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Abstract. We present the combined power law and log-
normal distribution (PL+LN) model, a computationally ef-
ficient model to be used in simulations where the particle
size distribution cannot be accurately represented by log-
normal distributions, such as in simulations involving the ini-
tial steps of aerosol formation, where new particle formation
and growth occur simultaneously, or in the case of inverse
modeling. The model was evaluated against highly accurate
sectional models using input parameter values that reflect
conditions typical to particle formation occurring in the at-
mosphere and in vehicle exhaust. The model was tested in
the simulation of a particle formation event performed in a
mobile aerosol chamber at Mäkelänkatu street canyon mea-
surement site in Helsinki, Finland. The number, surface area,
and mass concentrations in the chamber simulation were
conserved with the relative errors lower than 2 % using the
PL+LN model, whereas a moment-based log-normal model
and sectional models with the same computing time as with
the PL+LN model caused relative errors up to 17 and 79 %,
respectively.

1 Introduction

Particle size distribution is the most important characteristic
of nanoparticles, as it controls their deposition to the human
respiratory system, their behavior in the atmosphere, and the
properties of engineered nanoparticles. The rates of several
aerosol processes, such as condensation, coagulation, and de-
position, are affected by particle size; thus, the particle size
distribution controls also the evolution of the aerosol. While

the rates of the aerosol processes depend on the particle size,
different particles within a particle size mode have differ-
ent rates of aerosol processes and, thus, they evolve with
different rates. This causes also the shape of the size dis-
tribution to evolve. Because particle size distributions usu-
ally contain particles with the diameters of several orders
of magnitude rather than being monodisperse, i.e., equally
sized, an accurate representation of aerosol properties and
evolution requires that particle sizes are expressed as distri-
butions. Due to a high count of particles with different sizes,
shapes, and compositions within a volume of interest, com-
putational costs to model them separately are extremely too
high. Therefore, aerosol models typically model one or more
parameter of the size distribution, such as particle number
or mass concentration of the total particle size range or of
several size ranges separately. Simplifications made for size
distributions in aerosol models cause unrealistic shapes for
the distributions.

Methods that model a particle size distribution the most
realistically are sectional methods, in which the size distri-
bution is split into separate size sections. The accuracy of a
sectional model can be controlled by the number of the size
sections. Increasing the number of sections increases accu-
racy, but the computational cost is also increased. In multi-
dimensional simulations, such as in computational fluid dy-
namics (CFD) and in climate simulations, computational ef-
ficiency is a key property of the model. Simulations involv-
ing inverse modeling (Verheggen and Mozurkewich, 2006),
where the values of model input parameters (e.g., new parti-
cle formation rate or condensational growth rate) are varied
systematically to find out the values that most exactly pro-
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duce the measured results, may suffer from long computing
times even in one-dimensional cases.

Sectional methods vary depending on the conserved prop-
erty of the aerosol. Only a single property, e.g., particle num-
ber, particle surface area, or particle mass concentration, can
be conserved in the simulation but other properties will suffer
from numerical diffusion, which is seen as the overestima-
tion of the non-conserved properties (Wu and Biswas, 1998).
Less numerical diffusion can be obtained, e.g., by using a
moving-center fixed-sectional (MC) method, in which size
sections have fixed boundaries but the centers of the sections
are allowed to vary so that number and mass concentrations
are conserved better (Jacobson, 1997). However, implement-
ing the MC method in Eulerian simulation, such as in CFD
simulation, with simultaneous new particle formation, con-
densation, coagulation, and transportation is challenging due
to discontinuous behavior of the section variables (all parti-
cles of a section are transferred to an adjacent section when
the center of a section exceeds a section boundary during
growth), computationally time consuming due to the transfer
of the particles between the sections, and memory consum-
ing due to the requirement of storing also the center values
of the sections. Wang and Zhang (2012) have modeled si-
multaneous new particle formation and growth within diesel
exhaust plumes using the MC method in three-dimensional
CFD simulation and have obtained promising results for par-
ticle size distributions compared to the measured distribu-
tions with only eight size sections in a particle diameter
decade. However, they did not report a comparison between
their model and any highly accurate aerosol model; thus, the
effect of numerical diffusion to their results is unknown. An-
other method to decrease numerical diffusion is the TwO-
Moment Aerosol Sectional (TOMAS) model, in which both
the number and the mass concentrations are stored for all size
sections (Adams and Seinfeld, 2002). The TOMAS model
provides conservation for both the number and the mass con-
centrations of the total distribution, but the memory con-
sumption in multidimensional simulations can be too high
due to a high number of variables to be stored in every com-
putational cell.

Other approaches to model the particle size distribution are
methods based on the moments of the distribution (Whitby
and McMurry, 1997), which are both computationally effi-
cient (Mitrakos et al., 2007) and have continuous behavior
of the variables. The number of the conserved properties of
the aerosol is controlled by the number of the modeled mo-
ments; e.g., conserving number, surface area, and mass con-
centrations can be obtained by modeling the corresponding
three moments. The number of the variables being stored
during the simulation is the number of the modeled moments,
which is significantly less compared to sectional methods, in
which the number of the variables can be several hundreds.
The major drawback in the methods based on moments is
that the size distribution needs to be presented with a pre-
defined function, unless the quadrature method of moments

(QMOM; McGraw, 1997) is used. QMOM provides accurate
results (Barrett and Webb, 1998) but the reconstruction of the
distribution parameters from the moments is not unique (Mi-
trakos et al., 2007). The typical choice for the size distribu-
tion function is the log-normal (LN) distribution or the com-
bination of several LN distributions. They correspond well
with many laboratory aerosols and aged aerosols, but during
the initial steps of the formation and growth of aerosol the
size distribution can differ significantly. For example, Tam-
met and Kulmala (2014) recommend two-power law for the
size distribution of atmospheric aerosols measured at least in
Northern Europe. Two-power law distribution has four pa-
rameters, which implies that four moments are required for
the reconstruction of the parameters from the moments if the
distribution is modeled using the moment method. However,
there is no analytical solution for the system of equations of
the two-power law approach, and solving the system of equa-
tions with four variables numerically is computationally very
expensive.

The general dynamic equation (GDE) for the number con-
centration of a size section j , with new particle formation and
condensational growth without any other aerosol processes,
is (Seinfeld and Pandis, 2006)

dNj
dt
=

J (t)−
g(t,Dp)

1Dj
Nj , j = 1

g(t,Dp)

1Dj−1
Nj−1−

g(t,Dp)

1Dj
Nj , j > 1

, (1)

where Nj and 1Dj are the number concentration and the
diameter width of the size section, respectively. J (t) is new
particle formation rate as a function of time t , and g(t,Dp)

is condensational growth rate dDp
dt , where Dp is the particle

diameter. In the case of simultaneous new particle formation
and condensation with time- and size-independent rates, the
analytical solution for the GDE provides the particle size dis-
tribution

dN
dlnDp

=


J
g
Dp, D1 ≤Dp ≤D2

0, otherwise
, (2)

where D1 is the diameter of the newly formed particle (as-
sumed constant) and D2 is the largest diameter. Equation (2)
is in the form of a power law (PL) where the power of Dp
is unity. In a realistic particle formation process, J (t) and
g(t,Dp) do not remain constants and other aerosol processes
affect also; thus, the power of Dp can differ and LN features
will appear in the distribution. Here, we present a method to
express the particle size distribution as a combination of a PL
and a LN distribution. This moment-based combined PL and
LN distribution model was evaluated against highly accurate
sectional models using theoretical test cases and a real-world
case, which represents a simulation of a particle formation
event occurred in a mobile aerosol chamber.
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2 Model description

The combined PL and LN distribution model (PL+LN) is
based on the sum of these distributions. The PL distribution
handles the formation and the initial growth of new particles;
the LN distribution represents the log-normal shape of the
distribution and it is formed by coagulation and condensation
from the PL distribution.

2.1 Particle size distributions

2.1.1 Power law distribution

The formulation of the PL distribution originates from
Eq. (2), where the power of Dp is allowed to vary:

dN
dlnDp

∣∣∣∣
PL
=


NPLα
Dα2−D

α
1
Dαp , D1 ≤Dp ≤D2, α 6= 0

NPL
ln(D2/D1)

, D1 ≤Dp ≤D2, α = 0

0, otherwise

, (3)

where NPL is the total particle number concentration, α is
the slope parameter, D1 is the smallest diameter, and D2
is the largest diameter of the PL distribution. In this form,
the PL distribution has four parameters, which leads to nu-
merical challenges for the reconstruction of the distribution
parameters from four moments. Nevertheless, by fixing one
parameter, only three moments are required to be modeled
and the reconstruction will simplify. Here, the value of D1
is fixed to the diameter of a newly formed particle, which is
also physically sensible because that value is not expected
to vary significantly; in atmospheric particle formation, the
value is about 1.5± 0.3nm (Kulmala et al., 2013).

Three moments required in the modeling of the PL distri-
bution with parameters NPL, α, and D2 are, in this article,
number, NPL, surface area, SPL, and mass, MPL, concentra-
tions:

NPL =NPL, (4)

SPL =

∞∫
−∞

sp
dN

dlnDp

∣∣∣∣
PL

dlnDp

= s1NPL
α

α+ 2

(
D2
D1

)α+2
− 1(

D2
D1

)α
− 1

, (5)

MPL =

∞∫
−∞

mp
dN

dlnDp

∣∣∣∣
PL

dlnDp

=m1NPL
α

α+ 3

(
D2
D1

)α+3
− 1(

D2
D1

)α
− 1

, (6)

where sp and mp are the surface area and the mass of a parti-
cle, respectively, and s1 and m1 are the surface area and the

mass of a newly formed particle, respectively. All particles
are assumed to be spherical. Equations (5) and (6) have sin-
gularities at α values of −3, −2, and 0. In those cases, the
equations have different formulations, and, from now on, the
singularity equations are not shown here due to the fact that α
will never equal a singularity value precisely in a simulation.
To model the composition of particles can be done by sepa-
rating the mass concentration to different components using
the assumption that the particles are internally mixed; i.e., the
composition does not vary with particle diameter. Modeling
of the particle composition is, however, outside of the scope
of this article.

