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Abstract. This study investigates a cross-variable ozone data
assimilation (DA) method based on an ensemble Kalman fil-
ter (EnKF) that has been used in the companion study to im-
prove ozone forecasts over Beijing and surrounding areas.
The main purpose is to delve into the impacts of the cross-
variable adjustment of nitrogen oxide (NOx) emissions on
the nitrogen dioxide (NO2) forecasts over this region dur-
ing the 2008 Beijing Olympic Games. A mixed effect on
the NO2 forecasts was observed through application of the
cross-variable assimilation approach in the real-data assim-
ilation (RDA) experiments. The method improved the NO2
forecasts over almost half of the urban sites with reductions
of the root mean square errors (RMSEs) by 15–36 % in con-
trast to big increases of the RMSEs over other urban stations
by 56–239 %. Over the urban stations with negative DA im-
pacts, improvement of the NO2 forecasts (with 7 % reduc-
tion of the RMSEs) was noticed at night and in the morning
versus significant deterioration during daytime (with 190 %
increase of the RMSEs), suggesting that the negative data
assimilation impacts mainly occurred during daytime. Ideal-
data assimilation (IDA) experiments with a box model and
the same cross-variable assimilation method confirmed the
mixed effects found in the RDA experiments. In the same
way, NOx emission estimation was improved at night and in
the morning even under large biases in the prior emission,
while it deteriorated during daytime (except for the case of
minor errors in the prior emission). The mixed effects ob-
served in the cross-variable data assimilation, i.e., positive
data assimilation impacts on NO2 forecasts over some urban

sites, negative data assimilation impacts over the other ur-
ban sites, and weak data assimilation impacts over suburban
sites, highlighted the limitations of the EnKF under strong
nonlinear relationships between chemical variables. Under
strong nonlinearity between daytime ozone concentrations
and NOx emissions uncertainties (with large biases in the a
priori emission), the EnKF may come up with inefficient or
wrong adjustments to NOx emissions. The present findings
reveal that bias correction is essential for the application of
the EnKF in dealing with the data assimilation problem over
strong nonlinear system.

1 Introduction

Chemical data assimilation (CDA) integrates models and ob-
servations to better represent the chemical state of the atmo-
sphere and is recognized as a technique for improving the
simulations and forecasts of air pollutants such as ozone and
aerosols (Carmichael et al., 2008; Sandu and Chai, 2011;
Zhang et al., 2012). The role of CDA in optimizing initial
and boundary conditions has been explored in several appli-
cations to improve forecasts of ozone and aerosol (Gaubert
et al., 2014; Pagowski et al., 2014). Nevertheless, significant
challenges persist in CDA.

One of the major challenges in CDA is that the impact of
the initial conditions on the forecast of air pollutants such as
ozone decreases with simulation time (Gaubert et al., 2014;
Jimenez et al., 2006). To overcome such an obstacle, emis-
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sions with large uncertainties and strong impacts on air qual-
ity modeling, identified as the crucial sources of uncertain-
ties and considered to be the key control variables (Beek-
mann and Derognat, 2003; Hanna et al., 2001), have been in-
tegrated into the CDA. The importance of emissions as con-
trol variables in the CDA has also been documented recently
(Carmichael et al., 2008; Koohkan et al., 2013; Zhang et al.,
2012). Accordingly, advanced CDA techniques that enable
inverse or cross-variable adjustments of emissions have been
established and their applications have provided significant
improvement of ozone forecasts (e.g., Tang et al., 2011).

However, the performances of such advanced CDA on the
forecasts of other pollutants related to tropospheric ozone
are rarely reported and have not aroused enough attention.
In this field, few studies stand out (Elbern et al., 2007;
van Loon et al., 2000). Elbern et al. (2007) carried out
two sets of data assimilation (DA) experiments with a four-
dimensional variational inversion method: (1) assimilation of
ozone (O3) and nitrogen dioxide (NO2) observations simul-
taneously, and (2) assimilation of only O3 observations. Both
experiments resulted in reductions of nitrogen oxide (NOx)
emissions after data assimilation in most cases even if the
model underestimated the NOx concentrations before data
assimilation. Similar results were reported by van Loon et
al. (2000) through the assimilation of O3 observations and
adjustments of sulfur oxides (SOx) emissions using an en-
semble Kalman filter. The method enhanced the emission
rates of SOx when significant overprediction of SO2 concen-
trations occurred. Such inconsistencies, i.e., the emissions
enhanced under the overestimation of concentrations or the
emissions reduced under the underestimation of concentra-
tions, reveal some gaps between ozone forecast improvement
and precursor emission optimization and call for a compre-
hensive evaluation of the cross-variable CDA techniques.

