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Abstract. We use a series of chemical transport model and
chemistry climate model simulations to investigate the ob-
served negative trends in MOPITT CO over several re-
gions of the world, and to examine the consistency of time-
dependent emission inventories with observations. We find
that simulations driven by the MACCity inventory, used for
the Chemistry Climate Modeling Initiative (CCMI), repro-
duce the negative trends in the CO column observed by
MOPITT for 2000–2010 over the eastern United States and
Europe. However, the simulations have positive trends over
eastern China, in contrast to the negative trends observed by
MOPITT. The model bias in CO, after applying MOPITT
averaging kernels, contributes to the model–observation dis-
crepancy in the trend over eastern China. This demonstrates
that biases in a model’s average concentrations can influence
the interpretation of the temporal trend compared to satellite
observations. The total ozone column plays a role in deter-
mining the simulated tropospheric CO trends. A large pos-
itive anomaly in the simulated total ozone column in 2010
leads to a negative anomaly in OH and hence a positive
anomaly in CO, contributing to the positive trend in simu-
lated CO. These results demonstrate that accurately simulat-
ing variability in the ozone column is important for simulat-
ing and interpreting trends in CO.

1 Introduction

Carbon monoxide (CO) is an air pollutant that contributes
to ozone formation and affects the oxidizing capacity of the
troposphere (Thompson, 1992; Crutzen, 1973). Its primary
loss is through reaction with OH, which leads to a lifetime
of 1–2 months (Bey et al., 2001) and makes CO an excel-
lent tracer of long-range transport. Both fossil fuel com-
bustion and biomass burning are major sources of CO. The
biomass burning source shows large interannual variability
(van der Werf et al., 2010), while fossil fuel emissions typ-
ically change more gradually. The time-dependent MACC-
ity inventory (Granier et al., 2011) shows decreases in CO
emissions from the United States and Europe from 2000 to
2010 due to increasing pollution controls but increases in
emissions from China. MACCity emissions for years after
2000 are based on the Representative Concentration Path-
way (RCP) 8.5 (Riahi et al., 2007). The REAS (Kurokawa
et al., 2013) and EDGAR4.2 (EC-JRC/PBL, 2011) inven-
tories also show increasing CO emissions from China. The
bottom-up inventory of Zhang et al. (2009) shows an 18 %
increase in CO emissions from China from 2001 to 2006, and
Zhao et al. (2012) estimate a 6 % increase between 2005 and
2009. However, there is considerable uncertainty in bottom-
up inventories, and comparison of model hindcast simula-
tions driven by bottom-up inventories with observations pro-
vides an important test of the time-dependent emission esti-
mates.
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Space-based observations of CO are now available for over
a decade and show trends at both hemispheric and regional
scales. Warner et al. (2013) found significant negative trends
in both background CO and recently emitted CO at 500 hPa
over southern hemispheric oceans and northern hemispheric
land and ocean in Atmospheric Infrared Sounder (AIRS)
data. Worden et al. (2013) calculated trends in the CO col-
umn from several thermal infrared (TIR) instruments includ-
ing MOPITT and AIRS. They found statistically significant
negative trends over Europe, the eastern United States, and
China for 2002–2012. He et al. (2013) also report a negative
trend in MOPITT near-surface CO over western Maryland.

Surface concentrations of CO show downward trends over
the United States driven by emission reductions (EPA, 2011),
consistent with the space-based trends. Decreases in the par-
tial column of CO from FTIR stations in Europe also show
decreases from 1996 to 2006, consistent with emissions de-
creases (Angelbratt et al., 2011). Yoon and Pozzer (2014)
found that a model simulation of 2001 to 2010 reproduced
negative trends in surface CO over the eastern United States
and western Europe, but showed a positive trend in surface
CO over southern Asia.