The reconstruction of the distribution parameters from the
moments NPL, SPL, and MPL is performed as follows. The
zeroth moment NPL is already one of the distribution pa-
rameters, but SPL and MPL are not. The latter are converted
to the system of equations of two unknown variables α and
d =D2/D1:


MPL
NPL

1
m1
=

(
α
α+3

)(
dα+3
−1

dα−1

)
MPL
SPL

s1
m1
=

(
α+2
α+3

)(
dα+3
−1

dα+2−1

) . (7)

However, there is no analytical solution for this system
of equations, but solving two variables numerically is suf-
ficiently fast for this purpose. A pre-calculated interpola-
tion table is used in the numerical solution, with which a
more rapid calculation is obtained. The interpolation table
increases the memory cost of the model, but as the table
is unique (independent on temporal or spatial coordinate) it
needs to be stored in one memory location only.

2.1.2 Log-normal distribution

The LN distribution is expressed by the equation

dN
dlnDp

∣∣∣∣
LN
=

NLN
√

2π lnσ
exp

[
−

ln2 (Dp/Dg
)

2ln2σ

]
, (8)

where NLN is the total particle number concentration, σ the
geometric standard deviation, and Dg the geometric mean
diameter of the LN distribution. The LN distribution is also
modeled as three moments, NLN, SLN, and MLN. Following
the method of Whitby and McMurry (1997), the reconstruc-
tion of the distribution parameters from the moments can be
performed using the equations

NLN =NLN, (9)

Dg = 6−2/3π−5/6 ρ2/3N
−5/6
LN S

3/2
LN M

−2/3
LN , (10)

ln2σ = ln
(

62/3π1/3 ρ−2/3N
1/3
LN S−1

LNM
2/3
LN

)
, (11)

where ρ is the particle density.
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Figure 1. Left pane shows examples of power law distributions
with different values of the slope parameter α. Right pane shows
the combination of a power law (PL) and a log-normal (LN) distri-
bution (PL+LN).

2.1.3 Connection between the distributions

The combined particle distribution is modeled as the super-
position of the PL and the LN distributions:

dN
dlnDp

∣∣∣∣
PL+LN

=
dN

dlnDp

∣∣∣∣
PL
+

dN
dlnDp

∣∣∣∣
LN
. (12)

Figure 1 presents examples of the PL+LN distribution. PL
distributions with different values of α are shown in the
left pane; N = 106 cm−3, D1 = 1.5nm, and D2 = 5nm are
equal in all four distributions. The right pane shows the PL
distribution with values N = 106 cm−3, α = 1,D1 = 1.5nm,
and D2 = 3nm, the LN distribution with values N = 5×
105 cm−3, Dg = 4nm, and σ = 1.1, and the combination of
them.

A schematic presentation of the connections between the
distributions is shown in Fig. 2. Particles in the PL distribu-
tion, formed by new particle formation and grown by conden-
sation and coagulation (Fig. 3), are transferred to the LN dis-
tribution through three intermodal processes: coagulational
transfer, intermodal coagulation, and condensational trans-
fer. The coagulational transfer is accounted by intramodal
coagulation, i.e., self-coagulation, which is basically an in-
tramodal process, but in this model it is used to initiate the
LN distribution by transferring the coalesced resultant parti-
cles larger than D2 to the LN distribution. The coagulational
transfer is described in more detail in Sect. 2.2.5. After the
LN distribution is initiated, particles of the both distributions
begin to collide intermodally (the intermodal coagulation).
In that case, the resultant particles are always assigned to the
LN distribution, which is thought to consist of larger particles
than the PL distribution.

The coagulational transfer remains the only process initiat-
ing the formation of the LN distribution if the condensational
transfer is neglected. Therefore, in the case of low particle

𝐷1

𝑔Δ𝑡

Condensational
transfer

PL LN

Coagulational
transfer

LNPL

Intermodal
coagulation

LNPL

𝐷2

𝐷1 𝐷2

𝐷1 𝐷2𝐷coag

Figure 2. Intermodal processes between the PL and the LN distribu-
tions. Particles larger than Dcoag (green area) form particles larger
than D2 by the intramodal coagulation in the PL distribution; the
coalesced resultant particles are transferred to the LN distribution.
When the LN distribution exists, particles of the both distributions
begin to coagulate intermodally; the resultant particles are assigned
to the LN distribution. Condensation grows the largest particle di-
ameter by g1t in a time step of 1t , but the condensational transfer
transfers a part of the particles larger than D2 (blue area) to the LN
distribution.

number concentration, i.e., low intramodal coagulation rate,
the formation rate of the LN distribution is slow; thus, the
combined distribution would be mainly in a power law form.
However, in realistic particle formation events, log-normal
features in the size distribution are widely observed (Hinds,
1999). This is due to the fact that the aerosol processes have
normally time- and size-dependent rates and that the parti-
cles can be multicomponent and due to the intramodal coag-
ulation that eventually results in self-preserving log-normal
distribution (Friedlander, 2000). The model described here
connects the formation of the LN distribution with the in-
tramodal coagulation only. Therefore, LN features can be
generated artificially to the PL+LN distribution by transfer-
ring some of the particles from the PL distribution to the LN
distribution. This transfer is calculated through condensation
(the condensational transfer). Particles that are to be grown
beyond the diameterD2 are transferred to the LN distribution
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Figure 3. Intramodal processes. New particle formation forms par-
ticles with the diameter of D1 to the PL distribution. Condensation
and intramodal coagulation grow particles within a distribution.

by the condensational transfer instead of keeping them in the
PL distribution and increasing the value of D2. The conden-
sational transfer is described in more detail in Sect. 2.2.5.

2.2 Aerosol processes

The general dynamic equation for a particular moment X
(=NPL, SPL, MPL, NLN, SLN, or MLN) in a one-dimensional
(temporal coordinate only) simulation is

dX
dt
=npfX + condX + coagX + losscoag

X + lossdep
X

+ transfercoag
X + transfercond

X , (13)

where terms on the right-hand side denote new particle for-
mation, condensation, coagulation, coagulational losses, de-
positional losses, coagulational transfer, and condensational
transfer, respectively. The formulation of the terms is de-
scribed next.

2.2.1 New particle formation

New particle formation is modeled by a term

npfX =


J (t), X =NPL

J (t) s1, X = SPL

J (t)m1, X =MPL

0, X =NLN, SLN, or MLN

, (14)

where J (t) can be calculated, e.g., through any nucleation
theory, in which J (t) depends also on vapor concentrations
and temperature, for example. However, finding the correct
formulation for J (t) is outside of the scope of this article;
thus, we decided to use formation rate as an input parameter
that can be either a constant, J , or a time-dependent function,
J (t). Additionally, inverse modeling is done to obtain J (t)
from measured particle number concentrations.

The sizes of a newly formed particle (D1, s1, and m1) can
be obtained from nucleation theories, but they are assumed to
be constants here. In the case where J (t) suddenly drops to
zero but condensation still continues, concentration of parti-
cles with diameters around D1 would subsequently decrease

down to zero due to the growth of newly formed particles
to larger diameters. Therefore, D1, as a parameter of the PL
distribution, should be a variable to model the distribution
accurately. However, this would change the distribution back
to a more complex four-parameter distribution that is outside
of the scope of this article. In that case or with smoothly de-
creasing J (t), α has a tendency to increase.

2.2.2 Condensation

Condensation rate [kgm−3s] of vapor v on a particle distri-
bution, PL or LN (denoted with i), can be modeled as (Olin
et al., 2015)

condMi
=

∞∫
−∞

dmp,v

dt
dN

dlnDp

∣∣∣∣
i

dlnDp, (15)

where dmp,v
dt is the mass growth rate of a particle [kgs−1] due

to vapor v (Lehtinen and Kulmala, 2003):

dmp,v

dt
= 2π(Dp+Dv)(Dp+Dv)(Cv,∞−Cv,p)

·
Kn+ 1

0.377Kn+ 1+ 4
3φ (Kn2+Kn)

, (16)

where Dv is the diameter of a vapor molecule. Dp and Dv
are the diffusion coefficients of a particle and of a vapor
molecule, respectively. Cv,∞ and Cv,p are the mass concen-
tration of the vapor in the far-field and over the particle sur-
face, respectively. Kn and φ are the Knudsen number and the
mass accommodation coefficient, respectively. The concen-
tration Cv,p is

Cv,p = 0vCv,sat exp
(

4Smv
kBTρDp

)
, (17)

where 0v , Cv,sat, and mv are activity, the saturation concen-
tration, and the molecule mass of the vapor, respectively, S
is surface tension, kB is the Boltzmann constant, and T is
temperature.