Tang et al. (2011) employed a high horizontal resolution
(9 km) model to perform the assimilation of O3 observations
with the ensemble Kalman filter and the adjustment of NOx

emissions for O3 forecast improvement over Beijing and its
surrounding areas. However, the impact of ozone assimila-
tion on the precursor (NO2 and volatile organic compounds)
uncertainty was not elucidated. This paper (as an extension
of Tang et al., 2011), based on the assimilation experiments
performed by Tang et al. (2011), attempts to analyze in detail
the impacts of the cross-variable ozone data assimilation on
NO2 forecasts over Beijing and surrounding areas during the
2008 Beijing Olympic Games. Both real O3 data assimila-
tion (with a three-dimensional chemical transport model) and
ideal O3 data assimilation experiments (with a box model)
are performed to investigate the state of NO2 and NOx emis-
sions during assimilation processes in order to provide fur-
ther insights into the scientific potential of the assimilation
method.

Section 2 describes the chemical transport model em-
ployed, the data assimilation algorithm, and the surface ob-
servation network used for the data assimilation. Results

from the real-data assimilation (RDA) experiments and the
ideal-data assimilation (IDA) experiments are presented in
Sect. 3. Section 4 presents conclusions and discussion.

2 Methodology

2.1 Chemical transport model

The chemical transport model used for O3 simulations
was the Nested Air Quality Prediction Modeling System
(NAQPMS) (Wang et al., 2001). Several applications of
NAQPMS have been reported for simulating the chemical
processes and transports of ozone, modeling the processes of
aerosol and acid rain, and providing operational air quality
forecasts in megacities such as Beijing and Shanghai (Wang
et al., 2006). It contains modules for modeling the processes
of emissions, advection, diffusion, dry and wet deposition,
gaseous phase, aqueous phase, heterogeneous, and aerosol–
chemical reactions. The gas-chemistry processes were simu-
lated by the Carbon Bond mechanism Z (CBM-Z) which in-
cludes 133 reactions for 53 species (Zaveri and Peter, 1999).
The dry deposition modeling followed the scheme of We-
sely (1999). The vertical eddy diffusivity was parameterized
based on a scheme by Byun and Dennis (1995). The O3 sim-
ulations were configured with three nested domains and the
horizontal resolutions were 81, 27, and 9 km, respectively.
The first domain covered east Asia with a 81 km resolu-
tion and the second domain contained north China with a
27 km resolution. The third domain displayed in Fig. 1 cov-
ered Beijing and its surrounding areas with 9 km resolution.
Vertically, the model was set as 20 terrain-following layers,
9 of which were within the lowest 2 km of the atmosphere
and the height of the first layer near the surface was 50 m.
The fifth-generation Penn State National Center for Atmo-
spheric Research (NCAR) Mesoscale Model (MM5; Grell et
al., 1994) was employed to provide the hourly meteorolog-
ical inputs for NAQPMS. The regional emission data of the
Intercontinental Chemical Transport Experiment – Phase B
(INTEX-B) Asia inventory for 2006 with 0.5◦× 0.5◦ resolu-
tion (Zhang et al., 2009) and the local high-resolution emis-
sion inventory were combined to provide the emission data
for NAQPMS (Tang et al., 2011).

2.2 Data assimilation algorithm

The assimilation algorithm employed was the ensemble
Kalman filter (EnKF) proposed by Evensen (1994). The main
feature of this method consists of a series of ensemble sam-
ples generally produced via ensemble forecasts to calculate
the background error covariance of state variables. It serves
as an approximate version of the Kalman filter (Kalman,
1960). The EnKF can directly calculate the background error
covariance from the ensemble forecasts of the highly non-
linear model, which is very suitable for data assimilation in
complex high-dimensional models (Carmichael et al., 2008).
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Figure 1. Distribution of the observation stations and non-industrial
NOx emission rates in the third model domain (9 km resolution) that
covers Beijing and its surrounding areas. The non-industrial NOx

emission rates (µg m−2 s−1) are divided into different bins (< 0.05;
0.01–0.1; 0.1–0.2; 0.2–0.3; 0.3–0.4; 0.4–0.5; 0.5–0.75; 0.75–1.0;
1.0–1.5; 1.5–2.0; 2.0–3.0) and represented by different shaded col-
ors. The urban areas with high non-industrial NOx emission rates
are marked by the brown and red colors, and the suburban or ru-
ral areas with low non-industrial NOx emission rates are marked
by the green or blue colors. The 11 urban sites are denoted by the
black triangles, and the 6 suburban stations are represented by the
red triangles. The abbreviations of the station names are displayed
close to the marks.

Its implementation is very simple and does not require an
adjoint model, which is a very cumbersome task for com-
plex high-dimensional models. It can be used for combined
state and parameter estimation (Evensen, 2009). In the field
of air pollution, the EnKF has been shown to be an efficient
method in optimizing concentrations. Further applications of
the EnKF in improving dust and ozone forecast skills through
emission optimization have been reported (e.g., Constanti-
nescu et al., 2007; Eben et al., 2005; Lin et al., 2008; Tang et
al., 2011).

