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Abstract. The spatial resolution of global climate models
with interactive aerosol and the observations used to eval-
uate them is very different. Current models use grid spac-
ings of ∼ 200 km, while satellite observations of aerosol use
so-called pixels of ∼ 10 km. Ground site or airborne obser-
vations relate to even smaller spatial scales. We study the
errors incurred due to different resolutions by aggregating
high-resolution simulations (10 km grid spacing) over either
the large areas of global model grid boxes (“perfect” model
data) or small areas corresponding to the pixels of satellite
measurements or the field of view of ground sites (“perfect”
observations). Our analysis suggests that instantaneous root-
mean-square (RMS) differences of perfect observations from
perfect global models can easily amount to 30–160 %, for
a range of observables like AOT (aerosol optical thickness),
extinction, black carbon mass concentrations, PM2.5, number
densities and CCN (cloud condensation nuclei). These dif-
ferences, due entirely to different spatial sampling of models
and observations, are often larger than measurement errors in
real observations. Temporal averaging over a month of data
reduces these differences more strongly for some observables
(e.g. a threefold reduction for AOT), than for others (e.g. a
twofold reduction for surface black carbon concentrations),
but significant RMS differences remain (10–75 %). Note that
this study ignores the issue of temporal sampling of real ob-
servations, which is likely to affect our present monthly error
estimates. We examine several other strategies (e.g. spatial
aggregation of observations, interpolation of model data) for
reducing these differences and show their effectiveness. Fi-

nally, we examine consequences for the use of flight cam-
paign data in global model evaluation and show that signifi-
cant biases may be introduced depending on the flight strat-
egy used.

1 Introduction

Airborne aerosols are a fascinating component of the Earth’s
atmosphere. They come in a bewildering variety of shapes,
sizes and compositions. More importantly, they can affect
the radiative budget and energy and hydrological balances
of the atmosphere (Angstrom, 1962; Twomey, 1974; Al-
brecht, 1989; Hansen et al., 1997; Lohmann and Feichter,
2005, 1997). Dust aerosols may transport nutrients for the
biosphere over long distances (Swap et al., 1992; Vink and
Measures, 2001; McTainsh and Strong, 2007; Maher et al.,
2010; Lequy et al., 2012) and air pollution aerosol can pose
health hazards for humans (Dockery et al., 1993; Brunekreef
and Holgate, 2002; Ezzati et al., 2002; Smith et al., 2009;
Beelen et al., 2013). Aerosols have also been suggested as
disease vectors (Ballester et al., 2013). For a recent review of
some of these aspects, see Fuzzi et al. (2015).

Models provide powerful tools to explore the role of
aerosols, but require evaluations against observations in or-
der to quantify their skill and detect possible model er-
rors. AEROCOM is an international community of scientists
(http://aerocom.met.no) involved in evaluating global aerosol
models (Kinne et al., 2006; Schulz et al., 2006; Textor et al.,
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2006, 2007; Huneeus et al., 2011; Koch et al., 2009; Quaas
et al., 2009; Koffi et al., 2012), but model evaluations are also
routinely performed by individual research groups around
the world. It is therefore surprising that evaluation strategies
themselves have received relatively little scrutiny.

Due to constraints on computational resources, global
aerosol–climate models are currently run at spatial resolu-
tions of ∼ 200 km. This of course limits their ability to re-
solve fine-scale structure (Benkovitz and Schwartz, 1997;
Weigum et al., 2012) which will affect the comparison of
global model data with observations; models and observa-
tions represent averages over different spatial areas. Satellite
remote sensing observations are made for nominal pixels of
10 km as for MODIS (MODerate resolution Imaging Spec-
troradiometer) or 17 km as for MISR (Multi-angle Imaging
SpectroRadiometer) or 3 km as for SEVIRI (Spinning En-
hanced Visible and InfraRed Imager). Ground stations from
AErosol RObotic NETwork (AERONET) can be estimated to
sample no more than 5 km horizontally away from the site.
In situ measurements cover even less of the atmosphere sur-
rounding them; yet, observed aerosol fields are known to ex-
hibit variations over relatively short distances of 10 to 100 km
(Anderson et al., 2003; Kovacs, 2006; Santese et al., 2007;
Shinozuka and Redemann, 2011; Schutgens et al., 2013).
Note that the spatial resolution of global models also impacts
global model data due to the non-linear nature of many phys-
ical and chemical processes (Qian et al., 2010; Gustafson
et al., 2011; Stroud et al., 2011; Weigum et al., 2016); but
that is not the topic of this paper.

Recently, the disparity of spatial scales between global
models and observations has attracted some attention. Us-
ing satellite-retrieved solar surface radiation estimates to as-
sess spatial representativeness, Hakuba et al. (2014a, b) es-
timated differences of 1–2 % and 2–3 %, respectively, in 5-
year seasonal means between either 1◦× 1◦ or 3◦× 3◦ areas
and point measurements. Cavanaugh and Shen (2015) and
Director and Bornn (2015) showed that the standard devia-
tion, skewness and kurtosis of climate data (e.g. temperature)
can be significantly different between point values and grid-
ded values (in their analysis means were identical by con-
struction).