If all the parameters in Eq. (16) do not depend on the spa-
tial location, as is the case in a one-dimensional simulation,
the mass growth rate can be considered a function of time
and the particle diameter only. Here, the mass growth rate
(single-component case) is expressed using condensational
growth rate g(t,Dp):

dmp

dt

(
t,Dp

)
=

dmp

dDp
·

dDp

dt

(
t,Dp

)
=
π

2
ρD2

p g(t,Dp). (18)

Hence, the condensation rate for a particle distribution be-
comes

condMi
=
π

2
ρ

∞∫
−∞

D2
p g(t,Dp)

dN
dlnDp

∣∣∣∣
i

dlnDp, (19)
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which has an analytical solution for the both distributions,
PL and LN, when g(t,Dp) can be expressed with a poly-
nomial of Dp. The mass growth rate is proportional to D2

p
when the following conditions are met: (1) the particle size
is in free-molecular regime, (2) Dp�Dv , 3) Cv,∞� Cv,p.
The last one applies when the particle size is large or when
the vapor has low saturation vapor pressure. Since particle
sizes near the molecular size are modeled in this article, only
the first condition applies satisfactorily. Nevertheless, this ar-
ticle concentrates mainly in cases where the mass growth
rate is assumed to be proportional to D2

p . Additionally, a sin-
gle test case, where the mass growth rate is calculated us-
ing Eqs. (16)–(17), is presented. The main point in this arti-
cle is not to provide the correct formulation for g(t,Dp), but
rather to compare different models, and additionally to per-
form inverse modeling to obtain g(t) from the time evolution
of measured aerosol size distributions. Due to the assumption
of the proportionality of the mass growth rate, the condensa-
tional growth rate becomes size-independent, and finally, the
condensation terms used in Eq. (13) become

condX =


0, X =Ni

2π g(t)
∫
∞

−∞
Dp dNi , X = Si

π
2 ρ g(t)

∫
∞

−∞
D2

p dNi , X =Mi

(20)

where dNi is an abbreviation of

dN
dlnDp

∣∣∣∣
i

dlnDp. (21)

The analytical solution for Eq. (20) is

condX =Xg(t) ·



0, X =NPL
2
D1

(
α+2
α+1

)(
dα+1
−1

dα+2−1

)
, X = SPL

3
D1

(
α+3
α+2

)(
dα+2
−1

dα+3−1

)
, X =MPL

0, X =NLN
2
Dg

exp
(
−

3
2 ln2σ

)
, X = SLN

3
Dg

exp
(
−

5
2 ln2σ

)
, X =MLN

(22)

when α is not −3, −2, or −1.
When the mass growth rate is calculated from the vapor

concentrations and the properties of the vapor and the par-
ticles using Eqs. (16)–(17), it rarely can be expressed with
a polynomial of Dp, unless polynomial fits are done for the
function. However, if the vapor concentrations or the other
properties are allowed to vary during the simulation, fits for
the mass growth rate function may become inconvenient. In
that case, the integral in Eq. (19) cannot be solved analyti-
cally. Therefore, numerical integration is required, in which
Eq. (19) is calculated in a form of

condMi
=
π

2
ρ

n∑
j=1

D2
j g(t,Dj )

dN
dlnDp

∣∣∣∣
i

ln
Dj+1

Dj
, (23)

where Dj is the particle diameter of the size section j used
in numerical integration when the particle diameter range is
split into n sections. Computational cost of numerical inte-
gration is, however, higher compared to analytical solution of
the integrals. Therefore, Gaussian quadratures are used here
to reduce the associated computing time; they provide the op-
timal particle diameters and their weights for efficient evalu-
ation of the integrals. The details of the Gaussian quadratures
are described in Appendix A.

2.2.3 Coagulation

Coagulation is modeled as intramodal coagulation within the
PL distribution and within the LN distribution and as inter-
modal coagulation from the PL distribution to the LN distri-
bution. The coagulation terms derived from the equations of
Whitby and McMurry (1997) are

coagNPL
=−

1
2

∞∫
−∞

∞∫
−∞

β(Dp,D
′
p)dNPL dN ′PL

−

∞∫
−∞

∞∫
−∞

β(Dp,D
′
p)dNPL dN ′LN (24)

coagSPL
=−

1
2

∞∫
−∞

∞∫
−∞

[
2sp−

(
s

3
2
p + s

′
p

3
2

) 2
3
]

·β(Dp,D
′
p)dNPL dN ′PL

−

∞∫
−∞

∞∫
−∞

sp β(Dp,D
′
p)dNPL dN ′LN (25)

coagMPL
=−

∞∫
−∞

∞∫
−∞

mp β(Dp,D
′
p)dNPL dN ′LN (26)

coagNLN
=−

1
2

∞∫
−∞

∞∫
−∞

β(Dp,D
′
p)dNLN dN ′LN (27)

coagSLN
=−

1
2

∞∫
−∞

∞∫
−∞

[
2sp−

(
s

3
2
p + s

′
p

3
2

) 2
3
]

·β(Dp,D
′
p)dNLN dN ′LN

+

∞∫
−∞

∞∫
−∞

[(
s

3
2
p + s

′
p

3
2

) 2
3
− s′p

]
·β(Dp,D

′
p)dNPL dN ′LN (28)

coagMLN
=

∞∫
−∞

∞∫
−∞

mp β(Dp,D
′
p)dNPL dN ′LN, (29)
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where β(Dp,D
′
p) is the coagulation coefficient of particles

with the diameters ofDp andD′p calculated with the equation

β(Dp,D
′
p)= 2π(Dp+D

′
p)(Dp+D′p)f (Kncoag), (30)

where f (Kncoag) is the transition regime function of Dah-
neke (1983),

f (Kncoag)=
1+Kncoag

1+ 2Kncoag+ 2Kn2
coag

, (31)

and Kncoag is the Knudsen number for coagulation,

Kncoag =
4(Dp+D′p)

(Dp+D′p)
√
c̄2+ c̄′2

. (32)

c̄ and c̄′ are the mean thermal velocities of particles with the
diameters of Dp and D′p.

The integrals in Eqs. (24)–(29) cannot be solved analyti-
cally in the transition regime because Eq. (31) cannot be pre-
sented in a polynomial form. Therefore, the integrals are cal-
culated numerically or by using quadratures in the same man-
ner as with the condensation term described in Appendix A.

2.2.4 Particle losses

The losses due to coagulation of the particles in the PL+LN
distribution to the background distribution excluded from the
PL+LN distribution are considered the coagulational losses.
Particles in the background distribution are assumed to be
significantly larger than the particles in the PL+LN distribu-
tion. Therefore, the particle diameters of the background dis-
tribution can be approximated with a single diameter value,
e.g., CMDbg (count median diameter). According to Kermi-
nen and Kulmala (2002), the coagulation coefficient will then
become

β(Dp,CMDbg)≈ β(D1,CMDbg)

(
Dp

D1

)lbg

, (33)

where lbg is the exponent depending on CMDbg. The value
of lbg ranges between−2 and−1 (Lehtinen et al., 2007). The
coagulational loss term, e.g., for a number concentration is

losscoag
Ni
=−Nbg

∞∫
−∞

β(Dp,CMDbg)dNi

≈−Nbg β(D1,CMDbg)D
−lbg
1

∞∫
−∞

D
lbg
p dNi, (34)

in which the last integral can be solved analytically. The an-
alytical solutions for the coagulational loss terms are

losscoag
X =−XNbg

·



β(D1,CMDbg)
(

α
α+lbg

)(
d
α+lbg−1
dα−1

)
, X =NPL

β(D1,CMDbg)
(

α+2
α+2+lbg

)(
d
α+2+lbg−1
dα+2−1

)
, X = SPL

β(D1,CMDbg)
(

α+3
α+3+lbg

)(
d
α+3+lbg−1
dα+3−1

)
, X =MPL

β(Dg,CMDbg)exp
[

1
2 l

2
bgln2σ

]
, X =NLN

β(Dg,CMDbg)exp
[(

1
2 l

2
bg+ 2lbg

)
ln2σ

]
, X = SLN

β(Dg,CMDbg)exp
[(

1
2 l

2
bg+ 3lbg

)
ln2σ

]
, X =MLN

(35)

when α is not 0 or −lbg.
The losses to walls due to diffusion of particles are con-

sidered the depositional losses. They are modeled with the
method of Hussein et al. (2009), in which the deposition rate
of particles in a test chamber is

λ=
1
V

∑
w

Awu, (36)

where V is the volume of the chamber,Aw is the surface area
of the wall w, and u is the deposition velocity of particles.
A simple approximation for the deposition velocity is used
here:

u∝D−1
p , (37)

which is valid for particles smaller than 100 nm according to
Lai and Nazaroff (2000). The depositional loss term, e.g, for
a number concentration, now becomes

lossdep
Ni
=−

∞∫
−∞

λdNi =−kdep

∞∫
−∞

D−1
p dNi, (38)

where all effects, except the effect of the diameter, are in-
cluded in the deposition coefficient kdep. The last integral
can be solved analytically, from which the depositional loss
terms become

lossdep
X =−Xkdep

·



D−1
1

(
α
α−1

)(
dα−1
−1

dα−1

)
, X =NPL

D−1
1

(
α+2
α+1

)(
dα+1
−1

dα+2−1

)
, X = SPL

D−1
1

(
α+3
α+2

)(
dα+2
−1

dα+3−1

)
, X =MPL

D−1
g exp

(
1
2 ln2σ

)
, X =NLN

D−1
g exp

(
−

3
2 ln2σ

)
, X = SLN

D−1
g exp

(
−

5
2 ln2σ

)
, X =MLN

(39)

when α is not 0 or 1.
The effect of particle losses on the PL distribution is seen

as decreased α. In the trivial case, as in Eq. (1), α becomes
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less than zero when kdep > g. This effect is due to increased
losses with increasing particle diameters because larger parti-
cles have longer residence times from the moment since their
formation. However, Eq. (37) counteracts in this effect by de-
creasing the deposition velocity with increasing particle size,
but with small g, the effect of increased residence time dom-
inates over the effect of decreased deposition velocity. Addi-
tionally, α is further decreased due to coagulational losses.

2.2.5 Intermodal particle transfer

The intermodal coagulation is included together with the in-
tramodal coagulation in the coagulation terms (coagX) seen
in Eqs. (24)–(29). The coagulational (transfercoag

X ) and con-
densational (transfercond

X ) transfer are modeled as follows.
Particles with the diameter higher than the cut diameter,

Dcoag =
(
D3

2 −D
′
p

3
)1/3

, (40)

form particles with the diameter higher than D2 after coagu-
lating with a particle having a diameter of D′p, assuming full
coalescence (Fig. 2). Those resultant particles are transferred
from the PL distribution to the LN distribution, because their
particle diameters will correspond with the form of a LN dis-
tribution rather than a PL distribution, which can be observed
using a highly accurate sectional model. The coagulational
transfer terms are negative for the PL distribution and pos-
itive for the LN distribution to conserve the moments, and
they are expressed as

transferNPL =−transferNLN

=−
1
2

∞∫
−∞

∞∫
lnDcoag

β(Dp,D
′
p)dNPL dN ′PL, (41)

transferSPL =−transferSLN

=−
1
2

∞∫
−∞

∞∫
lnDcoag

(
s

3
2
p + s

′
p

3
2

) 2
3
β(Dp,D

′
p)dNPL dN ′PL, (42)

transferMPL =−transferMLN

=−
1
2

∞∫
−∞

∞∫
lnDcoag

(
mp+m

′
p

)
β(Dp,D

′
p)dNPL dN ′PL, (43)

which are calculated using the quadrature or numerical inte-
gration as in the case of the coagulation terms.

