

Heterogeneous reactions of NO_2 with $CaCO_3$ – $(NH_4)_2SO_4$ mixtures at different relative humidities


Fang Tan et al.

Correspondence to: Maofa Ge (gemaofa@iccas.ac.cn) and Shengrui Tong (tongsr@iccas.ac.cn)

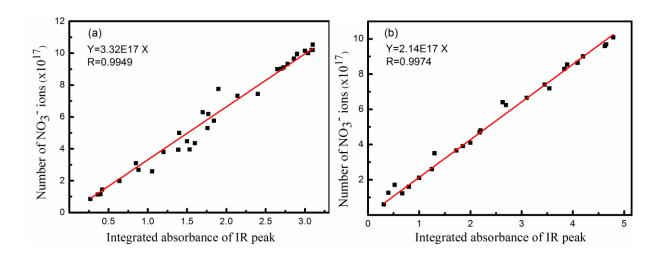

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Figure S1. Absorption spectra recorded during the reaction of NO_2 on (a) pure $CaCO_3$ particle surfaces and (b) the mixture of FAS-57 under dry condition, and reaction times of 0 to 120 min. The concentration of NO_2 was 2.6×10^{15} molecule cm⁻³.

Figure S2: The integrated nitrate absorbance over the v_1 region (1013-1073 cm⁻¹) and the v_3 region (1250-1390 cm⁻¹) after the v_1 region multiplied by 3, 7, 10, 12 under dry condition, 40% RH, 60% RH, and 85% RH, respectively, for the reaction of NO₂ with CaCO₃ particles.

Figure S3. The number of NO_3^- ions detected by IC as a function of integrated absorbance of IR peak between 1390 and 1250 cm⁻¹ at (a) dry condition, 40% RH, and 60% RH, (b) 85% RH.