We use high-resolution model simulations (with a 10 km
grid spacing) to simulate both perfect global model data and
perfect observations. These data are considered perfect in
the sense that they are both derived from the same high-
resolution simulation that we treat as the truth. In fact, the
only difference between the global model data and observa-
tions is the area over which the high-resolution simulation
is averaged (see Sect. 3). No measurement errors are added
to the observations. The high-resolution simulations allow us
to build up statistics of the difference between observations
and model data, under a large variety of scenarios. In par-
ticular, we consider different observables like AOT (aerosol
optical thickness), PM2.5, number densities and CCN (cloud
condensation nuclei) for different regions on the globe. We

also evaluate a variety of averaging and interpolation strate-
gies designed to bring model data and observations closer to-
gether. These high-resolution model simulations provide us
with a toy model of what happens when global model data
are evaluated with observations, ignoring both model and ob-
servation errors.

Since we simulate global model data as an average over
the high-resolution data, a very relevant question is the fol-
lowing: what average is appropriate? This question is closely
tied to the question of what the grid-point value of a global
model represents and will be addressed later.

Section 2 introduces the three different models and six
different regions for which we have high-resolution simula-
tions. We also explain how the simulated fields were turned
into observables. Section 3 describes in more detail how both
global model data and observations are generated from the
high-resolution simulations. In particular, Sect. 3.1 discusses
various interpretations that may be given to a global model’s
grid-point value. Section 4 then introduces the concept of
spatial sampling as a source of error through some exam-
ples. More substantive statistics can be found in Sects. 5, 6,
7, 8 and 9. An evaluation of several strategies to reduce spa-
tial sampling differences is given in Sect. 10. A preliminary
analysis of the consequences of spatial sampling for the use
of flight campaign data can be found in Sect. 11. The paper
concludes with a summary (Sect. 12).

Note that Sect. 3.2 contains some general guidelines to in-
terpreting many of the figures and statistics that appear in this
paper.

2 The regional models

Three different regional models were used to create high-
resolution simulated fields (10 km, 1 h) of common observ-
ables: AOT, extinction, PM2.5, black carbon mass concentra-
tion, number densities and CCN. Figure 1 shows the simu-
lation regions, and Table 1 summarises the most important
information on these simulations.

WRF-Chem (Weather Research and Forecasting model
coupled with Chemistry) (Grell et al., 2005; Fast et al.,
2006) was run for three regions using the MADE/SORGAM
aerosol module (Ackermann et al., 1998; Schell et al., 2001),
and one region using the GOCART bulk aerosol scheme. The
meteorology was nudged to NCEP-FNL operational analy-
sis data. The western Europe (W. Europe) and Oklahoma
runs used emission scenarios (TNO MEGAPOLI-2005 or US
National Emissions Inventory NEI-2005) with imposed 24 h
cycles for the anthropogenic emissions. These regions are
characterised by fairly localised spatially fixed sources. The
Congo experiment used daily biomass burning emissions de-
rived from MODIS fire counts and is characterised by highly
localised sources that differ in location from day to day. The
MADE/SORGAM module assumes that the aerosol exists in
three modes (Aitken, accumulation and coarse) of varying
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Table 1. Simulations analysed in this study.

Region Size (km2) Period Model Scheme Comments

W. Europe 1280× 1280 May 2008 WRF-Chem MADE two-moment modal
Oklahoma 1190× 1190 March 2007 WRF-Chem MADE two-moment modal
Congo 2090× 2090 March 2007 WRF-Chem MADE two-moment modal
Ocean 1270× 1270 March 2007 WRF-Chem GOCART bulk mass
Europe 4000× 3100 January–June 2008 EMEP bulk mass
Japan 1500× 1250 August 2007 NICAM SPRINTARS bulk mass

 

Europe

EMEP

W−Europe
MADEOklahoma

MADE

Congo

MADE

Ocean

GOCART

Japan

SPRINTARS

Figure 1. Three models were used in this study to simulate a variety
of aerosol fields. The regional names used to identify these simula-
tions are given in large font, while the models are denoted in small
font. MADE and GOCART refer to the WRF-Chem version used.

species mixtures (sulfate, nitrate, organic and black carbon,
sea salt and dust). MADE/SORGAM explicitly treats nitrates
and SOA (secondary organic aerosol).

An expanded version of EMEP/MSC-W (Simpson et al.,
2012) that includes calculations of aerosol bulk optical prop-
erties (based on work by Hess et al., 1998, and Chin et al.,
2002) was run at a 0.1◦× 0.1◦ grid, using ECMWF-IFS me-
teorology for 2008 and TNO-INERIS emissions for 2009
for Europe. Emissions of black carbon were derived from
the emissions of primary PM2.5, using EMEP standard split-
factors (per country and sector). Monthly, day-of-week and
hourly temporal profiles were applied to the annual emis-
sions. The EMEP chemical scheme includes approximately
160 reactions. The aerosols are represented as bulk mass dis-
tributed between a fine fraction (including sulfate, nitrate,
ammonium, organic and black carbon sea salt and dust) and
a coarse fraction (nitrate, sea salt and dust). Ammonium ni-
trate is calculated with the equilibrium model MARS, and
the formation of coarse nitrate from nitric acid depends on
the relative humidity. SOA is calculated using the volatility
basis set approach. For all details see Simpson et al. (2012)
and references therein.