In the present study, the EnKF was employed to assimi-
late ozone observations for the corrections of NOx emissions.
The main purpose is to elucidate the performances of that
method during the cross-variable assimilation of O3 obser-
vations. The sequential algorithm proposed by Houtekamer
and Mitchell (2001), as a variant of the EnKF, was adopted
for its efficiency in computation. The first step of the imple-
mentation was to perturb ozone concentrations, NOx emis-
sions, and other key uncertainty sources of ozone modeling,
i.e., photolysis rates and vertical diffusion coefficients, as de-

scribed by the following equations:

x′ (i)= xb
+ ζ (i) , i = 1,2, . . .,N (1)

e′ (i)= eb
+ ε (i) , i = 1,2, . . .,N (2)

q ′ (i)= qb
+φ (i) , i = 1,2, . . .,N, (3)

where x, e, and q are ozone concentrations, emissions, and
other parameters (NO2 photolysis rates and vertical diffu-
sion coefficients), respectively, and the superscript b repre-
sents their background values in the model. The superscript ′

represents the ensemble samples of these variables after per-
turbing the background values by random samples of ζ , ε,
and ϕ. ζ (i), ε(i), and ϕ(i) are the random samples extracted
from a normal distribution using the method proposed by
Evensen (1994). N is the ensemble size. The ensemble size
(set as 50) was chosen based on several sensitivity experi-
ments of ozone data assimilation. The experiments were per-
formed with the same model domains and observation net-
work as those employed in this study. The results suggest
that an ensemble of 50 members keeps good balance between
computational efficiency and assimilation performance of the
ozone analysis.

In order to avoid filter divergence, the NO2 photolysis rate
and vertical diffusion coefficient were perturbed by Gaus-
sian distributed random noise, and the NOx emissions (to
be updated by the EnKF) were perturbed by time-correlated,
Gaussian-distributed random noise. Estimating the uncer-
tainty of the NOx emissions used for the modeling during
the Beijing Olympic Games was a hard task. The INTEX-B
Asia inventory (Zhang et al., 2009) was estimated to con-
tain 31 % uncertainty in the NOx emission estimation. How-
ever, the base year of this inventory is 2006. Another key
factor affecting the emission uncertainty is the temporary
air pollution control measures during the Beijing Olympic
Games. The control measures were estimated to reduce the
NOx emissions by 36–47 % (Wang et al., 2009; Wang et al.,
2010). This would induce large biases into the emission in-
ventory and lead to significant increase of the uncertainties
of the emission inventory. Therefore, we estimated the un-
certainty of the NOx emissions to be 60 % of the first guess
emission rates, about twice the uncertainty in the INTEX-
B Asia inventory. The uncertainties of vertical diffusion co-
efficients in ozone modeling have been estimated by Beek-
mann and Derognat (2003), Hanna et al. (1998), and Moore
and Londergan (2001) and range from 25 to 50 %. We esti-
mated the uncertainty of vertical diffusion coefficients to be
35 % of the first guess values which are close to the aver-
age estimate of the above three estimates of Beekmann and
Derognat (2003), Hanna et al. (1998) and Moore and Lon-
dergan (2001). Also with reference to the studies of Hanna
et al. (1998), and Moore and Londergan (2001), the uncer-
tainty of the modeled photolysis rates was estimated to be
30 %. The uncertainty of the modeled O3 concentrations at
the initial time was estimated to be 50 % after comparing the
modeled O3 concentrations with the O3 observations. Based
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on the method suggested by Evensen (1994), the perturba-
tions of the variables in three dimensions were implemented
through adding a pseudo-smooth random field. The random
samples were Gaussian distributed with zero as the mean.
The horizontal and vertical scales of initial error correlations
could be effectively controlled using this method. The scales
were set as 54 km in the horizontal and 3 model grids in the
vertical scale (approximately 200 m) as in Tang et al. (2011).

Ensemble samples of the emissions, the vertical diffusion
coefficients, the photolysis rates, and the O3 concentrations
were used to derive ensemble forecasts of ozone. In order
to achieve cross-variable adjustment for NOx emissions, an
extended state variable was defined as

U′ (i)=
∣∣∣∣ x′ (i)e′ (i)

∣∣∣∣ , i = 1, 2, . . ., N, (4)

where x′ (i) and e′ (i) represent the ozone concentrations
and the emissions after perturbations as in Eq. (1). Through
the ensemble forecast x′ (i) is strongly dependent on e′ (i),
which makes it convenient for estimating the correlation be-
tween x and e and for cross-variable adjustment of NOx

emissions. The background error covariance of the extended
variable could be directly calculated from the ensemble fore-
cast results during the simulation period:

P=
1

N − 1

N∑
i=1

(U′ (i)− Ū ′)(U′ (i)− Ū ′)T , (5)

where Ū ′ is the mean of the ensemble samples of the ex-
tended state variable and N is the ensemble size.

This algorithm treats the observations as random variables
and perturbs them (Houtekamer and Mitchell, 1998). The
perturbations on the O3 observations and the perturbations on
the emissions, the vertical diffusion coefficients, the photol-
ysis rates, and the O3 concentrations described above would
be helpful to prevent filter divergence of the EnKF in our
data assimilation experiments. When ozone observations are
available, they were perturbed according to the observation
errors (Gaussian with a mean of zero and covariance R, in-
cluding both measurement errors and representativeness er-
rors)

y′(i)= y+ϒ (i) , i = 1, 2, . . ., N (6)
ϒ ∈N(R). (7)

As suggested by von Loon et al. (2000), the observation
errors were assumed to be within 10 % of the original obser-
vation value and uncorrelated in time and space. It is worth
noting that some other variants of the EnKF (e.g., the en-
semble square root filter (EnSRF) proposed by Whitaker and
Hamill, 2002) do not need the perturbations on observations
but can also provide accurate analyses.