The cause of the negative trend over China seen in MO-
PITT and AIRS data is uncertain. The trend is consistent
with the results of Li and Liu (2011), who found decreases
in surface CO measurements in Beijing, and with decreases
in CO emissions in 2008 inferred from the correlation of CO
with CO2 measured at Hateruma Island (Tohjima et al., 2014)
and at a rural site in China (Wang et al., 2010). Yumimoto
et al. (2014) used inverse modeling of MOPITT data to in-
fer a decrease in CO emissions from China after 2007. The
2008 Olympic Games and the 2009 global economic slow-
down led to reductions in CO (Li and Liu, 2011; Worden et
al., 2012). However, the negative trend in MOPITT CO is in-
consistent with the rising CO emissions of the MACCity and
REAS inventories. Inverse modeling of MOPITT Version 6
data yields a negative trend in CO emissions from China and
a larger global decline in CO emissions than that found in the
MACCity inventory (Yin et al., 2015).

This study examines whether global hindcast simulations
can reproduce the trends and variability in carbon monoxide
seen in the MOPITT record. We examine the role of aver-
aging kernels and the contribution of trends at different alti-
tudes to the trends observed by MOPITT. We then examine
the impact of OH variability on the simulated trends in CO.

2 Methods

2.1 MOPITT

The MOPITT instrument onboard the Terra Satellite pro-
vides the longest satellite-based record of atmospheric CO,
with observations available from March 2000 to present. It
provides nearly global coverage every 3 days (Edwards et

al., 2004). We use the monthly Level 3 daytime column data
from the Version 5 TIR product, which has negligible drift in
the bias over time (Deeter et al., 2013). The Level 3 data are a
gridded product and include the a priori and averaging kernel
for each grid box. Supplemental Fig. S1 shows the MOPITT
column averaging kernels averaged over four regions. The
column averaging kernels depend on the observed scene, and
vary year to year as well as seasonally. The dependence of
the column averaging kernels on the CO mixing ratio profile
(Deeter, 2009) explains the high values in the lower tropo-
sphere over eastern China in winter.

We calculate trends and deseasonalized anomalies for the
eastern United States, Europe, and eastern China regions de-
scribed by Worden et al. (2013). Trends that differ from zero
by more than the 2σ uncertainty on the trend are consid-
ered statistically significant. We account for autocorrelation
of the data for a 1-month lag when calculating the uncer-
tainty on the trends. We calculate the annual cycle by fit-
ting the data with a series of sines and cosines as well as
the linear trend, and then remove the annual cycle to obtain
the deseasonalized anomalies. Months with no MOPITT data
or only a few days of MOPITT data are excluded from the
trend analysis. This includes May–August 2001 and August–
September 2009. We report the MOPITT trends for 2000–
2010 for comparison with model simulations, and for 2000–
2014 to give a longer-term view of the observed trends.

2.2 Model simulations

We use a suite of chemistry climate model (CCM) and chem-
ical transport model (CTM) simulations to interpret the ob-
served trends. The Global Modeling Initiative (GMI) CTM
includes both tropospheric (Duncan et al., 2007) and strato-
spheric (Strahan et al., 2007) chemistry, including over 400
reactions and 124 chemical species. Meteorology for the
GMI simulations comes from the Modern-Era Retrospec-
tive Analysis for Research and Applications (MERRA) (Rie-
necker et al., 2011). The GEOS-5 Chemistry Climate Model
(GEOSCCM) (Oman et al., 2011) incorporates the GMI
chemical mechanism into the GEOS-5 atmospheric general
circulation model (AGCM). The GEOSCCM simulations are
forced by observed sea surface temperatures (SSTs) from
Reynolds et al. (2002).

The Community Earth System Model, CESM1 CAM4-
chem, includes 191 chemical tracers and over 400 reactions
for both troposphere and stratosphere (Tilmes et al., 2016).
The model can be run fully coupled to a free-running ocean,
with prescribed SSTs, or with nudged meteorology from
GEOS-5 or MERRA analysis. CESM1 CAM4-chem is fur-
ther coupled to the land model, providing biogenic emis-
sions from the Model of Emissions and Aerosols from Na-
ture (MEGAN), version 2.1 (Guenther et al., 2012).