NICAM-SPRINTARS (see Goto et al., 2015, and ref-
erences therein) was run in global mode with a stretched
grid that had a resolution of 11 km over a part of Honshu
(the largest island of Japan). Its meteorology was nudged to
NCEP-FNL reanalysis data. SPRINTARS uses a bulk mass
scheme with individual modes for sulfate, organic carbon,
black carbon and bins for sea salt and dust. Two different
organic/black carbon mixtures are also represented by indi-
vidual modes. Anthropogenic emissions of black carbon and
the SO4 precursor gas SO2 had a prescribed diurnal cycle.
SOA were treated in the simple manner of scaling aerosol
emissions. Nitrate aerosols were ignored in this SPRINTARS
simulation.

Both EMEP and SPRINTARS do not calculate number
densities as prognostic variables (SPRINTARS can diagnose
them from assumed size distributions) and consequently did
not provide those fields for our analysis. Both EMEP and
SPRINTARS data were regridded from their original model
grids to regular grids with 10 km spacings.

2.1 Observable parameters

In this subsection we discuss how well our models are able
to simulate aerosol properties (see Table 2) as they would be
observed. All of the models provided AOT, extinction and
(dry) PM2.5, although WRF-Chem calculates AOT and ex-
tinction for 600 nm and EMEP and NICAM-SPRINTARS for
550 nm.

Real black carbon measurements by SP2 (Single Particle
Soot Photometer) require a minimum black carbon content
per particle. In models with bulk mass schemes, particles ei-
ther contain only black carbon or none at all. Modal aerosol
schemes also cannot properly simulate SP2 measurements,
due to the instantaneous redistribution of black carbon mass
over many particles of mixed species which leads to very low
concentrations per particle (Kipling et al., 2013). We decided
to ignore this minimum black carbon content and used the to-
tal black carbon concentration as provided by the models.

Real number density measurements dry out the particles
before selecting only those above a certain diameter. Hence,
N10 and N50 refer to number densities of particles with dry
diameters in excess of 10 or 50 nm. WRF-Chem provides
only modal number densities at ambient humidities. Based
on auxiliary model data, we estimated that “taking out” the
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Table 2. Simulated observables.

AOT Extinction PM2.5 BC conc. N10, N50 CCN

WRF-Chem MADE × × × × × ×

WRF-Chem GOCART × × ×

EMEP × × × ×

NICAM-SPRINTARS × × × ×

water has at most a 10% effect on N10 or N50 values. We
also concluded that this may increase the spatial sampling er-
rors we are studying. Furthermore, the model calculates the
equilibrium of the ammonia & nitric acid & sulfuric acid &
water system (Seinfeld and Pandis, 2006), and “drying out”
particles involves much more than simply removing the wa-
ter (it would lead to a shift in the equilibrium). Currently
WRF-Chem provides no mechanism to simulate this aspect
of observed number densities, so we decided on a practical
approach and use ambient number densities to calculate N10
and N50.

3 Simulating observational and global model data

This section briefly describes the main methodology used
in this paper. Using the high-resolution simulated fields, we
have generated both perfect observations and perfect global
model data. The high-resolution field v has a regular recti-
linear horizontal grid (10× 10 km), and a regular temporal
spacing (1 h). Only the vertical spacing is non-regular and
differs among the models. The field v can be thought of as
three- or four-dimensional data cubes vxyt or vxyzt where
x = 1. . .nx and y = 1. . .ny are indices to the horizontal coor-
dinates, z= 1. . .nz is an index to the vertical coordinate and
t = 1. . .nt is an index to the time coordinate. In the follow-
ing, the z coordinate is ignored for brevity’s sake. A single
perfect observation Oxyt at time t and location x,y is simu-
lated by

Oxyt = vxyt . (1)

A perfect global model grid point’s valueMxyt can be sim-
ulated by averaging vxyt over a global model grid-box area
(21x+ 1)× (21y+ 1) in the high-resolution field:

Mxyt =

1x∑
i=−1x

1y∑
j=−1y

wijvx+i;y+j ;t , (2)

where 1x and 1y represent the longitudinal and latitudinal
half-sizes of a grid box, as measured in the coordinate in-
dices. Here w is a normalised weighting function (to be de-
fined later). Note that perfect model data can only be cal-
culated on an inner domain of the high-resolution region of
1+1x ≤ x ≤ nx −1x;1+1y ≤ y ≤ ny −1y.

In the case that the location of the observation and the grid
point coincide, an instantaneous spatial sampling error can

now be defined as

εxyt =Oxyt −Mxyt , (3)

where we use the perfect model value as a reference, since it
is the model value that we want to evaluate in actual compar-
isons of observational and model data. It is straightforward
to define a relative sampling error for time-averaged data by

εxyt =

(
k=t+1t∑
k=t−1t

Oxyt −Mxyt

)/(k=t+1t∑
k=t−1t

Mxyt

)
, (4)

where 21t + 1 is an arbitrary averaging interval. Using the
global model value (instead of the observation) as reference
prevents denominators from becoming zero.

A subset of the data cube of our regional simulations is
used to build up error statistics. In addition to the limitation
imposed by the Eq. (2) (already discussed), the outer 50 km
of the simulated region was excluded from our analysis to
reduce boundary effects. Similarly, the first 2 days of each
simulation were used as a spin-up and excluded from anal-
ysis. At various points in our analysis, we have studied the
sensitivity of our results to these choices but found no signif-
icant impact.