Then the ensemble samples of the extended variables from
the ensemble forecasts could be updated through assimilating

Figure 2. Comparison of the RMSE (ppbv) of 1h NO2 forecasts at
the 17 stations of Beijing and its surrounding areas during the pe-
riod of 00:00 local time (LT) 9 August to 00:00 LT, 23 August in
2008 in the RDA experiments and those in the reference (NonDA)
experiment with a free run of the model. The comparisons at urban
sites are denoted by the dots and those over suburban stations are
represented by the triangles. The abbreviations of the station names
are displayed close to the marks. The number of the valid observa-
tions used for the calculation is 336 at QHD, SJZ, TS, IAP, LF, YF,
and XH, and the numbers are 292, 226, 326, 317, 326, 320, 333,
321, 311, and 323 at BD, PEK, BY, CZ, CP, TJ, XL, YJ, YLD, and
YuF, respectively.

the ozone observations:

Ua (i)= U′ (i)+K(y′ (i)−HU′ (i)), i = 1, 2, . . ., N (8)

K= PHT(HPHT
+R)−1, (9)

where H represents a linear operator mapping the extended
state variable from model space to observational space, and
K is the Kalman weight calculated based on the background
error covariance and the observation error covariance. Ua (i)

is the updated ensemble sample of the extended state variable
and was used for the sequential ozone forecast. The updating
of the ensemble of the extended variables was conducted one
time every 1 h, and the updated NOx emissions were then
used for the NO2 forecast of the next hour. The ensemble
mean of Ua(i) was taken as the best estimate after assimi-
lating observations and was used as the output analysis state
(e.g., the blue dots in Figs. 4 and 5) for comparisons with
the observation and the simulation. To reduce the spurious
impact caused by the finite ensemble size, localization was
performed for analysis and only observations within a local-
ization scale were used to update the NOx emissions at a
model grid. The localization scale was set as 45 km follow-
ing the configuration of Tang et al. (2011).
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Figure 3. Daily variation of the 1 h NO2 forecast RMSE (ppbv) in the RDA experiments (blue line) and the reference (NonDA) experiment
with a free run of the model (black line) over (a) urban stations (CZ, PEK, QHD, SJZ, and TS) with positive DA impacts; (b) urban sites
(BY, CP, IAP, TJ, and YF) with negative DA impacts; (c) suburban stations (LF, XH, YLD, YJ, and YuF) with weak DA impacts.

2.3 Surface observation network

We employed a regional surface air quality network over
Beijing and its surrounding areas during the 2008 Bei-
jing Olympic Games, including 17 stations established by
the Beijing Environment Monitoring Center and Chinese
Academy of Science (Xin et al., 2010). Figure 1 displays
the distributions of these stations and the non-industrial NOx

emission rates of the observation regions in the innermost
third model domain with 9 km horizontal resolution. As can
be seen, 11 urban stations (CP, PEK, BY, IAP, YF, BD, CZ,
QHD, SJZ, TS, TJ) are located in the urban areas with high
non-industrial NOx emission rates, and the other 6 (LF, XH,
XL, YJ, YuF, YLD) are in the suburban areas with relatively
low non-industrial NOx emission rates. The network pro-
vides observations of O3 and NO2 at the same temporal res-
olution as the model (i.e., 1 h). The measurements of NO2
and O3 were observed by online instruments (Model 42c and
42i NO-NO2-NOx analyzers and Model 49c and 49i O3 an-
alyzers from Thermo Scientific). The O3 observations were
assimilated hourly into the model to adjust NOx emissions.
The direct comparison between the simulated and observed
NO2 data often suffered from the representativeness errors
of the NO2 measurements. In this study, the stations close
to the main roads with heavy traffic were not included in or-
der to reduce the influence of the representativeness errors of
the NO2 measurements. Nevertheless, under certain resolu-
tions (9 km for example), the representativeness errors still
persisted in NO2 measurements over urban areas. In order to
independently validate the assimilation results, three of the
observation stations were withdrawn from the assimilation
and were used for the validation. NO2 observations not used
in the assimilation were also used to assess the impacts of the
cross-variable assimilation on the NO2 forecasts.

3 Results

3.1 RDA experiment

The RDA experiment assimilated the surface ozone observa-
tions over Beijing and surrounding areas to adjust the NOx

emissions over these areas in the NAQPMS. The experiment
was based on the study of Tang et al. (2011) in which the
assimilation of real O3 observations with the EnKF was per-
formed to correct NOx emissions. The experiment focused
on a 2-week period from 00:00 local time (LT) 9 August to
00:00 LT, 23 August in 2008. The initial conditions of the
simulation were from a 2-week spin-up model run. The initial
conditions of ozone, NOx emissions, and vertical diffusion
parameters were perturbed at 19:00 LT on 8 August 2008 ac-
cording to the Eqs. (1), (2), and (3) and were used to derive
ensemble runs of NAQPMS. After 5 h free ensemble runs, the
observed ozone data starting at 00:00 LT on 9 August were
assimilated hourly into the third model domain (displayed in
Fig. 1) of NAQPMS to adjust the NOx emissions. Adjusted
factors of the NOx emissions were then used for the NO2
forecast of the next hour. Both daytime and nighttime obser-
vations were assimilated. We only adjusted the variables in
the first three vertical layers near the surface, which could re-
duce the influence of the modeling errors of vertical mixing
on data assimilation. A free run of NAQPMS without data
assimilation (NonDA) was also performed as a reference run
to validate the assimilation results of the RDA experiment.