Considering a time step of 1t in a Lagrangian simulation,
particles with the diameters larger than Dcond =D2− g1t

will grow due to condensation to have the diameters larger
than D2 (Fig. 2). Modeling condensation only, the value of
D2 at the next time step would increase to D2+ g1t . The
condensational transfer is used to transfer the particles in the
PL distribution with the diameters of Dcond <Dp <D2 to
the LN distribution. However, if the condensational transfer

were modeled fully,D2 would never increase and all conden-
sation would affect the LN distribution only. In that case, the
distributions would separate from each other. For this reason,
the effect of condensational transfer is dampened using a fac-
tor γ as a multiplier in the condensational transfer equations.
The factor can obtain values between zero and unity, and it
describes how the particles will be distributed between the
PL and the LN distributions. The value γ = 0 produces a dis-
tribution that will be mainly in a power law form; the value
γ = 1 produces a log-normal distribution only. To choose a
suitable value for γ for a simulation, the user should con-
sider how well the aerosol formation event follows the ap-
proximations of the theory described here. The value 0 is
suitable only when the aerosol processes follow the theory
exactly. To simulate a realistic particle formation event, the
value has to be increased towards unity using the following
guidelines. The more the following conditions are met, the
higher γ should be used: (1) particle formation or growth
are multicomponent processes; (2) the particle formation rate
or the condensation growth rate vary significantly with time;
(3) the condensational growth rate varies significantly with
the particle size; (4) the background aerosol acting as a co-
agulation sink does not remain in a nearly constant state dur-
ing the time domain of the simulation; (5) particle sizes in
the background aerosol are not significantly higher than in
the PL+LN distribution; (6) the depositional losses cannot
be approximated with as simple form as described here, e.g.,
in the case of complex geometry or turbulent flow. In real at-
mospheric particle formation events, γ should rarely has the
value of less than 0.5, which can also be used as an initial
guess should figuring the previous guidelines problematic.
If the shapes of the distributions to be modeled are initially
known, the value of γ can be adjusted to obtain a proper
model output, e.g., in the case of inverse modeling. The fac-
tor γ can also be considered a time-dependent function or
a spatially varying variable, but here we concentrate only to
constant values of γ because the theory behind the value of
γ is currently unknown.

The number of particles in the PL distribution to be trans-
ferred to the LN distribution due to the condensational trans-
fer in the time step of 1t is

NPL→LN = γ

lnD2∫
lnDcond

dN
dlnDp

∣∣∣∣
PL

dlnDp. (44)

Considering infinitesimally small time step (1t→ 0), Dcond
approaches D2 and NPL→LN approaches

γ
g1t

D2

dN
dlnDp

∣∣∣∣
PL, Dp=D2

. (45)

The transferred amounts for S and M are obtained in the
same approach as in Eq. (20), and they are negative for the
PL distribution and positive for the LN distribution. Hence,
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the term for the condensational transfer becomes

transfercond
X =γ

g(t)

D2

dN
dlnDp

∣∣∣∣
PL, Dp=D2

·



−1, X =NPL

−s2, X = SPL

−m2, X =MPL

+1, X =NLN

+s2, X = SLN

+m2, X =MLN

, (46)

where s2 and m2 are the surface area and the mass of the
particle with the diameter ofD2. The condensational transfer
does not alter the moments of the total distribution because
particles are not altered in the transfer, it only transfers the
particles between the distributions; therefore, the value of γ
has a minor effect only on the moments but a noticeable ef-
fect on the shape of the PL+LN distribution.

3 Simulation setup for the evaluation of the PL+LN
model

The PL+LN model was evaluated with the simulations of
theoretical test cases and a real particle formation case. The
evaluation was done against sectional models that yield accu-
rate results due to a high number of size sections. Two types
of sectional models were used: fixed-sectional (FS) and MC
models. The models are further subdivided depending on the
amount of size sections they use. FS models provide the best
accuracy for the particle number concentration and MC mod-
els for the mass concentration, when a high number of size
sections is modeled. The results from different models and
from measurement data are examined by comparing the dis-
tributions, the moments (N , S, and M), and the variables,
GMD (geometric mean diameter) and GSD (geometric stan-
dard deviation). GMD and GSD can be calculated from a
continuous or a discrete total distribution with the equations

lnGMD=
1
N

∞∫
−∞

lnDp dN =
1
N

∑
j

Nj lnDp,j (47)

ln2GSD=
1
N

∞∫
−∞

ln2
(
Dp

GMD

)
dN

=
1
N

∑
j

Nj ln2
(
Dp,j

GMD

)
, (48)

where Dp,j is the geometric average particle diameter of the
size section j . Relative errors of the moments and the vari-
ables compared to the reference models are calculated with

δX =
X−Xref

Xref
, (49)

where X and Xref are the moment or the variable from the
model in examination and from the reference model, respec-
tively. FS models are considered the reference models, with
the exception of the mass moment, M , in a real particle for-
mation case, for which the reference model is an MC model,
because it provides the best mass conservation.

The capability of the PL+LN model in inverse modeling
is also tested using the real measurement data from the par-
ticle formation event. The best estimates of the new particle
formation rates, J (t), and the condensational growth rates,
g(t), obtained from the different models, are compared with
each other. These values for J (t) and g(t) are later used in
the simulation that is used to examine the output accuracies
and computational costs of different models.

The diameter of a newly formed particle was assumed to
be a constant, D1 = 1.6nm, in all cases. The value was cho-
sen because it is in the range of a relevant size of a particle
from which atmospheric aerosol formation starts (Kulmala
et al., 2007) and of a size of a smallest particle that can be
detected with the Airmodus Particle Size Magnifier (PSM)
with the detection efficiency of nearly unity (Vanhanen et al.,
2011). Single-component modeling was performed assuming
a mixture with the particle bulk density of ρ = 1.4gcm−3 as
the component. The value was chosen because it is a relevant
density of small particles in the atmosphere (Kannosto et al.,
2008).

3.1 Theoretical test cases

Theoretical test cases were used to compare the PL+LN
model output with a highly accurate FS model. The FS model
had 1000 size sections between 1.6 and 10 nm (FS1000),
which is sufficiently dense to produce accurate results. Ad-
ditionally, the PL+LN model was compared with the model
having a LN distribution only. All cases were simulated using
constant and equal time steps to obtain a reliable comparison;
the simulated time domains (tmax) were split into 3000 time
steps.

The input parameters of the test cases are presented in
Table 1. The Atm and Exh cases represent particle forma-
tion cases using input parameter values that reflect condi-
tions typical to the atmosphere and to vehicle exhaust, re-
spectively. Typical new particle formation rates in the at-
mosphere range from 0.01 to 10 cm−3 s−1 and condensa-
tional growth rates from 0.1 to 20 nmh−1 (Kulmala et al.,
2004). In vehicle exhaust, new particle formation rates
can reach up to 1010 cm−3 s−1 and condensational growth
rates up to 20 nms−1 (Rönkkö et al., 2006; Uhrner et al.,
2007; Olin et al., 2015). To test the PL+LN model in a
wide range of J and g, low values for Atm cases (J =
0.1cm−3 s−1, g = 1nmh−1) and high values for the Exh
case (J = 108 cm−3 s−1, g = 5nms−1) were chosen. In ad-
dition to constant J and g values, a case having time-
dependent J (t) and a case having time-dependent J (t) and
size-dependent g(Dp) were simulated.

www.atmos-chem-phys.net/16/7067/2016/ Atmos. Chem. Phys., 16, 7067–7090, 2016



7076 M. Olin et al.: The combined power law and log-normal distribution model

Table 1. Input parameters for the test cases. Case names with Atm have the parameter sets related to atmospheric particle formation and
the Exh case related to particle formation occurring in vehicle exhaust. J and g are the new particle formation rate and the condensational
growth rate, respectively. Nbg is the concentration of the background aerosol distribution having a count median diameter of CMDbg. The
coagulational loss exponent lbg depends on the value of CMDbg. Wall deposition is modeled using the deposition coefficient kdep. The length
of the simulated time domain is tmax.

Case J g T Coagulation Nbg CMDbg lbg kdep γ tmax
(cm−3 s−1) (K) (cm−3) (nm)

Atm1 0.1 1 nmh−1 280 intra, inter 0 – – 0 0 5 h
Atm2 0.1 1 nmh−1 280 intra, inter 0 – – 1.8 nmh−1 0 5 h
Atm3 0.1 1 nmh−1 280 intra, inter, bg 103 100 −1.6 1.8 nmh−1 0 5 h
Atm4 Eq. (50) 1 nmh−1 280 intra, inter, bg 103 100 −1.6 1.8 nmh−1 0 5 h
Atm5 Eq. (50) Eqs. (16)–(18) 280 intra, inter, bg 103 100 −1.6 1.8 nmh−1 0.25 5 h
Exh 108 5 nms−1 500 intra, inter, bg 106 60 −1.5 0.07 nms−1 0 1 s

The Atm1 case includes simultaneous new particle forma-
tion, condensation, intramodal-, and intermodal coagulation.
For the Atm2 case, depositional losses were also added. The
deposition coefficient kdep = 1.8nmh−1 was calculated by
assuming that particle formation takes place in a test cham-
ber with the dimensions of 3m× 2m× 2m and with the
deposition velocities of salt particles measured by Hussein
et al. (2009). For the Atm3 case, a background distribution
was added to act as the coagulation sink. The chosen val-
ues for the number concentration Nbg = 103 cm−3 and count
median diameter CMDbg = 100nm of the background distri-
bution have been observed, e.g., in a boreal forest area (Riip-
inen et al., 2007). The value for the coagulational loss expo-
nent lbg =−1.6 was obtained from Lehtinen et al. (2007) us-
ing CMDbg = 100 nm. In the Atm4 case, a bell-shaped time-
dependent function for the new particle formation rate (a
bell-shaped form in the function of the number concentration
between 3 and 6 nm is seen in studies of Sihto et al., 2006,
and Riipinen et al., 2007) was modeled with

J (t)= J0 e
−

(
t−t0
τJ

)2

, (50)

where t0 = 1000s is the time at which the highest new parti-
cle formation rate J0 = 0.1cm−3 s−1 occurs and τJ = 5000s
represents the width of the bell-shaped curve.