3.1 Interpretation of the grid-point value

We generate the global model grid-point value Mxyt as a
weighted average of the high-resolution simulation over a
large area; see Eq. (2). The weighting function w represents
our interpretation of the global model’s grid-point value. The
question is as follows: what are realistic w like for actual
global models?

A numerical grid with spacing L can represent standing
or travelling waves with a wavelength of in theory 2L and
in practice 4L− 6L. This suggests that the grid-point value
of a low-resolution model is at best some average of a high-
resolution simulation over the grid box L×L. Moreover, at
horizontal resolutions of ∼ 200 km, there is no evidence that
actual global models have converged numerically (Pope and
Stratton, 2002; Roeckner et al., 2006; Williamson, 2008).
As the resolution of global models is increased, various as-
pects of the models are tweaked to obtain best agreement
with either observations or reanalysis data sets (see Pope and
Stratton for a very clear description). Diffusion is adapted
to prevent numerical instabilities and the gravity-wave drag
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Figure 2. Snapshots of the simulated field and the relative spatial sampling error in the observation of AOT and surface black carbon
concentration, over W. Europe exactly 10 days into the simulation by WRF-Chem MADE. Two square boxes (10× 10 and 210× 210 km)
and a single location (fat dot), south of Calais, France, are also shown. Note that the high-resolution simulations encompass the whole region
shown, while our analysis is only made for the coloured domain.

coefficients are modified according to the resolution of the
orography. Best known, various parameters related to sub-
grid cloud processes are tuned to obtain radiative balance at
the top of the atmosphere. Our point here is that the strategy
for tweaking the global model to best reflect an observational
or reanalysis data set effectively determines w, although this
is never explicitly discussed. In addition, models are tuned
for only a few parameters for which abundant observations
or reliable reanalysis data are available (e.g. pressure, tem-
perature). There is no reason to assume that other parame-
ters require the same weighting function, as these models are
non-linear.

Hence we argue that w is fundamentally unknown (and
may actually vary with time and location). To conduct our
analysis, we therefore assumed three different weighting
functions and performed sensitivity studies (to be described
later). The weighting function most used in this paper is a
constant value throughout the grid box. This corresponds to
the mental model that many scientists have of the physics
processes that occur in a grid box. The other two weighting
functions favour the area near the grid point more than the
outer edges of the grid box. One weighting function uses a
linear profile (highest at the grid point, zero at the edge) and
another uses a Dirac-δ (centred at the grid point). The latter
we consider a rather unlikely choice of w but it does cor-
respond to the case where the model has numerically con-
verged.

3.2 Some conventions used in this paper

This paper contains many figures and statistics of spatial
sampling error distributions. Instead of repeating the same
information, some aspects are explained here. Error distribu-
tions are always given for either instantaneous (“hourly”) or
monthly data over a single region; see Table 1. These error
distributions are quantified through root-mean-square (RMS)
values or quantiles. They represent typical errors per region
(over no more than a month), which should not be mistaken

Figure 3. Time series of global model (red) and observed (black)
AOT and surface black carbon concentration as simulated at a lo-
cation south of Calais (France) by WRF-Chem MADE; see also
Fig. 2. The grey area to the left shows the model’s spin-up period.

for the typical error in any one longitude/latitude location.
We use the so-called parametric seven-number summary of
the 2, 9, 25, 75, 91 and 98 % quantiles q of the errors be-
cause for a normal distribution, these quantiles are equally
spaced. Any skewness or extended wings in a distribution
will be readily visible. In particular, we often refer to the
interquantile ranges 1q50 = q75− q25, 1q82 = q91− q9 and
1q96 = q98− q2. In e.g. Fig. 5, different shades of grey are
used to denote these interquantile ranges: light grey for1q96,
medium grey for the 1q82 and dark grey for 1q50. The solid
blue line represents the median error. In Fig. 6, box-and-
whisker plots show the error distributions. Different widths
of the bars are used to denote different interquantile ranges:

www.atmos-chem-phys.net/16/6335/2016/ Atmos. Chem. Phys., 16, 6335–6353, 2016
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Figure 4. Monthly average of the simulated field and the relative spatial sampling error in the observation of AOT and surface black carbon
concentration, as simulated over W. Europe by WRF-Chem MADE. Note that the high-resolution simulations encompass the whole region
shown, while our analysis is only made for the coloured domain.

narrow for 1q96, medium for 1q82 and wide for 1q50. The
black rectangle represents the median error and the black cir-
cle the mean error. In a few figures, additional error distri-
butions are shown using coloured lines: the 1q50, 1q82 and
1q96 ranges will be indicated by solid, dashed and dotted
lines, respectively.

The standard measure of uncertainty, the standard devia-
tion, is half the q84.1− q15.9 interquantile range. For a Gaus-
sian distribution, 1q50 is 1.35 times the standard deviation,
and 1q82 is 2.68 times the standard deviation. For a Gaus-
sian distribution with zero mean, the standard deviation and
the RMS value will of course agree.