Figure 2 compares the root mean square errors (RMSEs)
of the 1 h ensemble mean forecast of NO2 at the 17 stations
in the RDA experiment with the RMSEs in the NonDA ex-
periment. The RMSE of each site was calculated based on
the hourly differences between NO2 observation and the en-
semble mean forecast of NO2 from 00:00 LT, 9 August to
00:00 LT, 23 August in 2008. The number of valid observa-
tions used for each station is listed in Fig. 2. The differences
of the RMSEs before and after DA were statistically signif-
icant over 11 stations (TJ, BY, YF, IAP, CP, XH, CZ, PEK,
QHD, SJZ, and TS) at the 95 % level of the t test, while there
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Figure 4. (a–c) O3 concentrations (ppbv) and NOx emissions (no unit, normalized by the true NOx emission) before and after data assimi-
lation and their ensemble samples before DA at 12:00 LT on 12 August 2008 in the three ideal ozone data assimilation experiments with the
prior NOx emissions underestimated by 10 % (a), 30 % (b), and 50 % (c), respectively. The grey squares denote the ensemble forecast O3
concentrations corresponding to the perturbations of the NOx emissions (ensemble forecasts before DA), and the magenta dot represents the
result of the ensemble mean of the grey squares (ensemble mean before DA). The gray line represents a linear relationship calculated from
the ensemble samples of O3 concentrations and NOx emissions. The red dot represents the true state of the NOx emission and the observed
O3 concentration. The analyzed O3 concentration and NOx emission are denoted by the blue dot.

were no statistically significant differences of the RMSEs be-
fore and after DA over 6 stations (XL, YuF, YJ, YLD, LF,
and BD). The RMSEs of the NO2 forecasts in the free run
of the model were dominated by the biases which accounted
for 55–90 % (biases of the NO2 forecasts divided by the RM-
SEs of the NO2 forecasts) of the RMSEs. Biases noticed in
simulations performed over urban sites are relatively larger
than those over the suburban ones. The free model run over-
estimated NO2 concentrations at most of the urban stations,
while underestimated them at most of the suburban ones. The
DA impacts on the NO2 forecast varied substantially from
the suburban to the urban stations. At urban stations such as
BD, PEK, CZ, QHD, SJZ, and TS, the RMSEs were reduced
by 15–36 % after DA, resulting in improvement of NO2 fore-
casts in contrast to large increases, ranging 56–239 % of the
RMSEs at CP, BY, IAP, YF, and TJ. At the suburban sites, the
DA showed minor influence on NO2 forecasts and had no sta-
tistically significant impacts on the RMSEs over five of the
six suburban sites. Such minor DA impacts over the suburban
sites could be explained firstly, by the fact that emission rates
of NOx in the model were very low over suburban regions
and that the simulation without DA significantly underesti-
mated the NO2 concentrations. Even with the perturbations
on the NOx emission, the ensemble spread was significantly
weaker than the errors in the real case, and thereby reduced
the DA impacts of the EnKF. Secondly, in regards to the in-
fluences of the air pollutants transport from urban regions,
observed negative DA impacts over some urban areas may
have induced significant errors into the NO2 forecasts. The
above results suggest the adjustment of the NOx emissions
by the ozone data assimilation has a mixed effect on the NO2
forecast (i.e., weak DA impacts over suburban sites, positive
DA impacts over some urban sites, and negative DA impacts
over others). Nevertheless, the assimilation produced signifi-

cant improvement of ozone forecasts over all these sites, con-
sistent with Tang et al. (2011).

Further investigations were conducted on the variation of
such mixed effects of the data assimilation on NO2 fore-
casts over both the first week (from 00:00 LT, 9 August to
00:00 LT, 16 August in 2008) and the second week (from
00:00 LT, 16 August to 00:00 LT, 23 August in 2008). As a
result, the DA mixed effects were relatively stable during the
Beijing Olympic Games. Figure 3a–c displays daily varia-
tion of the 1 h NO2 forecast RMSEs in the RDA experiment
and the NonDA experiment over the urban stations with pos-
itive DA impacts (CZ, PEK, QHD, SJZ, and TS), those with
negative DA impacts (BY, CP, IAP, TJ, and YF), and the sub-
urban stations (LF, XH, YLD, YJ, and YuF) with weak DA
impacts. At the suburban stations, the cross-variable DA also
showed very weak impacts on the NO2 forecast in both the
daytime and nighttime. At the urban stations with positive
DA impacts, the cross-variable assimilation presented con-
sistent positive DA impacts during daytime, nighttime, and
morning, with a 23 % reduction of the RMSE during daytime
and a 21 % reduction at night and in the morning.