Several simulations were conducted as part of the
Chemistry-Climate Model Initiative (CCMI) project (Eyring
et al., 2013). These include the Ref-C1 simulation of the
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GEOSCCM and a Ref-C1 CESM1 CAM4-Chem simulation,
hereafter called G-Ref-C1 and C-Ref-C1, respectively, and
the Ref-C1-SD simulation of the GMI CTM. Both the Ref-
C1 and the Ref-C1-SD simulations use time-dependent an-
thropogenic and biomass burning emissions from the MAC-
City inventory (Granier et al., 2011), but the Ref-C1-SD sim-
ulations use specified meteorology while the Ref-C1 simula-
tions run with prescribed SSTs. The MACCity inventory lin-
early interpolates the decadal anthropogenic emissions from
the ACCMIP inventory (Lamarque et al., 2010) for 2000,
and the RCP8.5 emissions for 2005 and 2010, to each year
in between. The MACCity biomass burning emissions have
year-to-year variability based on the GFED-v2 (van der Werf
et al., 2006) inventory. From 2000 to 2010, CO emissions
in the MACCity inventory decreased from 31 to 11 Tg yr−1

over the eastern United States, from 97 to 59 Tg yr−1 over
Europe, and increased from 56 Tg to 72 Tg yr−1 over eastern
China.

Given the uncertainty in CO emissions, we conduct a
GMI CTM simulation using an alternative time-dependent
emissions scenario, called AltEmis. This simulation is
described in detail in Strode et al. (2015b). Briefly, an-
thropogenic emissions include time dependence based on
EPA (https://www.epa.gov/air-emissions-inventories/
air-pollutant-emissions-trends-data), the REAS in-
ventory (Ohara et al., 2007), and EMEP (http:
//www.ceip.at/ms/ceip_home1/ceip_home/webdab_
emepdatabase/reported_emissiondata/), and annual scalings
from van Donkelaar et al. (2008). Biomass burning emis-
sions are based on the GFED3 inventory (van der Werf
et al., 2010). While the regional emission trends in this
simulation are of the same sign as in the Ref-C1 case, the
magnitude of the negative trends over the US and Europe
are smaller and the positive trend over China is larger,
leading to a positive global trend (Fig. 1). We also conduct
a sensitivity study called EmFix with anthropogenic and
biomass burning emissions held constant at year-2000 levels.
Table 1 summarizes the simulations used in this study.

We regrid the model output to the MOPITT grid and con-
volve the simulated CO with the MOPITT averaging ker-
nels and a priori in order to compare the simulated and ob-
served CO columns. The averaging kernels are space- and
time-dependent. We use the following equation from Deeter
et al. (2013):

Csim = C0+ a(xmod− x0), (1)

where Csim and C0 are the simulated and a priori CO total
columns, respectively, a is the total column averaging kernel,
and xmod and x0 are the modeled and a priori CO profiles,
respectively. The column averaging kernel is calculated from
the standard averaging kernel matrix, which is based on the
log of the CO concentration profile, following the method of
Deeter (2009):

Figure 1. Trends in the CO emissions used in the Ref-C1 and
Ref-C1-SD simulations (blue bars) and AltEmis simulation (pur-
ple bars) over 2000–2010 for the United States, Europe, China, and
the world.

aj = (K/log10e)
∑

1pivrtv,iAij , (2)

where 1pi and vrtv,i are the pressure thickness and re-
trieved CO concentration, respectively, of level i, A is
the standard averaging kernel matrix, and K = 2.12×
1013 molec cm−2 hPa−1 ppb−1.

We deseasonalize the simulated CO columns and calcu-
late their linear trend following the same procedure that we
applied to the MOPITT CO. Months that do not have MO-
PITT data (June–July 2001 and August–September 2009) are
excluded from the analysis of the model trends as well.

The Ref-C1 and Ref-C1-SD simulations requested by
CCMI extend until 2010. However, the MACCity biomass
burning emissions extend only until 2008. CAM4-Chem
therefore repeated the biomass burning emissions for 2008
for years 2009–2010. In contrast, the GEOSCCM Ref-
C1 and GMI Ref-C1-SD simulations used emissions from
GFED3 (van der Werf et al., 2010) for years after 2008. Some
simulations were available through 2011, while others ended
in 2010. We therefore report results for 2000–2010, but note
that extending the analysis through 2011 does not alter the
conclusions.

3 Results

3.1 Trends over Europe, the United States, and the
Northern Hemisphere

The hindcast simulations driven by MACCity emissions (G-
Ref-C1, Ref-C1-SD, and C-Ref-C1) show negative trends
in CO over the US and Europe that agree with the ob-
served slope from MOPITT within the uncertainty (Fig. 2,
Table 2). The MOPITT trends for both regions are statisti-
cally significant for both regions, as shown by Worden et
al. (2013). These results are consistent with the findings of
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Table 1. Description of simulations.