4 Examples of spatial sampling errors

In Fig. 2, we show instantaneous simulated AOT and surface
black carbon concentration after 10 days in the WRF-Chem
W. Europe run. By comparing the field in a small 10×10 km
box to the average of a large 210× 210 km box surrounding
it (approximate size of present-day global model grid box),
we assess spatial sampling errors. The centre of the large
box we refer to as grid point (of the global model). By mov-
ing these two boxes together throughout the region, we can
build up statistics of spatial sampling errors (also shown in
Fig. 2). These errors can reach ∼ 100 % and form coherent
patterns several global model grid boxes large. Time series
of the global model and observed values at a single location
are shown in Fig. 3. In the case of AOT, we see that the per-
fect observation can both over- and underestimate the perfect
model value with variations on a timescale of a day or so.
The black carbon time series, on the other hand, shows sys-
tematic underestimation by the perfect observation over long
periods for most of the month (note that events of overesti-
mation also occur but on smaller timescales). Although these
time series vary a lot throughout the region, this example is
nevertheless typical. A video of the W-Europe simulation of
AOT and surface black carbon mass concentrations can be
found at http://dx.doi.org/10.5446/18550.

Since these spatial sampling errors are substantial, it
makes sense to try and reduce them by temporally averag-
ing the data. In Fig. 4, we show monthly averaged simulated
AOT and surface black carbon concentration from the same
run. The spatial sampling errors in monthly averaged obser-
vations are also shown in Fig. 4. They are smaller than the
errors for instantaneous fields but are still quite substantial
(up to ∼ 20 % for AOT and ∼ 65 % for black carbon). Note
also that the error patterns have become larger and more co-
herent. As a matter of fact, notice how closely the patterns
in sampling errors for black carbon agree with its emission
sources, except that sampling errors are negative (and quite
large) where concentrations are quite low. When defining ar-
eas downstream from sources where the aerosol is suppos-
edly well-mixed spatially, it is important to consider the grid-
box size of the model which is evaluated as much as the
length scales involved in the actual aerosol processes.

The effectiveness of temporal averaging is shown in Fig. 5,
where the spatial sampling errors are shown as a function of
averaging period. Temporal averaging does decrease spatial
sampling errors but not as fast as one would expect if in-
stantaneous sampling errors behaved like independent Gaus-
sian noise. This is understandable because the persistence of
emission sources and flow patterns in the atmosphere create
temporal correlations in the fields of a few hours to a few
days. Note that AOT is more strongly (beneficially) affected
by temporal averaging than surface black carbon concentra-
tions.

5 Agreement among models

Before studying these spatial sampling errors in more detail,
we consider how (dis)similar they are among different mod-
els. The Europe region simulated by EMEP encompasses the
W. Europe region simulated by WRF-Chem MADE and so
these two models allow ready intercomparison for May 2008;
see Fig. 6. We see that both instantaneous and monthly errors
as predicted by WRF-Chem and EMEP are of similar magni-
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Figure 5. Relative spatial sampling error as a function of averaging
period. The thin black lines are prognosis of the 9 and 91 % quan-
tiles in case these errors behaved like independent Gaussian errors
(i.e. 1/

√
n, with n the number of observations). Results from WRF-

Chem MADE over W. Europe. Further explanation in Sect. 3.2.

tude although WRF-Chem generally produces larger errors.
Error magnitudes for different observables behave similarly
among WRF-Chem and EMEP: monthly errors for AOT and
surface black carbon are the smallest and largest errors, re-
spectively. EMEP monthly error maps (see Fig. 7) also look
similar to WRF-Chem results (Fig. 4), especially for black
carbon surface concentrations.

It would be interesting to understand the reason for the
differences. From global model studies in the context of
AEROCOM (e.g. Myhre et al., 2013; Randles et al., 2013;
Stier et al., 2013), we know that such attribution is diffi-
cult and here we limit ourselves to pointing out some obvi-
ous differences between WRF-Chem and EMEP. First, there
are differences in emission inventories and sea-salt emis-
sion parametrisations. Second, although both models were
nudged to reanalysis data, transport will be different due
to different dynamical cores and vertical resolution (WRF-
Chem uses twice the vertical resolution as EMEP). For simi-
lar reasons wet and dry deposition are different. Both models
also use a very different aerosol scheme (bulk mass or two-
moment scheme). All of this will affect aerosol lifetimes,
which in turn will affect the spatio-temporal variability of
aerosol.

It should also be pointed out that EMEP shows quite a
bit of month-to-month variation: e.g. January 2008 errors for
AOT and March 2008 errors for surface black carbon con-
centration are markedly bigger than those estimated for May.

The most important point here is that both models suggest
spatial sampling errors of similar magnitude with similar spa-
tial patterns.