At the urban sites with negative DA impacts, the perfor-
mance of the DA was different between daytime, nighttime,
and morning hours. Adjusting NOx emissions improves the
forecasts of NO2 concentrations during most of the night and
the morning time by reducing 7 % of the RMSE in contrast
to the deterioration of the forecast in the daytime with 190 %
increase of the RMSE. This finding suggests that the impacts
of the cross-variable assimilation on the NO2 forecast dur-
ing daytime are opposite to those at night and in the morning
at these urban sites. Negative DA impacts mainly occur in
the daytime. As described by Tang et al. (2010b), daytime
ozone is strongly nonlinearly related to high NOx emissions
over urban areas (in particular over central Beijing), whereas
nighttime ozone is mainly controlled by the titration reac-
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tion of O3–NO and the relationship between the nighttime
ozone and the NOx emissions has weak nonlinearity. Due to
the obvious discrepancy between daytime ozone and night-
time ozone chemistry, further experiments were carried out
to elucidate the impact of the chemistry on the cross-variable
assimilation. We describe these experiments in the following
section.

Another phenomenon observed in Fig. 3a–b is that the er-
rors in NO2 forecasts with the free model run at night and
in the morning were much higher than those during daytime.
This might be due to the large uncertainties in modeling of
nighttime boundary layer over urban regions (Kleczek et al.,
2014). Although the modeling of vertical diffusion was taken
as a key uncertainty source in our data assimilation, its un-
certainty was not constrained by the data assimilation. There-
fore, high errors still occurred in the nighttime NO2 forecasts
after data assimilation, as shown in Fig. 3a–b.

3.2 IDA experiment

An ideal experiment with a known true state provided a sim-
ple way to investigate the potential consequences of some
key inspected factors in a highly complex system. The true
states are normally the simulated observations generated by a
model run or a data assimilation system (Timmermans et al.,
2015). In order to investigate the possible cause of observed
mixed effects in RDA experiment, this study employed a
simplified box model including the main chemical processes
of NAQPMS (Xiang et al., 2010). Within the IDA experi-
ments, the true state of ozone concentrations and NOx emis-
sions were assumed to be known and were generated from
the box model run. The main purpose is to closely monitor
the impacts of ozone chemistry on the cross-variable assim-
ilation method experimented in the RDA. However, this in-
vestigation did not take into account complex transport pro-
cesses, and the removal processes were simulated by mul-
tiplying the concentrations by removal coefficients. The ex-
periments with the box model were conducted on the IAP
station where negative impact on NO2 forecasts is observed
in the RDA experiment. Emission rates and meteorological
parameters are from the inputs used by NAQPMS.

The IDA experiments focused on the negative DA impacts
on the daytime NO2 forecasts. The a priori emission rates
from NAQPMS and their corresponding O3 concentrations
modeled with the box model were assumed to be the true
state and were used for validation of the optimized emissions
from DA. Ensemble runs of the box model were initialized by
the ensemble forecasts of the chemical species of NAQPMS
at 19:00 LT on 11 August 2008; NOx emissions were per-
turbed to provide ensemble samples of emissions during
the following ensemble runs of the model. At 12:00 LT on
12 August 2008, the artificial O3 observation was assimilated
into the box model to adjust the NOx emissions. Artificial O3
observations were generated through adding slight random
errors to the true state of O3 concentrations. To be consis-

tent with the RDA experiment, the random errors for perturb-
ing observations were also assumed to be within 10 % of the
true value. Three error scenarios for NOx emissions (10, 30,
and 50 % underestimates) were assumed and separately ap-
plied to simulations of the box model. In order to avoid deal-
ing with complex model errors, the errors in NOx emissions
were assumed to be the only error sources of ozone model-
ing. For each error scenario, cross-variable adjustment of the
NOx emissions through assimilating the artificial O3 obser-
vations with the EnKF was conducted. Figure 4a–c shows the
O3 concentrations and NOx emissions before and after DA,
with their ensemble samples before DA at 12:00 LT, 12 Au-
gust 2008.

Figure 4a presents the results under the first scenario with
10 % underestimation of NOx emissions (S1). The analyzed
O3 concentration and NOx emission after DA were close to
their true state, suggesting an improvement of the NOx emis-
sion estimation from the cross-variable assimilation. Fig-
ure 4b shows the results under the second scenario with
30 % underestimation of NOx emissions (S2). The DA ineffi-
ciently reduced the error in NOx emission, since large errors
(about 20 %) still persisted in the optimized NOx emission.
Ensemble samples of O3 concentrations shown in Fig. 4b
were obtained from the ensemble runs of the box model that
were derived from the ensemble samples of NOx emissions
(also shown in Fig. 4b). The ensemble forecasts of O3 con-
centrations presented high nonlinear responses to the pertur-
bations of NOx emissions. This suggests that the EnKF with
Monte Carlo simulations can predict the nonlinear evolutions
of error statistics of the O3 modeling. At the analysis step, the
ensemble samples of O3 concentrations and NOx emissions
were integrated into the EnKF to calculate the background er-
ror covariance in Eq. (5). The linearized relationship between
the O3 concentrations and the NOx emissions is presented in
Fig. 4b. Noticeable discrepancies appear between the non-
linear relationship denoted by the ensemble samples and the
linearized relationship at the analysis step. This significantly
weakens the performance of the EnKF in the cross-variable
adjustment.