Simulation Model Meteorology Anthropogenic emissions Biomass burning emissions

G-Ref-C1 GEOSCCM internally derived MACCity MACCity, GFED3 (2009–2010)
C-Ref-C1 CAM4-Chem internally derived MACCity MACCity, then repeat 2008
Ref-C1-SD GMI MERRA MACCity same as GEOSCCM
EmFix GMI MERRA fixed at 2000 fixed at 2000
AltEmis GMI MERRA Strode et al. (2015b) GFED3

Table 2. Regional trends and correlations: (a) trendsa,b and (b) correlation coefficient (r) with monthly MOPITT anomaliesd,e.

(a) Years E. USA Europe E. China N. Hemisphere

G-Ref-C1c 2000-2010 −2.2 (0.38) −1.8 (0.42) 2.2 (1.1) −0.76 (3.0)
C-Ref-C1c 2000–2010 −3.4 (0.54) −2.9 (0.50) 1.4 (1.4) −0.90 (3.0)
Ref-C1-SDc 2000–2010 −2.4 (0.53) −1.6 (0.59) 1.4 (1.1) −0.76 (3.0)
EmFixc 2000–2010 1.3 (0.55) 1.5 (0.44) 2.1 (0.87) 0.96 (2.5)
AltEmisc 2000-2010 0.71 (0.73) 0.74 (0.66) 3.8 (1.4) 1.1 (3.4)
MOPITT 2000–2010 −2.5 (0.64) −1.8 (0.69) −2.9 (1.8) −1.4 (2.8)
MOPITT 2000–2014 −2.1 (0.41) −1.7 (0.43) −3.1 (1.1) −1.4 (1.7)

(b) Years E. USA Europe E. China N. Hemisphere

G-Ref-C1 2000–2010 0.26 0.39 0.061 0.71
C-Ref-C1 2000–2010 0.23 0.36 0.18 0.62
Ref-C1-SD 2000–2010 0.43 0.51 0.39 0.73
EmFix 2000–2010 0.10 0.21 0.071 0.059
AltEmis 2000–2010 0.55 0.59 0.48 0.69

a 1016 molec cm−2 yr−1, b 1σ uncertainty given in parentheses, c simulation results convolved with MOPITT
averaging kernel and a priori, d correlations are calculated from the detrended and deseasonalized time series.
e Statistically significant correlations at the 95 % confidence level are indicated in bold.

Yin et al. (2015), whose inversion of MOPITT data showed
a posteriori trends in CO emissions over the US and western
Europe that were consistent with but slightly larger than the
a priori trends. The EmFix hindcast shows a positive, though
non-significant, trend for both regions, indicating that the
decrease in CO emissions is necessary for reproducing the
downward trend in the CO column. The AltEmis simulation
fails to produce the negative trends, despite including nega-
tive trends in regional emissions for both the US and Europe.
The impact of these negative regional trends is insufficient to
overcome the positive global emission trend in the AltEmis
scenario (Fig. 1), leading to positive trends in CO.

Figure 2 also reveals a negative bias in the simulated CO
column between the models and MOPITT. A low bias in
simulated CO at northern latitudes is often present in global
models (Naik et al., 2013) and may indicate a high bias in
northern hemispheric OH (Strode et al., 2015a) or CO dry
deposition (Stein et al., 2014), as well as an underestimate of
CO emissions.

The deseasonalized anomalies in the MOPITT and simu-
lated CO columns are shown in Fig. 2b and d; the correlation
coefficients between the observed and simulated monthly
anomalies are presented in Table 2b. The highest correlations
are for the AltEmis and Ref-C1-SD simulations of the GMI

CTM. This result is consistent with the use of year-specific
meteorology, which we expect to better match the transport
of particular years. The lowest correlations are for the EmFix
simulation. This is expected since the EmFix simulation does
not include inter-annual variability (IAV) in biomass burning.
The IAV in biomass burning makes a large contribution to the
IAV of CO (Voulgarakis et al., 2015).