6 Different observables and different regions

Figure 8 shows relative spatial sampling errors (either instan-
taneous or monthly) for all observables and the three WRF-
Chem MADE regions (see also Table 1 and Fig. 1). Instanta-
neous RMS errors are large: from 20 % up to 160 % depend-
ing on observable and region (the RMS errors are calculated
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Figure 6. Relative spatial sampling errors (for either instantaneous
or monthly data; note the different vertical axes) over the W. Europe
region as calculated by WRF-Chem MADE (left bar) and EMEP
(right bar) in May 2008. Further explanation in Sect. 3.2.

over a single region for the full month, see Table 1). There are
clear and (mostly) systematic differences among the three re-
gions in that W. Europe shows the largest errors and Congo
the smallest. This may be related to the overall wind flow;
Congo shows the most laminar flow (and hence most coher-
ent aerosol plumes), while W. Europe shows a very turbu-
lent flow (we do not wish to discount other effects like the
spatio-temporal distribution of sources but a full explanation
is beyond this paper’s scope). Two observables (black carbon
concentrations near 2 km a.g.l. for all three regions and sur-
face CCN at S = 0.02 % in W. Europe) show errors down to
−100 %. In the case of black carbon, this is due to narrow
black carbon plumes travelling through an otherwise pristine
air layer; the observation often sees the pristine air but the
model always includes contributions from the plume. In the
case of CCN, the background CCN at S = 0.02 % is very
low, especially close to sources where many small particles
are emitted. However, once in a while a plume of larger par-
ticles travels over, giving rise to much larger CCN at low
supersaturation S = 0.02 %.

The monthly errors can be reduced quite a bit compared to
the instantaneous errors. For many observables, RMS errors
are 5–15 %, although for observables like surface black car-
bon concentrations and N10 it can be 30–50 and 30–80 %,
respectively, with individual errors reaching over 100 %.
Congo represents quite a different situation from the other
two regions: the reduction due to averaging is much less, and
in the case of surface N10 there is actually a slight increase in
errors. An important difference between W. Europe and Ok-
lahoma on the one hand and Congo on the other is that the
first have mostly fixed aerosol sources with a prescribed diur-
nal cycle. The latter has emission sources (fires) in different
locations from day to day.

Figure 9 shows relative spatial sampling errors for the
other three regions, all simulated by models with bulk mass
schemes for aerosol. In general, spatial sampling errors ap-
pear to be a bit smaller than in Fig. 8, but note the exception
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Figure 7. Monthly average of the simulated field and the relative spatial sampling error in the observation of AOT and surface black carbon
concentration, as simulated over W. Europe by EMEP. This can be compared to results for WRF-Chem MADE as shown in Fig. 4 but note
that the colour bars have different ranges to bring out spatial patterns better.
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Figure 8. Relative spatial sampling errors (for either instantaneous
or monthly data; note the different vertical axes) for all WRF-Chem
MADE regions (left bar: W. Europe; centre bar: Oklahoma; right
bar: Congo). Further explanation in Sect. 3.2.

of extinction near 2 km a.g.l. Monthly sampling errors over
ocean are very low, due to spatial correlations in the near-
surface wind-speeds that cause sea-salt aerosol emission.
However, large errors are found for extinction over ocean
near 2 km a.g.l., that seem partly due to isolated plumes of
sea salt but mostly due to a broken cloud field that rains out
sea salt locally. Both instantaneous and monthly errors over
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Figure 9. Relative spatial sampling errors (for either instantaneous
or monthly data, note the different vertical axes) for three regions
simulated with bulk mass schemes (left bar: Europe; middle bar:
Ocean; right bar: Japan). Black carbon concentrations over the
ocean are zero and so are related spatial sampling errors. Further
explanation in Sect. 3.2.

Japan become larger if only observations over the land area
are considered. The Japan region includes parts of the Japan
Sea and the North Pacific Ocean that account for more than
80 % of the simulated area. Additionally, the Japan simula-
tion, like the Congo simulation, shows rather laminar flow
from mesoscale to synoptic scale. Finally, simple statistics
like in Fig. 9 cannot convey that over an extended region
like Europe there are areas with systematically small or large
sampling errors due to source locations and orography (see
also Figs. 4 and 7).

In the case of actual observations, there may be quite a
bit of intermittency in their temporal sampling, suggesting
that the spatial sampling decreases we have shown here for
monthly averages represent a best-case scenario. For a study
of errors due to temporal sampling we refer to Schutgens et
al. (2016).
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Figure 10. Relative spatial sampling error (instantaneous data) as a function of model level (left vertical axis) and altitude above ground
level (a.g.l., right vertical axis) for extinction, N10 and black carbon concentrations. Results for the WRF-Chem MADE simulations. Further
explanation in Sect. 3.2.

7 Vertical distribution of sampling errors

The vertical distribution of spatial sampling errors can be
very different depending on observable and region. Fig-
ures 10 and 11 show the instantaneous and monthly relative
spatial sampling error profiles for extinction, N10 and black
carbon concentrations.

We see that although errors are typically largest at and
near the surface, this does not preclude large errors higher
up in the atmosphere. The instantaneous errors for black car-
bon concentrations actually show largest errors from 2 to
7 km a.g.l. This is due to black carbon plumes in a relatively
pristine background, which also explains why the error dis-
tribution is so clearly skewed to negative values (observation
sees the pristine background while the model also includes
plumes). Black carbon’s only source is surface emission, but
both extinction and N10 also have sources throughout the tro-
posphere (nucleation, condensation and in-cloud production
of sulfate) which likely explains the difference between these
observables.

For the monthly errors, most profiles show secondary max-
ima in sampling errors well above the surface.

We have analysed the sampling errors at their original
model levels, which for these simulations occur at fairly con-
stant altitude above ground. Note that the errors estimated in
this subsection do not take into account that a global model’s
grid box may have a vertical extent larger than that of our
regional simulations. Taking this into account would only in-
crease the estimated errors. The profiles of spatial sampling
errors for the bulk mass simulations are rather constant and
therefore not discussed here.