The applicability of the PL+LN model using size-
dependent condensational growth rates was evaluated with
the Atm5 case, where g(Dp) was modeled using Eqs. (16)–
(18). In this case, particles were assumed to consist of the
mixture of sulfuric acid and water. The growth is modeled
as the growth due to sulfuric acid,

dmp,H2SO4
dt , calculated us-

ing the sulfuric acid vapor concentration [H2SO4] = 0.8×
107 cm−3, following the growth due to water vapor:

dmp,H2O

dt
=

[
1

YH2SO4

(
Dp
) − 1

]
·

dmp,H2SO4

dt
, (51)

where YH2SO4(Dp) is the mass fraction of sulfuric acid in a
particle in water equilibrium, i.e., a particle having the com-

Figure 4. Size-dependent condensational growth rate of sulfuric
acid-water particles with the sulfuric acid vapor concentration of
0.8× 107 cm−3, temperature of 280 K, and relative humidity of
60 % as a function of the particle diameter, used in the Atm5 case.

position with which no condensation or evaporation of water
vapor occurs in temperature of 280 K and relative humidity
of 60 % when the particle diameter isDp. The approximation
of water equilibrium is reasonable because, with these en-
vironmental values, ∼ 2× 1010 times more water molecules
than sulfuric acid molecules exist and thus there are proba-
bly a sufficient amount of water molecules to condense on
the particle to reach the equilibrium state before the next sul-
furic acid molecule condenses on it. The properties of the
vapors and the particles were calculated, using the equilib-
rium composition, as described in Olin et al. (2015). These
environmental values were chosen because they are relevant
values met in the atmosphere and they cause the condensa-
tional growth rate function that is far beyond a constant value
in the particle diameter range of this case (from 1.6 nm to
8 nm), as seen in Fig. 4, which provides a beneficial test to
examine how the model behaves with size-dependent g.

The Exh case represents simultaneous new particle for-
mation, condensation, intramodal and intermodal coagula-
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Measured

Figure 5. Number (N ), surface area (S), and mass (M) concentrations of the nucleation mode in the chamber event. The measured concen-
trations and the concentrations produced during inverse modeling using different models are nearly equal. The data are shown for the centers
of the Nano-SMPS scans only, because those values only are used in inverse modeling. FS400 denotes the fixed-sectional model with 400
size sections and MC100 denotes the moving-center fixed-sectional model with 100 size sections.

tion, coagulational losses, and depositional losses occurring
in diesel vehicle exhaust inside the ageing chamber of a lab-
oratory sampling system. The values Nbg = 106 cm−3 and
CMDbg = 60nm were obtained from the measurements of
Rönkkö et al. (2013) and the corresponding lbg =−1.5 from
Lehtinen et al. (2007) using CMDbg = 60nm. The deposition
coefficient kdep = 0.07nms−1 was calculated using the age-
ing chamber dimensions of 5cm(diameter)×100cm(length)
and the deposition velocities of salt particles measured by
Hussein et al. (2009).

Because the test cases are purely theoretical, the need for
constructing log-normal features to the distributions through
the condensational transfer artificially is minimal. In the
Atm4 case, a time-dependent new particle formation rate
suggests using the condensational transfer, but, according to
the analysis of the shapes and the moments of the distribu-
tions, the output is not very sensitive to the value of γ , which
is probably due to the bell-shaped function for the new parti-
cle formation rate that produces distributions containing both
power law and log-normal features. In the Atm5 case, a size-
dependent condensational growth rate outputs size distribu-
tions having features of a different kind, and thus the PL+LN
distribution does not fit very satisfactorily in this case. Ac-
cording to the analysis of the shapes and the moments of the
distributions in the Atm5 case, the best estimate for γ is 0.25,
which was used in the Atm5 case; γ = 0 was used in all the
other cases.

3.2 Mobile aerosol chamber particle formation event

The mobile aerosol chamber is a Teflon bag with the dimen-
sions of 3m×2m×2m. The chamber is operated in a batch
process; i.e., firstly, the chamber is filled with the air sam-
ple and, secondly, the sample is measured from the chamber.

UV lights with the wavelength of 254 nm (UVC) are used in
the chamber to initiate new particle formation and to boost
the aging of the aerosol through photochemical processes.
The chamber simulates a particle formation event occurring
in the atmosphere, but with shorter timescale due to the UV
lights. The chamber is designed to be mobile; therefore, it is
fit to a car trailer.

The particle formation event measurement was per-
formed at a street canyon measurement site of Helsinki Re-
gion Environmental Services Authority (HSY) located in
Mäkelänkatu, Helsinki, Finland. The street had dense traf-
fic during the measurement in 22 April 2015. The chamber
was firstly filled with urban air and, once filled, the air sam-
ple was sucked with the measurement devices located in the
mobile laboratory vehicle. The details of processing the ex-
perimental data to obtain the moments (N , S, andM) and the
variables, GMD and GSD, are described in Appendix B.

3.2.1 Obtaining J(t) and g(t) through inverse
modeling

Obtaining the values for the new particle formation rate,
J (t), and for the condensational growth rate, g(t), for the
particle formation event, occurred in a mobile aerosol cham-
ber, was performed through inverse modeling. A time do-
main, starting from 152 s before switching the UV lights
on and ending at 1663 s after switching the UV lights on,
including 13 Nano-SMPS (Nano Scanning Mobility Parti-
cle Sizer) measurement scans, was simulated using differ-
ent values for J (t) and g(t). Following the approach of Ver-
heggen and Mozurkewich (2006), the least squares method
was used to minimize the errors of the concentrations N , S,
and M at 13 time moments which represent the middles of
the Nano-SMPS scans. The values for J (t) and g(t) were
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Fit

Figure 6. Time series for the new particle formation rates in the
chamber event that produce the measured concentrations, N , S, and
M , the most accurately compared to the measured ones, using dif-
ferent models. The fit denotes a bell-shaped function fitted to the
values from the FS400 model.

assumed constants within a time step of a Nano-SMPS scan,
150 s. The condensational growth rate was assumed also size-
independent due to the lack of knowledge of the vapors par-
ticipating in the condensation process. ODE45 solver was
used in the simulations, and it provides the time steps that
are sufficiently short to keep the result from altering more
than 1 % compared to a previous time step but sufficiently
long to keep the total computing time convenient.

Coagulation within the nucleation mode was included in
the simulations, but the coagulational losses to the back-
ground mode were neglected because low number concen-
tration of the background mode would have a minor effect
only on the nucleation mode. The particles formed in this
case are possibly multicomponent due to the origin of the
vapors, the new particle formation rate seems to vary sig-
nificantly with time, and the measured distributions are wide
(GSD up to 2). Therefore, a high value for the condensational
transfer factor γ is expected to produce the best results using
the PL+LN model. A constant value γ = 0.8 was used in
the simulations because it produces the results that are the
closest to the results of highly accurate sectional models, in
this case. Due to a high value of γ , the coagulational transfer
would had a minor effect only, and therefore it was neglected
in the simulations. The depositional losses were modeled us-
ing the deposition coefficient kdep = 3780nmh−1 which is
obtained by fitting the simulated number concentrations with
the measured ones after particle formation and growth were
quenched (t > 1500 s).

Firstly, inverse modeling was performed using the PL+LN
model. The time series of J (t) and g(t), which produced
the most corresponding concentrations compared to the mea-
sured ones (Fig. 5), are presented in Figs. 6 and 7. Secondly,
inverse modeling was performed using both an FS model
having 400 size sections between 1.6 and 100 nm (FS400)

Fit

Figure 7. Time series for the condensational growth rates in the
chamber event that produce the measured concentrations, N , S, and
M , the most accurately compared to the measured ones, using dif-
ferent models. The fit denotes a linear function fitted to the values
from the FS400 model.

and an MC model having 100 size sections between 1.6 and
100 nm (MC100), separately. The computing times of the
FS400 and the MC100 models are significantly longer than
of the PL+LN model; therefore, the time series of J (t) and
g(t), obtained using the PL+LN model, were used as ini-
tial guesses when inverse modeling was performed using the
FS400 or the MC100 model in order to reduce the computing
times. The associated computing time of the automatic in-
verse modeling procedure using the PL+LN model was ap-
proximately 2 orders of magnitude shorter than that of the
FS400 or the MC100 model, which implies that a signif-
icant improvement in the computing time can be obtained
using the PL+LN model in the case of inverse modeling. In-
verse modeling was also performed using the computation-
ally more efficient LN model.