The role of biomass burning in driving the CO variabil-
ity is even more evident at the hemispheric scale. Figure 2g
and h show the anomalies in MOPITT and the simulations
for the Northern Hemisphere (0–60◦ N). The EmFix simu-
lation shows almost no correlation, while the other simula-
tions have correlation coefficients exceeding 0.6 (Table 2).
The role of changing anthropogenic emissions is also evi-
dent, as the Ref-C1-SD simulation captures the 2008–2009
dip in the CO column while the EmFix simulation does not.
Gratz et al. (2015) found decreasing CO concentrations at
Mount Bachelor Observatory in Oregon during spring for
2004–2013, which they attribute to reductions in emissions
leading to a lower hemispheric background. We also note that
Ref-C1-SD and G-Ref-C1 have similar correlations with the
observed variability for the Northern Hemisphere (Table 2),
indicating that transport differences are less important for
variability at the hemispheric scale.
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Figure 2. The time series and trends (left column) and deseasonalized monthly anomalies (right column) of the CO column from MOPITT
(black), the MOPITT a priori (gray), and simulated by G-Ref-C1 (red), Ref-C1-SD (blue), EmFix (green), C-Ref-C1 (orange), and AltEmis
(purple) for 2000–2010. The regions shown are (a, b) Europe (0–15◦ E, 45–55◦ N), (c, d) eastern United States (95–75◦W, 35–40◦ N), (e,
f) eastern China (110–123◦ E, 30–40◦ N), and (g, h) the Northern Hemisphere (0–60◦ N).
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3.2 Trend over China

Observations from MOPITT show a negative trend in the CO
column over eastern China for 2002–2012 (Worden et al.,
2013). The negative trend for the years 2000–2014 exceeds
that for 2000–2010 (Table 2), showing that it is not driven
solely by temporary emission reductions in 2008. Our sim-
ulations do not reproduce this trend, and instead show in-
creases in the CO column (Fig. 2e), which is expected given
that CO emissions from China increase in four of the five
simulations. The anomalies (Fig. 2f) show that the discrep-
ancy in the simulated versus observed trends is driven largely
by the failure of the simulations to capture the 2008 dip in
the CO column, leading to an overestimate that continues
through 2010. This suggests emission reductions in China
during this time period are not adequately captured by the
emission inventories. However, the good agreement between
the observed and simulated decreases in CO for the Northern
Hemisphere as a whole (Fig. 2g, h) suggest that on a global
scale, the emission time series is reasonable. Consequently,
we examine several other factors that may contribute to the
difference in sign between the MOPITT and simulated CO
trends.

Regional trends in CO are expected to vary with altitude,
with surface concentrations most heavily influenced by lo-
cal emissions. MOPITT TIR retrievals have higher sensitiv-
ity to CO in the mid-troposphere than at the surface (Deeter
et al., 2004), so the trend in the MOPITT CO column will be
weighted towards the trends in free tropospheric CO rather
than near-surface CO. We quantify this impact on our Ref-
C1-SD CO column trends by comparing the trend in the
pure-model CO column with that of the simulated column
convolved with the MOPITT averaging kernels.

The simulated CO trend over eastern China for 2000–
2010 is positive (but not significant) both with and without
the averaging kernels, but application of the MOPITT ker-
nels increases the positive trend from 1.3× 1016 to 1.4×
1016 molec cm−2 yr−1. This result is initially surprising since
we expect trends in the mid-troposphere to be more strongly
influenced by the decrease in the hemispheric CO back-
ground. Indeed, the trends in CO concentration over eastern
China simulated in Ref-C1-SD switch from positive in the
lower troposphere to negative in the middle and upper tro-
posphere. However, the application of the kernels results in
more positive (or less negative) trends in all regions.