8 Impact of grid-box size and shape

8.1 Impact of latitude

Although our high-resolution simulations were made at dif-
ferent latitudes on Earth, so far we have assumed that the
global model grid-box size is equal to the grid-box size of
a T63 grid at the equator (210 by 210 km). At higher lati-
tudes, the longitudinal extent of the grid box shrinks (at least
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Figure 11. Relative spatial sampling error (monthly data) as a function of model level (left vertical axis) and altitude above ground level
(a.g.l., right vertical axis) for extinction, N10 and black carbon concentrations. Results for the WRF-Chem MADE simulations. Further
explanation in Sect. 3.2.

for rectangular grids), which may reduce spatial sampling er-
rors. This is explored in Fig. 12. As we can see, smaller lon-
gitudinal extent leads to smaller errors although the effect is
rather mild. When the longitudinal extent is halved, errors
in monthly averaged fields decrease between 10 and 30 %
of the original errors, with ∼ 20 % a very typical value. Ad-
ditionally, larger errors are usually less affected than smaller
errors, although the differences are not very big. Spatial sam-
pling errors in instantaneous fields behave very similarly (not
shown), although fields that show very large errors (like sur-
face BC or surface CCN at S = 0.02 %) tend to show less im-
provement (∼ 10 %) when the grid-box longitudinal extent is
halved.

Note that the longitudinal extent only has an impact on
spatial sampling errors because there are spatial and tempo-
ral correlations in the aerosol fields. If these fields were inde-
pendent random noise, decreasing longitudinal extent would
barely have an impact on sampling errors.
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Figure 12. Relative spatial sampling errors (monthly data) as a
function of longitudinal extent of the grid box (due to latitude). Near
the top horizontal axis, latitudes are given. Near the bottom horizon-
tal axis, the ratios of1q25,1q82 and1q96 at two different longitu-
dinal extents (110 over 210 km) are given. Results from WRF-Chem
MADE over W. Europe. Further explanation in Sect. 3.2.
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Figure 13. Relative spatial sampling errors (monthly data) as a
function of grid-box size. Near the top horizontal axis, standard
spectral grid sizes are shown. Near the bottom horizontal axis,
the ratios of 1q25,1q82 and 1q96 at two different grid-box sizes
(110 and 210 km) are given. Results from WRF-Chem MADE over
W. Europe. Further explanation in Sect. 3.2.

8.2 Impact of grid-box size

The impact of model resolution is also easily explored; see
Fig. 13. Monthly sampling errors decrease by 10 to 50 %
from T63 (210 by 210 km) to T106 (125 by 125 km, a third of
the T63 grid-box area), with 40 % a rather typical value. Sur-
face observations are less affected with decreases of ∼ 30 %,
especially N10 whose spatial sampling errors in all three sim-
ulations only decreased by ∼ 20 % when the grid-box size
was halved. For instantaneous values (not shown), the typi-
cal reduction in sampling error is smaller,∼ 30 %, especially
for surface fields, ∼ 20 %.

As with the longitudinal extent, grid-box size only has an
impact because of the spatial and temporal correlations in
the aerosol fields. A field of independent random noise ex-
hibits sampling errors quite independently of grid-box size
(unless the box, and the number of values therein, becomes
very small).

9 Observations offset from the grid point

So far we have considered observations at the exact grid
point of a global model’s grid box which is a useful start-
ing point but also quite unrealistic. For a sample of randomly
distributed observations in a 210 by 210 km grid box, only
2 % will be within 10 km of the grid point and 50 % will be
more than 84 km away from it. By considering observations
located throughout the grid box, and not just its centre, it is
possible to show how monthly sampling errors increase with
distance of the observation to the grid point; see Fig. 14. As
a matter of fact, 50 % of possible AOT observations have er-
rors at least twice as large as found for an observation at the
grid point. Observations in the very corners of the grid box
exhibit errors 3 times as large. The increase of sampling er-
rors with distance to the grid point for surface black carbon
concentrations is not as large but still significant.
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Figure 14. Relative spatial sampling error (monthly data) as a func-
tion of distance of the observation to the grid point. Near the bottom
horizontal axis, the ratios of 1q25,1q82 and 1q96 at a distance
of 80 and 0 km are given. Results from WRF-Chem MADE over
W. Europe. Further explanation in Sect. 3.2.

That sampling errors increase with distance may be sur-
prising but can be explained. The evolution of aerosol across
a global model grid box may differ quite a bit due to differ-
ences in sources, flow and deposition (especially wet). Nev-
ertheless, as is well known from observations, aerosol ex-
hibits correlations over several tens of kilometres (Anderson
et al., 2003; Kovacs, 2006; Santese et al., 2007; Shinozuka
and Redemann, 2011; Schutgens et al., 2013) and our high-
resolution simulations are no different. Hence, an observa-
tion at the centre of a grid box will correlate strongly with a
large part of that grid box, while an observation in the upper-
right corner will only correlate strongly with (part of) the
upper-right quadrant of that grid box but less so with the
lower-left quadrant. It is important to realise that aerosol in
individual 10× 10 km2 boxes cannot be considered as inde-
pendent and identically distributed (i.i.d.) random variables.
If aerosol behaved like i.i.d. random variables, sampling er-
rors would not increase with distance.