It can be seen from Fig. 6 that there are only minor dif-
ferences in the values of J (t) between the different models
used in inverse modeling. The PL+LN model seems to need
higher new particle formation rates compared to the accu-
rate models, the FS400 and the MC100 models. Conversely,
the LN model seems to need lower new particle formation
rates. These denote that the PL+LN model has a tendency
to underestimate the number concentrations and that the LN
model has a tendency to overestimate the number concen-
trations, because the output number concentrations of the
models are nearly equal (Fig. 5). The values of g(t), seen
in Fig. 7, have also only minor differences between the dif-
ferent models. The values of J (t) and g(t) before the UV
lights (t < 0s) seem unphysically high. That is caused be-
cause the simulation begins with no particles at t =−252s
but the measurement data include some nucleation mode par-
ticles at that time, even though the background aerosol distri-
bution was subtracted from the measured distribution. All the
particles are not subtracted because the subtraction was done
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Measured

Figure 8. Geometric mean diameter (GMD) and geometric stan-
dard deviation (GSD) of the nucleation mode in the chamber event,
obtained through inverse modeling, using different models.

with a purely log-normal distribution, which is exactly not
the case for measured data. Therefore, the simulation time
range −252s< t <−152s was used to produce the mea-
sured nucleation mode at the time of the first Nano-SMPS
scan, t =−152s.

The effect of the choice for the lowest particle diameter,
D1, for the PL+LN model was also examined by performing
inverse modeling withD1 = 1nm andD1 = 3nm, in addition
to D1 = 1.6nm. Approximately 40 % higher values for J (t)
were needed to produce the measured concentrations when
D1 = 1nm was used compared toD1 = 3nm. This deviation
occurs because smaller particles have higher losses, and with
higher value for D1 the smallest particles do not exist. The
situation is the same for sectional models, because the small-
est particle size needs to be chosen for them too. The choice
for D1 does not have significant effect on the condensational
growth rate, in this case, due to size-independent g(t).

The effect of the choice for the value of the condensational
transfer factor, γ , for the PL+LN model was also examined
by performing inverse modeling with the values between 0
and 1, in addition to γ = 0.8. With the values between 0.4
and 0.9, the times series of J (t) obtained from inverse mod-
eling deviate within 3 % on average. However, with the val-
ues outside of that range, the deviation increased up to 36 %.
The highest new particle formation rates are needed when
the value of γ is low because the PL distribution dominates
the number of particles, which leads to more small particles,
which have high losses. Only a minor effect (the deviations
within 4 %) was seen on the time series of the condensational
growth rate when the value of γ was altered between 0 and
1. In conclusion, choosing the value of 0.5 for γ when a bet-
ter guess of its value is lacking, as mentioned earlier, would
produce reasonable results.

Figure 8 presents the time series of GMD and GSD of the
nucleation mode, obtained from the different models used in

inverse modeling and from the measured data. It can be ob-
served that the models output these variables relatively well
compared to the measured data, although they were not se-
lected as the variables, of which errors are to be minimized,
in inverse modeling. However, underestimations of GSD are
seen with the LN model. The measured values of GMD and
GSD before the UV lights are inaccurate due to the assump-
tion of a log-normal background aerosol distribution men-
tioned before.

3.2.2 Simulation setup for the examination of the
accuracy and the computational cost of the
PL+LN model

To examine the accuracy and computational cost of the
PL+LN model, the simulations using different models were
performed using equal time series of J (t) and g(t) and equal
time stepping. The time series obtained using the FS400
model are considered the best estimates to produce the mea-
surement results due to the highest number of size sections
modeled. Therefore, they were used as the time series for
all the models used here, PL+LN, LN, FS400, MC100,
FS35, and MC10. FS35 and MC10 denote a fixed-sectional
model having 35 size sections and a moving-center fixed-
sectional model having 10 size sections between 1.6 and
300 nm, respectively. These section number were used be-
cause they provide approximately the same computing times
as the PL+LN model. Higher upper diameter limit for the
FS35 and the MC10 models were chosen due to higher nu-
merical diffusion associated to these models, which causes
higher concentrations in large particle diameters compared to
more accurate models. The time series of J (t) and g(t) used
here are presented as fits in Figs. 6 and 7. The fitted functions
were used rather than the time series because the time se-
ries with sharp edges would produce distributions with sharp
edges as well, which would be unphysical. Here, the time se-
ries have sharp edges due to a very limited number of data
points (Nano-SMPS scans) within the time domain. It is ob-
vious that because the fits are not very near the time series,
the outputs of the models will not be very near the measured
data. Nevertheless, the fits were used because the purpose
here is to examine the accuracy and the computational cost of
the PL+LN model, which is done against the highly accurate
models, the FS400 and the MC100 models. This comparison
is the most properly done when all the models have the same
functions for J (t) and g(t). The time domain to be simulated
was split into 7953 time steps for all the models. The time
splitting was obtained from the ODE45 solver used with the
FS400 model. The time steps had the lengths of between 0
and 0.5 s, the shortest ones being in the beginning of the time
domain.

The accuracy of the PL+LN model is examined by com-
paring the relative errors (δX) of the moments, N , S, and
M , and the variables, GMD and GSD. The reference dis-
tributions used in the comparison are the distributions pro-
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duced by the FS400 model and by the MC100 model, which
are considered the models that most accurately conserve the
number and the mass concentrations, respectively. The distri-
butions from the FS400 model are used as the reference dis-
tribution when calculating δX for all the moments and vari-
ables, with the exception of the mass concentration, M , for
which the MC100 model is used as the reference model. Be-
cause the distributions produced by the sectional models are
considered here the correct ones rather than the measured
distributions, the modeled distributions are used as the ref-
erence distributions. In this manner, the differences of the
model outputs are caused by the models itself, e.g., due to nu-
merical diffusion or some simplifications used in the model,
not by how accurately they correspond with the measured
data. The accuracies of the LN, FS35, and MC10 models are
also examined.

All the other input parameters were the same as those used
with the inverse modeling. The simulations used to examine
the model accuracies provide also the possibility of compar-
ing the computational costs of different models, because all
the simulations were run using the same computer (Intel Core
i5-3470 processor at 3.2 GHz) and had equal time stepping
and, therefore, equal number of computations of the general
dynamic equation per a moment or a size section. Addition-
ally, the sensitivity of the value of γ was examined using also
the values of 0.1, 0.5, and 0.9, in addition to the value of 0.8.

4 Results and discussion

4.1 Theoretical test cases

Figure 9 shows the size distributions at the ends of the theo-
retical test simulations using different models. The distribu-
tions of the Atm cases during the whole time domain are pre-
sented as a video in the Supplement and can also be accessed
via http://dx.doi.org/10.5446/18564. It can be observed that
the shape of the distribution produced by the PL+LN model
is nearly equal to the reference distribution (FS1000). The
largest deviations between the PL+LN distributions and the
reference distributions are the gap between the PL and the
LN distribution and the sharp peak in the PL distribution.
These are most clearly seen in the Atm4 case where α is the
highest. In the Atm5 case, the shape of the distribution pro-
duced by the FS1000 model is different: the distribution of
the smallest particles does not follow a power law form due
to low condensational growth rates near the particle diam-
eter of D1. Consequently, the PL+LN model is not able to
express the distribution correctly at very small particle sizes.
The effect of γ is also seen with the Atm5 case where the
ratio of the concentrations of the LN distribution and of the
PL distribution is higher due to higher γ . Conversely, the dis-
tributions produced by the LN model are far beyond the ref-
erence distributions. In the Atm4 and the Atm5 cases where
new particle formation rates decrease towards the end of the

Table 2. Relative errors, δX (%), of the variables at the ends of
the test case simulations using the PL+LN model compared to the
variables produced by the fixed-sectional model with 1000 size sec-
tions. The input parameter sets are shown in Table 1. N , S, and M
are the number, the surface area, and the mass concentration of the
total particle distribution, respectively. GMD and GSD are the ge-
ometric mean diameter and the geometric standard deviation of the
distribution.

Case N S M GMD GSD

Atm1 −0.001 −0.310 −0.573 +0.068 −0.193
Atm2 −0.052 −0.481 −0.838 −0.083 −0.039
Atm3 +0.173 −0.884 −1.296 −0.086 −0.505
Atm4 +0.202 −0.816 −1.518 +0.933 −1.251
Atm5 +6.957 −2.384 −7.666 −3.511 −2.879
Exh +0.007 −0.356 −0.680 +0.084 +0.011

simulation, the LN model begins to act better while the ref-
erence distribution transforms towards a log-normal shape.

The effect of the depositional losses can be seen as a de-
creased α in the Atm2 case compared to the Atm1 case. Be-
cause kdep > g, the value of α becomes negative. Comparing
the Atm3 case with the Atm2 case, it can be seen that the
coagulational losses decrease α further. In the Atm4 and the
Atm5 cases, the values of α are again increased compared to
the Atm3 case. This occurs because J (t) decreases with in-
creasing time but g remains constant, in time, and thus there
will be less small particles with increasing time. The distribu-
tion of the Exh case is mainly comparable to the Atm1 case
with the exception of higher concentration levels in the Exh
case due to higher J

g
. It can be also observed that the ratio

of the concentrations of the LN distribution and of the PL
distribution is higher in the Exh case than in the Atm1 case.
This is due to increased coagulational transfer in the Exh case
because it is calculated through the intramodal coagulation,
of which rate is proportional to N2

PL. The depositional and
coagulational losses do not have significant effect on the dis-
tribution in the Exh case because kdep� g and Nbg�N .

Figure 10 shows the relative errors of the moments (δX)
in the PL+LN model compared to the reference model,
FS1000, as a function of time, and Table 2 at the ends of the
test simulations. The highest relative errors of the total con-
centrations, N , S, and M , are usually met at the ends of the
simulated time domains, and they are less than 2 % in all the
cases, except the Atm5 case, the total number concentration
N being the most accurately conserved moment. In the Atm5
case, |δX| for the moments are 17 % at the highest. The er-
rors of this high level are caused by the reference distribution
having features that do not fit well neither with the PL dis-
tribution nor with the LN distribution. The form of the size
dependence of the condensational growth rate in the Atm5
case represents, however, one of the worst cases simulated
with the PL+LN model. For comparison, the parameters of
the Atm5 case would cause |δX| to reach the levels of 24 %
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Figure 9. Particle size distributions at the ends of the test case simulations produced by different models. The input parameter sets are shown
in Table 1. FS1000 denotes the fixed-sectional model with 1000 size sections. Note the different scales in the vertical axes on the bottom row.

when the condensational transfer is neglected, the levels of
19 % when only the PL distribution is simulated, and the lev-
els of 90 % when only the LN distribution is simulated. GMD
and GSD have |δX| of less than 0.5 % in the cases with the
constant parameters, but for the Atm4 and the Atm5 cases the
errors are higher (around ±4%). All the cases, with the ex-
ception of the Atm5 case, can be simulated with the PL distri-
bution only to achieve the levels of the relative errors as with
the PL+LN distribution, but the need of the LN distribution
in addition to the PL distribution arises with the Atm5 case.
However, visually inspecting the LN distribution is needed
in all the cases to obtain distributions that have the correct
shapes in the highest particle sizes.