In the third scenario (S3) with NOx emissions underes-
timated by 50 %, enhanced deterioration of the NOx emis-
sion estimations was observed (Fig. 4c). The DA closely ad-
justed the simulated O3 concentration to the true state, but
induced an additional bias to the previously underestimated
NOx emission. Such negative DA impact on NOx emission
estimation was similar to the phenomenon observed in the
daytime NO2 forecast over some urban stations in the RDA
experiment. From the results in Fig. 4a–c, the most plausible
cause of the negative DA impact on NOx emission estima-
tion is the linearizing analysis of the EnKF used to deal with
the cross-variable (O3 to NOx emission) DA problem of a
highly nonlinearly chemical system. With a large bias in the
a priori estimation of NOx emissions, the cross-variable as-
similation may induce enhancement of the bias in NOx emis-
sions. The results of the three IDA experiments (i.e., positive
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Figure 5. (a–d) O3 concentrations (ppbv) and NOx emissions (no unit, normalized by the true NOx emission) before and after data assimi-
lation and their ensemble samples before DA at 12:00 LT on 12 August 2008 in the four idealized DA experiments. (a) DA experiment with
10 % overestimate in the a priori NOx emission; (b) DA experiment with 30 % overestimate in the a priori NOx emission; (c) DA experiment
with 50 % overestimate in the a priori NOx emission; (d) DA experiment with 100 % overestimate in the a priori NOx emission. The magenta
dot, the gray squares, the gray line, the red dot, and the blue dot represent the same information as in Fig. 4.

Figure 6. (a–c) O3 concentrations (ppbv) and NOx emissions (no unit, normalized by the true NOx emission) before and after data assimi-
lation and their ensemble samples before DA at 12:00 LT on 12 August 2008 in the three ideal DA experiments. The NO2 photolysis rate is
assumed to be overestimated by 20 %. (a) The prior NOx emission is overestimated by 30 % and adjusted by the DA, but the uncertainty of
the NO2 photolysis rate is not included (there are no perturbations of the NO2 photolysis rate) in the DA. (b) The same as the DA experiment
in (a), but the uncertainty of the NO2 photolysis rate is taken into account by perturbing it. (c) The same as the DA experiment in (b), but the
bias in the prior NOx emission is increased to 100 %. The magenta dot, the gray squares, the gray line, the red dot, and the blue dot represent
the same information as in Fig. 4.
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Figure 7. (a–c) O3 concentrations (ppbv) and NOx emissions (no unit, normalized by the true NOx emission) before and after data assim-
ilation and their ensemble samples before DA 08:00 LT on 12 August 2008 in the three ideal ozone data assimilation experiments with the
prior NOx emissions underestimated by 10 % (a), 30 % (b), and 50 % (c), respectively. The magenta dot, the gray squares, the gray line, the
red dot, and the blue dot represent the same information as in Fig. 4.

DA impact under the first and second scenarios and negative
impact under the third scenario) confirm the mixed effects of
the cross-variable assimilations observed in the RDA exper-
iments, and suggest a strong link between the mixed effects
and the linearization process at the analysis step of the EnKF
applied to a strongly nonlinear chemical system.

In order to consider error scenarios with overestimations
of NOx emission, four idealized DA experiments in which
NOx emission was assumed to be overestimated by 10, 30,
50, and 100 %, respectively, were performed. The results are
shown in Fig. 5a–d. In the first three experiments with 10,
30, and 50 % overestimates of the a priori NOx emission, the
DA worked well and significantly reduced the biases of the
emission. In the fourth experiment with the largest bias in
the a priori emission estimation, the DA enhanced the bias
of the emission estimate during daytime. These mixed DA
effects under different biases of the a priori emission esti-
mation are similar to those observed in the previous ideal-
ized experiments conducted with underestimate scenarios in
Fig. 4a–c. Both underestimated and overestimated scenarios
confirm the mixed effects of the DA.

Note that above IDA experiments do not consider the com-
plex model errors (e.g., errors in boundary layer or transport
modeling). In the real case, model errors exist, and the DA
scheme needs to properly quantify model uncertainties and
deal with the nonlinearity between assimilated observations
and adjusted variables simultaneously. Model errors may af-
fect the results of the real DA. Thus, in order to investigate
the DA performance of adjusting NOx emissions under the
presence of biases on other factors (e.g., boundary layer or
chemical reaction modeling), we assumed that the NO2 pho-
tolysis rate was overestimated by 20 % in the idealized box
modeling, since the errors of the NO2 photolysis rates were
found to be among the top five uncertainty sources of ozone
modeling over Beijing and surrounding areas during the Bei-
jing Olympic Games (Tang et al., 2010a).