Yoon et al. (2013) show that since the averaging kernels
vary over time, a bias between the true atmosphere and the
a priori assumed by MOPITT can lead to an artificial trend
in the retrieved CO. Similarly, the bias between the average
simulated CO concentrations and the MOPITT a priori, ev-
ident in Fig. 2, can lead to an artifact in the simulated CO
trend when the simulation is convolved with the MOPITT
averaging kernels. This is due to the changing contribution
of the a priori when the vertical sensitivity (averaging ker-
nel) is varying in time. MOPITT vertical sensitivity varies

with time due to instrument degradation as well as the change
in CO abundance. The bias in CO varies with altitude, so
if the vertical sensitivity described by the averaging kernel
changes, this will change the value of the convolved CO col-
umn even if there were no changes in the CO profile. Further-
more, changes in the averaging kernel result in more or less
weight placed on the a priori versus the CO simulated by the
model. Thus, a difference between the a priori and the model
means that placing more (or less) weight on the a priori will
change the resulting value of Csim. Since the a priori profiles
and columns are constant in time, taking the time derivative
of Eq. (1) yields

∂Csim/∂t = a(∂xmod/∂t)+ ∂a/∂t (xmod− x0). (3)

The second term on the right-hand side shows that the
larger the bias between the modeled CO and the a priori, the
larger the impact of the changing averaging kernel.

We quantify this effect by convolving the simulated CO
for each year with the MOPITT averaging kernels for the
year 2008, thus removing the effect of the time depen-
dence of the averaging kernels. The resulting trend, 0.56×
1016 molec cm−2 yr−1, is less positive than the pure model
trend or the original simulated trend. Thus, accounting for
the time dependence of the averaging kernels convolved with
model bias reduces but does not eliminate the discrepancy
with the observed trend. Comparing the trend for the con-
stant averaging kernel case with the original simulated trend
for Ref-C1-SD (1.4× 1016 molec cm−2 yr−1) suggests that
the changing averaging kernels combined with the model
bias contribute 0.84×1016 molec cm−2 yr−1 to the simulated
trend. Other regions also show a more negative trend when
the same averaging kernel is applied to the model results for
all years. The large bias in CO at middle and high northern
latitudes commonly seen in modeling studies thus impacts
the ability of models to reproduce and attribute observed
trends in satellite data.

Figure 2 and Table 2 also show a positive trend in the
GMI EmFix simulation for eastern China. This larger trend
in the EmFix simulation than the Ref-C1-SD simulation in-
dicates that the net decrease in emissions contributes to de-
creasing CO over eastern China, consistent with the observed
negative trend, but other factors in the model cause an in-
crease in CO over eastern China even when all emissions
are constant. Subtracting the EmFix trend from the Ref-C1-
SD trend shows that the changing emissions contribute a
CO trend of −0.7 molec cm2 yr−1 over eastern China. The
2.1 molec cm2 yr−1 trend in the EmFix simulation, which re-
flects the impacts of the simulated chemistry and transport,
thus contributes to the erroneous sign of the trend in the
GMI simulations. The trends in the EmFix simulation for the
northern hemispheric average and the eastern United States
and Europe are positive as well (Table 2). We examine their
cause in the next section.
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(a) (b) (c)

Figure 3. Deseasonalized monthly anomalies in the total ozone column (left), mean tropospheric OH (center), and CO column (right) from
the EmFix simulation as a function of latitude and month.

3.3 Contribution of OH interannual variability

Since the EmFix simulation shows a positive trend in the
Northern Hemisphere, we next examine the variability in the
CO sink, OH. We also examine variability in the total ozone
column, since overhead ozone is a major driver of OH vari-
ability (Duncan and Logan, 2008). Figure 3 shows the vari-
ability in CO and OH in the EmFix simulation. The positive
and negative anomalies in CO correspond with the negative
and positive anomalies, respectively, in OH. The anomalies
in OH are in turn inversely related to anomalies in the to-
tal ozone column. The correlation coefficient between OH
and column ozone is −0.53 for the 15◦ S–15◦ N average,
−0.72 for the 15–25◦ N average, and−0.75 for the 30–60◦ N
average. The large NH ozone anomaly in 2010, in particu-
lar, leads to a large anomaly in OH and thus CO. This OH
anomaly extends from the northern tropics to the midlati-
tudes. The large CO anomaly near the end of the time series
contributes to the apparent 11-year trend. We note that since
the lifetime of CO is several months, CO anomalies are not
expected to have a one-to-one correspondence with the OH
anomalies.

The large anomaly in the simulated total ozone column
in 2010 is overestimated compared to observations. Figure 4
shows the time dependence of the total ozone column from
30 to 60◦ N in EmFix compared to SBUV data (Frith et al.,
2014). While the observations show an anomaly in 2010, the
magnitude is smaller than that produced by the simulation.
Steinbrecht et al. (2011) attribute the 2010 anomaly in north-
ern midlatitude ozone observations to a combination of an
unusually strong negative Arctic Oscillation and North At-
lantic Oscillation and the easterly phase of the quasi-biennial
oscillation.