The total computing time of the Atm5 case with the
PL+LN model compared to the Atm4 case is approximately
2-fold, which is mainly caused by the need of numerical inte-
gration in calculation of the condensation terms in the Atm5
case. The associated computing time, and the accuracy, can
be controlled by the number of size sections used in numer-
ical integration or by using a polynomial form for the con-
densational growth rate. Because condensation is calculated
using size sections with the FS1000 model, regardless of the
size dependency of the condensational growth rate, the to-
tal computing time increases only about 7 % when switching
from size-independent condensational growth rates to size-
dependent ones. The increase of the total computing time, in
that case, is related to additional computations to obtain the
values for the condensational growth rate itself.

4.2 Mobile aerosol chamber particle formation event

Particle size distributions obtained from the FS400, the LN,
and the PL+LN models are shown as contour plots in Fig. 11
together with the measured distributions. Comparing the
plots of the LN and the PL+LN models with the plot of the
FS400 model, it can be seen that the PL+LN model behaves
better for small diameters than the LN model. However, there
is a sharp discontinuity between the PL and the LN distribu-
tions in the PL+LN model. In this case, the discontinuity
is mainly formed due to the condensational transfer that is
separating the distributions from each other. It is also seen
that the PL+LN model is capable in vanishing the PL dis-
tribution when the aerosol ages and begins to have mainly a
LN-like form. Particle distributions 378 and 978 s after the
UV lights were switched on are also shown in Fig. 12. The
time t = 378s presents the center of the Nano-SMPS scan
where the new particle formation rate is at the highest. At the
time t = 978s, new particle formation was mostly quenched
but growth still occurred. The shapes of the distributions pro-
duced by the PL+LN model are near the reference distribu-
tions (FS400) with the exception of the gaps between the PL
and the LN distributions. The shapes of the distributions at
the largest particles produced by the LN model correspond
better with the measured distributions than at the smallest
particles. In the simulation using the FS35 model, a high
numerical diffusion that widens the distribution towards the
larger particles is seen. The distributions produced by the MC
models, MC100 and MC10, have sharp features but follow
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Figure 10. The relative errors of the moments (δX) in the test cases produced by the PL+LN model. The input parameter sets are shown in
Table 1.

Figure 11. Contour plots of particle distributions measured by the Airmodus Particle Size Magnifier (PSM), TSI Ultrafine Condensation
Particle Counter (CPC), and TSI Nano Scanning Mobility Particle Sizer (Nano-SMPS) and simulated by different models in the chamber
event. The value of 0.8 was used for γ with the PL+LN model. The UV lights were switched on at time t = 0s. Note that the background
particle distribution seen in the measured data was excluded from the simulations.
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Measured

Figure 12. Particle size distributions in the chamber event 378 and 978 s after the UV lights were switched on. The top row shows the accurate
model outputs together with the measured distribution. The bottom row shows the less accurate model outputs together with the accurate
FS400 model output. The measured distributions include also the background distributions around 30 and 50 nm which were excluded from
the simulations. The abbreviations are explained in Table 3.

Figure 13. Number (N ) and mass (M) concentrations, GMD, and GSD of the nucleation mode and the relative errors of the concentrations
(δN and δM ) in the chamber event, produced by different models. The outputs of the FS400 and the MC100 models are nearly equal, and
thus they are difficult to distinguish in the figure.
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Table 3. Computational costs of different models and relative errors of number (N ) and mass (M) concentrations obtained from the time of
1663 s after the UV lights were switched on in the chamber simulation. The number of variables compared to size sections in MC models is
2-fold because the centers of the size sections need to be stored in addition to the concentrations of the sections. Relative values are calculated
using a model with (ref.) as the reference model.

Model Method Size Variables Relative Error in N Error in M
name sections computing time (%) (%)

FS35 fixed-sectional 35 35 1.0 +1.6 +79
MC10 moving-center 10 20 1.0 +18 +29
LN log-normal – 3 0.09 +17 +6.4
PL+LN combined PL and LN – 6 1.0 (ref.) +0.48 −1.2

FS400 fixed-sectional 400 400 170 0 (ref.) +3.4
MC100 moving-center 100 200 200 +0.31 0 (ref.)

Figure 14. Particle size distributions 978 s after the UV lights were
switched on, with the different values for the condensational trans-
fer factor γ using the PL+LN model compared to the FS400 model.

the distributions produced by the FS400 model. The number
of size sections in the MC10 model is obviously too low to
obtain size distributions that are near the reference distribu-
tions. The modeled distributions at the time t = 978s are not
very near the measured distribution due to the fitted functions
used for J (t) and g(t).

Table 3 presents the computational costs and the accura-
cies of the models. Computing times are reported relative
to the computing time of the PL+LN simulation, 24 s. The
PL+LN model has the best accuracy for the total number (N )
and mass (M) concentrations compared to the sectional mod-
els with approximately the same computing time (FS35 and
MC10) and to the LN model. The FS35 model is relatively
accurate in N output but suffers from high numerical diffu-
sion seen as high relative error (79 %) in M . The PL+LN
model has also low memory consumption due to a low num-
ber of variables. The LN model is, however, the most com-
putationally efficient but the relative errors are high too (up
to 17 % in N ).

The development of N , M , GMD, GSD, and the relative
errors ofN andM are shown in Fig. 13. It can be seen that the
PL+LN model has nearly the same output for N as the ref-
erence models during the whole time domain. The beginning
of the overestimation of N in the LN and in the MC10 mod-
els are clearly seen at the region where the new particle for-
mation has the highest rate (t ≈ 400s). The LN model func-
tions better in M , but overestimations are encountered with
the MC10 model. In addition to the MC10 model, the FS35
model overestimates M clearly. The PL+LN model outputs
M very accurately during the whole time domain. GMD is
overestimated slightly with the FS35 and the MC10 mod-
els due to numerical diffusion, but the PL+LN and the LN
models output it accurately during the whole time domain.
The highest error in GMD produced by the PL+LN model is
the underestimation of 1.3 % compared to the FS400 model
which occurs at the time of the highest new particle forma-
tion rate. The highest deviations between the models are seen
in the development of GSD. The PL+LN model underes-
timates GSD with 3 % at the end of the time domain, but
the FS35 model overestimates it significantly and the MC10
model and the LN model underestimate it significantly. Addi-
tionally, the MC10 model suffers from uneven behavior due
to its low number of size sections. The relative errors of the
moments, δN and δM , are at the highest levels mostly at the
ends of the simulations. The models having at least the same
computational efficiency as the PL+LN model (the FS35, the
MC10, and the LN models) fail to produce N and M accu-
rately: the relative errors can be up to tens of percent. The
relative errors with the PL+LN model are below 2 % during
the whole time domain. In conclusion, the PL+LN model
has the best accuracy for the production of N ,M , GMD, and
GSD during the whole time domain compared to the other
models having at least the same computational efficiency.

Figure 14 presents the particle distribution at the time of
t = 978s using the PL+LN model with different values of
γ . It can be seen that the PL distribution in the total distri-
bution is mostly dominating when a low value for γ is used
(left pane). Conversely, using a high value of γ (right pane)
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Figure 15. Contour plots of particle distributions simulated by the PL+LN models with different values of γ in the chamber event.

Table 4. Relative errors (%) of the variables in the chamber sim-
ulation with the PL+LN model using different values for the con-
densational transfer factor γ . The errors are compared to the FS400
model, except for M that is compared to the MC100 model.

γ N M GMD GSD

0.1 −1.2 −7.8 +2.6 −5.8
0.5 +0.75 −2.7 −3.7 +3.4
0.8 +0.48 −1.2 −0.33 −2.8
0.9 +2.6 −0.43 −0.11 −6.0

produces a more LN-like form, which, at least in this case,
corresponds best with the measured distribution. However,
a gap between the PL and the LN distributions is larger in
cases of high values of γ . The sensitivity of the value of γ is
also shown in Table 4, in which the relative errors of N , M ,
GMD, and GSD are reported. It can be seen that a value near
0.8 provides the most accurate results, depending on the vari-
able of the main interest. By comparing the errors of N and
M produced by the PL+LN model with the errors produced
by different models reported in Table 3, it can be seen that
the lowest errors for N and M simultaneously are produced
by the PL+LN model regardless of the value of γ used. Con-
tour plots with different values of γ are shown in Fig. 15. By
visual inspection, it can be seen that the values 0.5 and 0.8

produce the contour plots being the closest to the measured
contour plot in Fig. 11.