In order to investigate the performance of the DA method
when the bias of the NO2 photolysis rate was not consid-

ered in the DA, we ignored the bias of the simulated NO2
photolysis rate and no perturbation was operated on it in the
first DA experiment. The NOx emission was adjusted in the
same way as the idealized experiments described above. Fig-
ure 6a displays the results of the DA experiment under the
error scenario of a 30 % overestimate in the a priori NOx

emission. The DA corrected the NOx emission, but led to
an underestimate of the emission. This overcorrection of the
NOx emission by the DA could be associated with the bias in
the simulated NO2 photolysis rate. Therefore, in the second
experiment (Fig. 6b), we considered the uncertainty of the
simulated NO2 photolysis rate and perturbed the NO2 pho-
tolysis rate in the DA. The error scenario was the same as in
the first experiment. Under that condition, the DA performed
better than for the first experiment, without overcorrection of
the NOx emission. The results of above experiments suggest
that considering the model errors is crucial for the assimila-
tion performance; otherwise the DA leads to overcorrection
of the state variables. In order to deal with this issue, simu-
lated NO2 photolysis rates and vertical diffusion coefficients
(considered as the key uncertainty sources of the O3 model-
ing) were perturbed to account for their uncertainties in the
real DA experiment. The third DA experiment was quite sim-
ilar to the second one, but we increased the bias of the a pri-
ori NOx emission to a 100 % overestimate. The results are
shown in Fig. 6c. Under the large bias in the a priori NOx

emission, the DA deteriorated the NOx emission estimate. In
short, despite considering the influence of the model errors,
the limitations of the DA method in dealing with the large
bias of a highly nonlinear system are still persistent.

To investigate the DA impacts on the NOx emissions at
night and in the morning, variations of O3 concentrations and
NOx emissions before and after DA and their ensemble sam-
ples before DA at 08:00 LT, 13 August 2008 (morning time)
are shown in Fig. 7a–c. Similar results (not shown here) were
obtained for other night and morning times. In Fig. 7a–c,
different level errors (10, 30, and 50 % underestimates) in
NOx emissions were significantly reduced through the cross-
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variable assimilation with the EnKF. The ensemble forecasts
of morning O3 concentrations show near-linear responses to
the uncertainties (or perturbations) of NOx emissions; the
linearization of the EnKF at the analysis step worked to cor-
rect the biases in NOx emissions. The positive DA impacts on
the NOx emission estimate in the IDA experiments at night
and in the morning were consistent with the improvement of
the NO2 forecasts after data assimilation in the RDA experi-
ment. In comparison with the mixed effects of the DA during
daytime, the positive DA impacts at night and in the morning
in both RDA and IDA experiments indicate that the assimi-
lation of O3 observations with the EnKF might be useful in
optimizing NOx emissions and NO2 forecasts at night and
in the morning. Furthermore, the ensemble forecasts of O3
concentrations show strong nonlinear responses to the per-
turbations of NOx emissions during daytime in Fig. 4a–c but
present near-linear responses at night and in the morning in
Fig. 7a–c. This suggests the variability of nonlinearity in the
chemical system leads to different DA impacts during differ-
ent periods of the day.

4 Conclusion and discussion

The impacts of cross-variable adjustment of NOx emissions
on NO2 forecasts were investigated through assimilating
O3 observations with a variant of the EnKF (proposed by
Houtekamer and Mitchell, 2001) over Beijing and surround-
ing areas during the 2008 Beijing Olympic Games. Both real
DA experiments with a three-dimensional chemical transport
model and ideal DA experiments with a simplified box chem-
ical model were performed.

The results of the data assimilation experiments revealed
mixed effects of the cross-variable assimilation with the
EnKF. The DA worked on improving the NO2 forecasts and
optimizing the NOx emissions at night and in the morn-
ing when the uncertainties of O3 concentrations were al-
most linearized to those of the NOx emissions. During day-
time, the data assimilation resulted in positive DA impacts
on NO2 forecasts over some urban sites, negative over other
urban sites, and weak impacts over suburban sites. Through
idealized DA experiments, the mixed effects were found to
be strongly associated with the difficulty in dealing with
a highly nonlinear DA problem, especially when there are
large model biases. The results highlighted a critical limi-
tation of the EnKF for CDA despite its strong performance
for improving tropospheric ozone forecasts (e.g., Tang et al.,
2011).

The results suggest that bias correction is crucial for the
application of the EnKF in highly nonlinear chemical DA
problems. Alternatively, avoiding the cross-variable DA be-
tween two strong nonlinearly related variables such as NOx

emissions and O3 is also a possible way to overcome this is-
sue. For example, assimilating NO2 observations directly to
optimize NOx emissions might produce a better result than

assimilating O3 observations to improve the NO2 forecasts
and NOx emission estimates. Nevertheless, the strong non-
linearity issue remains a critical challenge in chemical DA.
To summarize, DA approaches that enable dealing with high
nonlinearity in both model evolution and analysis step are
needed. Particle filters such as the nonlinear filter method
(e.g., Moral, 1996; van Leeuwen, 2009, 2010) might have
potential in this field if their limitations for high-dimensional
system application (Stordal et al., 2011) can be overcome.
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