Figure 4. Monthly ozone column (a) and deseasonalized ozone col-
umn anomaly (b) in SBUV data (black) and the EmFix simulation
(green) for 30–60◦ N.

While the impact of OH interannual variability on the ap-
parent trend in CO is clear in the EmFix simulation, this
source of variability is partially masked by large interannual
variability in CO emissions in the other simulations. We ex-
amine the correlation between the detrended and deseasonal-
ized CO anomalies from 10◦ S–10◦ N in the Ref-C1-SD sim-
ulation and the CO emissions as well as the simulated OH
and column ozone. Since the CO emitted in a given month
can influence concentrations for several subsequent months,
we use a 3-month smoothing of the emission time series. We
find a high correlation (r = 0.88) between the CO anoma-
lies and the CO emissions. This correlation is also evident
in the MOPITT data, as the MOPITT CO anomalies have a
correlation of r = 0.70 with the emissions. Figure 5 shows
the strong relationship between the simulated CO anomalies
and the CO emissions. However, the colors in Fig. 5 indicate
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Figure 5. Monthly simulated CO column anomalies from the Ref-
C1-SD simulation as a function of CO emissions for 10◦ S–10◦ N.
Colors indicate the simulated OH column anomaly for the given
month.

that the scatter for a given level of emissions is often linked
to the OH anomalies, with low/high OH anomalies leading
to CO that is higher/lower than would be predicted just from
the CO emissions. We find that the 10◦ S–10◦ N OH in the
Ref-C1-SD simulation is anticorrelated with CO (r =−0.62)
and with the total ozone column (r =−0.68). Consequently,
the simulated ozone column plays a role in modulating trop-
ical CO variability even when variable CO emissions are in-
cluded, although the emissions still play the strongest role.

4 Conclusions

We conducted a series of multi-year simulations to analyze
the causes of the negative trends in MOPITT CO reported
by Worden et al. (2013). Both CTM and CCM simulations
driven by the MACCity emissions reproduce the observed
trends over the eastern United States and Europe, providing
confidence in the regional emission trends.

None of the simulations reproduce the observed nega-
tive trend over eastern China. This negative trend persists
even with the MOPITT data extended out to 2014. The
MOPITT averaging kernels are weighted towards the free
troposphere, where the relative importance of hemispheric
versus local trends is greater. However, our simulations in-
dicate that this effect is insufficient to explain the nega-
tive trends over China. Indeed, the negative trend in MO-
PITT CO over eastern China (−2.9×1016 molec cm−2 yr−1)

is stronger than that of the northern hemispheric average
(−1.4× 1016 molec cm−2 yr−1), indicating that changes in
hemispheric CO account for less than half of the trend
over China. While the simulations’ underestimate of the ob-
served trend likely indicates a too positive emission trend
for China, several other factors play a role in the model–
observation mismatch. We find that the time-dependent MO-
PITT averaging kernels, combined with the low bias in sim-

ulated CO, provide a positive component to the simulated
trends. Large anomalies in the simulated ozone column in
the GMI CTM simulations also contribute a positive com-
ponent to the northern hemispheric trends due to their im-
pact on OH. For the Ref-C1-SD simulation, the trends due
to the model bias combined with changing averaging kernels
(0.84× 1016 molec cm−2 yr−1) and to the simulated chem-
istry and transport (2.1×1016 molec cm−2 yr−1) can together
account for almost 70 % of the 4.3× 1016 molec cm−2 yr−1

difference between the Ref-C1-SD and MOPITT trends over
eastern China.

Variability in emissions is the primary driver of year-to-
year variability in simulated CO, but OH variability also
plays a role. The simulated OH is anti-correlated with both
CO and the total ozone column, highlighting the importance
of realistic overhead ozone columns for accurately simulat-
ing CO variability and trends. In addition, further work is
needed to understand recent changes in CO emissions from
China.

The Supplement related to this article is available online
at doi:10.5194/acp-16-7285-2016-supplement.
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