5 Conclusions

The combined power law and log-normal distribution
(PL+LN) model was developed to represent a particle size
distribution in simultaneous new particle formation and
growth situation, in which log-normal distributions do not
represent the aerosol sufficiently well. The PL+LN distribu-
tion combines a power law form typical to simultaneous new
particle formation and growth situation at the initial steps
of aerosol formation with a log-normal form typical to aged
aerosols. The PL+LN model is useful in simulations involv-
ing the initial steps of aerosol formation where a sectional
representation of the size distribution causes too high com-
putational cost, such as in multidimensional simulations or
in the case of using inverse modeling to obtain the best esti-
mates for parameters used as input in the model. These pa-
rameters can be, e.g., the new particle formation rate or the
condensational growth rate that the most accurately produce
the distributions as the measured ones. The model uses six
moment variables to model the distribution, denoting lower
memory consumption compared to sectional models which
require tens or hundreds variables. The model includes si-
multaneous new particle formation, condensation, coagula-
tion, coagulational loss, and depositional loss processes.
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The PL+LN model was evaluated using theoretical test
simulations and a real-world particle formation event simu-
lation. The test cases represented particle formation events
with the parameters related to the atmosphere and to ve-
hicle exhaust. The real-world case was the simulation of a
particle formation event measurement performed in a mobile
aerosol chamber at Mäkelänkatu street canyon measurement
site in Helsinki, Finland. The evaluation was done against
highly accurate sectional models using fixed-sectional and
moving-center fixed-sectional methods. The accuracy of the
total number, surface area, and mass concentrations simu-
lated by the PL+LN model was examined: the relative er-
rors of the concentrations were lower than 2 % compared to
the highly accurate sectional models, with the exception of
a theoretical test case having size-dependent condensational
growth rate with which the relative errors were up to 17 %
due to the shape of the size distribution produced. The per-
formance of producing GMD and GSD of the total distribu-
tions using different models was also examined: the highest
relative error with the PL+LN model was 3.5 % for GMD
when size-dependent new particle formation rate was mod-
eled in a theoretical test case. The shapes of the distributions
produced by the PL+LN model were noticeably more sim-
ilar to the reference distributions than produced by a simple
log-normal distribution model.

Considering the same computing time as the PL+LN
model in the chamber event simulation, only 35 size sections
for a fixed-sectional model and 10 size sections for a moving-
center fixed-sectional model were allowed to be modeled.
With these section numbers, the results for the number and
mass concentrations, for GMD, and for GSD were not as ac-
curate as using the PL+LN model: the relative errors were up
to tens of percent. Additionally, a simple log-normal distri-
bution model seemed to output GMD relatively well in this
case, but the number concentration was overestimated and
GSD was underestimated during almost the whole time do-
main, especially at times when new particle formation and
growth occurred simultaneously.

The new particle formation rates, J (t), and the conden-
sational growth rates, g(t), used in the chamber simulation
were obtained through inverse modeling. Firstly, the PL+LN
and the LN models were used to obtain the best estimates
for J (t) and g(t) that produce the measured concentrations
the most accurately. Secondly, the time series of J (t) and
g(t) obtained using the PL+LN model were used as ini-
tial guesses in the inverse modeling with the highly accu-
rate models. Only minor differences were found in the time
series of J (t) and g(t) obtained using different models: the
PL+LN model overestimates and the LN model underesti-
mates J (t) slightly. The associated computing times using
the highly accurate sectional models are approximately 2 or-
ders of magnitude longer compared to the PL+LN model.
Therefore, the PL+LN model provides a rapid and accurate
solution to obtain input parameters, such as new particle for-
mation and condensational growth rates, from the measured
data through inverse modeling.
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Appendix A: Gaussian quadratures

The Hermite–Gauss quadrature (Steen et al., 1969) is used
in the integrals involving the LN distribution, as the density
function of the LN distribution, Eq. (8), is in the form of the
weight function of the Hermite–Gauss quadrature e−x

2
. For

example, an integral

∞∫
−∞

D2
p g(t,Dp)

dN
dlnDp
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dlnDp (A1)

=
NLN
√

2π lnσ

∞∫
−∞

D2
p g(t,Dp)exp

[
−
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becomes, using the Hermite–Gauss quadrature,
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√
π

n∑
j=1

wjD
2
p g(t,Dj ), (A2)

where Dj and wj are the abscissa and the weight for the bin
j obtained from the quadrature, and n is the degree of the
quadrature. In this article, the degree of n= 5 is used for the
LN distribution denoting that the integrals are calculated with
five diameter values. The integrals involved in the PL distri-
bution are in the form of Dαp , which is not a weight function
of any specific quadrature; therefore, a Gaussian quadrature
for this purpose was developed. For example, an integral
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−∞

D2
p g(t,Dp)

dN
dlnDp

∣∣∣∣
PL

dlnDp

=
NPLα

Dα2 −D
α
1

lnD2∫
lnD1

D2
p g(t,Dp)D

α
p dlnDp (A3)

becomes, using the quadrature developed here,

NPL lndα

dα − 1

n∑
j=1

wjD
2
p g(t,Dj ), (A4)

where Dj and wj are the abscissa and the weight for the bin
j obtained from the quadrature. The degree of n= 4 is used
for the PL distribution.

The degree of the quadrature developed here, n= 4, is rel-
atively low, but by using higher degrees, internal equations
in the quadrature will become more complicated, which re-
sults in increased computing time. In the cases described in
this article, the degree of 4 results in the absolute relative er-
rors of the condensation and the coagulation terms less than
10−2 compared to a very high degree numerical integration
or, when it exists, to an analytical solution, but only when
α > 0.5, in the case of the condensation terms, and when
d < 3, in the case of the coagulation terms. A drawback of
the quadrature with a low degree is that with the values of

α < 0.5 (condensation) and d > 3 (coagulation), errors in-
crease, which causes numerical problems during a simula-
tion. Therefore, the quadrature is used only with the values
of α < 0.5 (condensation) or d < 3 (coagulation), but numer-
ical integration as in Eq. (23) otherwise, or, when it exists, an
analytical solution for the condensation terms as in Eq. (22).
In numerical integration, n= 200 size sections are used for
condensation calculation, which is required to produce the
absolute relative errors less than 10−2. When calculating co-
agulation using numerical integration, n= 20 is used. How-
ever, with only 20 size sections, relative errors increase up
to 30 % when d increases towards 100 and α towards ±5.
Nevertheless, a higher degree is not used due to increasing
computing time, which is squarely proportional to the num-
ber of size sections due to double integrals in the coagula-
tion terms. Therefore, the degrees are kept low to maintain
computational efficiency. To produce the same accuracy by
using numerical integration with n size sections as by using
the quadrature with the degree of 4 for the PL distribution,
with the values of α and d where the quadrature is applica-
ble, about 1 or 2 orders of magnitude longer computing time
is consumed. The degree for the Hermite–Gauss quadrature,
n= 5, can be increased easily without encountering steep in-
creases to computing time; nevertheless, in the cases of this
article, n= 5 produces the absolute relative errors of less
than 10−4 for the condensation and the coagulation terms.

Appendix B: Processing the experimental data

The aerosol sample was measured using Airmodus PSM,
TSI Ultrafine Condensation Particle Counter (CPC), TSI
Nano-SMPS, TSI Engine Exhaust Particle Sizer (EEPS), and
Dekati Electrical Low-Pressure Impactor (ELPI+). PSM in
fixed saturator flow setting detects particles with the diame-
ters of higher than about 1.6 nm (Vanhanen et al., 2011), CPC
higher than about 3.6 nm (Mordas et al., 2008), and Nano-
SMPS from about 7 to 64 nm, with the detection efficiency
of 50 % or higher. These cut diameters, DPSM = 1.6nm,
DCPC = 3.6nm, and DNano-SMPS = 7nm, are used to com-
bine the data of PSM, CPC, and Nano-SMPS to obtain to-
tal aerosol size distributions for the diameter range of 1.6 –
64 nm with

dN
dlnDp

∣∣∣∣
measured

(B1)

=


max{NPSM−NCPC,0}

ln(DCPC/DPSM)
, DPSM ≤Dp <DCPC

max{NCPC−NNano-SMPS,0}
ln(DNano-SMPS/DCPC)

, DCPC ≤Dp <DNano-SMPS

dN
dlnDp

∣∣∣
Nano-SMPS

, Dp ≥DNano-SMPS

,

where NPSM, NCPC, and NNano-SMPS are the total
number concentrations measured by the devices, and

dN
dlnDp

∣∣∣
Nano-SMPS

is the particle size distribution measured
by Nano-SMPS. The maximum functions prevent the size
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distribution to become negative. Before the concentrations
were input into Eq. (B1), the concentrations output by the
devices were synced. Because particle sizes are well within
the range of high detection efficiency of all three devices
after the particle formation event, the device outputs would
be equal in that moment if the maximum detection efficien-
cies of all the devices were equal. However, because there
are differences in the maximum detection efficiencies and
the time responses of the devices, the output concentrations
were multiplied and the output time vectors were synced so
that all the time series of the concentrations are overlapping
after the event. Nano-SMPS measures diameters down to
2 nm but, due to its low accuracy for those diameters, all
Nano-SMPS data below 7 nm were neglected. EEPS and
ELPI+ having time resolutions of only 1 s were used to
ensure the stability of the aerosol distribution during a
Nano-SMPS scan lasting 150 s: no rapid changes in the
aerosol distribution were observed in the timescales shorter
than 150 s.

Initially, the aerosol in the chamber consisted of a back-
ground aerosol mode with CMD of 15 nm and the concentra-
tion of about 4000 cm−3, according to the Nano-SMPS data
shown in Fig. 11. No major changes in the distribution were
observed until the UV lights were switched on (t = 0s). Af-
ter switching the UV lights on, a nucleation mode begins to
form, which is seen as the appearance of new particles at
small particle diameters. It can be also seen that small parti-
cles exist though the growth process proceeds, which implies
continuing new particle formation. The total distributions

were altered from a power law shape towards a log-normal
shape. After about 500 s, particle concentration finished in-
creasing (Fig. 5), which occurs because the gaseous precur-
sors initiating new particle formation began to expire. The
decreasing trend of particle number concentration after 500 s
was accounted by coagulation and deposition. The particles
of the nucleation mode and of the background mode grew
to about 25 nm and to about 60 nm during the event, respec-
tively. The total number, surface area, and mass concentra-
tions of the measured nucleation mode were calculated from
the total measured size distributions, Eq. (B1), subtracted by
log-normal distributions fitted to the background aerosol, as-
suming spherical particles with the density of 1.4 gcm−3.
GMD and GSD of the measurement data were calculated also
from the nucleation mode size distribution, using Eqs. (47)
and (48), although the accuracy of the measured distribution
for the diameters below the Nano-SMPS measurement range
is poor.
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