Figure 15 shows box-and-whisker plots of monthly sam-
pling errors for several observables, either at the grid point, or
at a distance of 70 or 100 km, for the W. Europe region. Sim-
ilar results can be shown for Oklahoma and Congo, where
the relative increase with distance is often (but not always)
larger. For all three regions and all observables, the increase
for 1q82 at 70 km is between 1.2 and 2.3× and the increase
at 100 km is between 1.4 and 3.4×. Instantaneous spatial
sampling errors increase less fast with distance but still sig-
nificantly; typical increases for1q82 at 70 km is 1.3 for AOT
and 1.2 for surface black carbon concentration (i.e. monthly
averaging is more beneficial for an observation at the grid
point than one at 70 km distance).

As discussed before (Sect. 3.1), the meaning of a global
model’s grid-point value is not obvious. So far we have as-
sumed that the grid-point value is the unweighted average
of the high-resolution field over the global model’s grid box
(i.e. a constant weighting function w). Here, we explore how
the sampling errors depend on different weighting functions.
Figure 16 shows how a constant, linear or Dirac-δ weight-
ing function affects sampling errors as a function of distance
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Figure 15. Relative spatial sampling error (monthly data) as a func-
tion of distance of the observation to the grid point. The numbers
near the top horizontal axis show the increase of 1q82 at 70 and
100 km relative to 0 km. Results from WRF-Chem MADE over
W. Europe. Further explanation in Sect. 3.2.

to the grid point. For the Dirac-δ weighting function, sam-
pling errors are equal to zero at a distance of zero: the global
model’s value is equal to the observation (since both are per-
fect). However, as distance increases, so will the spatial sam-
pling errors. Actually, for distances larger than ∼ 30 km, the
three very different weighting functions give rather similar
sampling errors (but notice that more localised weighting
functions yield larger errors as expected). Since for randomly
distributed observations, only ∼ 6 % would be closer than
30 km to the grid point, we feel it is justified to conclude that
the shape of the weighting function only has a small impact
on statistics of spatial sampling errors. The spatio-temporal
variation of the field is far more important.

10 Strategies for reducing sampling errors

The typical sampling errors when the observation is at the
model grid point are lower than those for an observation off-
set from the grid point. It seems unlikely that we can de-
vise strategies to reduce centre-of-grid-box errors, other than
temporal averaging (see Sect. 6) or further averaging global
model data (and their associated observations) over multiple
grid boxes. However, the sampling errors for observations
offset from a grid point might be reduced by proper screen-
ing, interpolation within the model grid or considering mul-
tiple observations at the same time.

10.1 Observations close to the model grid point

As Fig. 14 shows, the smallest spatial sampling errors oc-
cur for observations close to the model grid point. As a
matter of fact, within a distance of 30 km, there is hardly
any change in the errors (note: this figure uses the constant
weighting function). To keep sampling errors as small as
possible, one might only select observations that are within
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Figure 16. Relative spatial sampling error (monthly data) as a
function of distance of the observation to the grid point, for three
different weighting functions. Results from WRF-Chem MADE
over W. Europe. The usual interquantile ranges 1q50 (solid), 1q82
(dashed) and 1q96 (dotted) are shown.

30 km of a model grid point. A T63 grid box at the equator
(210×210= 44 100 km2) implies that only 6 % of randomly
distributed observations would be usable, a substantial reduc-
tion of potential observational data. For an upper distance of
50 km, this increases to 18 % of observations, still represent-
ing a significant loss of observational data.

One benefit of selecting only observations close to the grid
point is that here the impact of the weighting function is most
pronounced (see also Fig. 16); so within 30 km of the grid
point, spatial sampling errors may actually be very small if
the weighting function is highly localised. Since it is impossi-
ble to know the actual weighting function, it may be difficult
to assess whether it is localised or not.

10.2 Aggregating observations over the model grid box

It has been suggested (e.g. Sayer et al., 2010) that aggregat-
ing observations over a model grid box is the best strategy
for comparing models with observations. Obviously, such
a strategy is only possible for satellite data that provide
contiguous wide swath observations (e.g. MODIS, MISR,
POLDER, SEVIRI). Moreover, it can be expected that the
success of this strategy depends on the weighting function
that is applicable. Figure 17 shows relative spatial sampling
errors in case of observations that are spatially aggregated be-
fore comparison to the model (it is assumed the aggregation
is space-filling). Here the model grid point and the centre
of the aggregated observations coincide. As a result, sam-
pling errors go to zero for the constant weighting function
as the observational aggregation approaches the extent of the
grid box. For the linear weighting function, we see that er-
rors initially become smaller as the aggregation increases and
then grow again as the observational aggregation approaches
the extent of the grid box. Still, sampling errors are halved
when aggregating observations over the full grid box so there
is clearly a benefit. The extreme weighting function of the
Dirac-δ obviously leads to large errors.

For actual satellite measurements it will be difficult to ob-
serve the complete grid box, due to e.g. cloud cover, sun
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Figure 17. Relative spatial sampling error (monthly data) as a function of aggregation extent of the AOT observations, using three different
weighting functions. The centre of the aggregated observations is assumed to coincide with the model’s grid points. In the lower right corner,
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0 20 40 60 80 100 120 140
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6
AOT (constant)

0 20 40 60 80 100 120 140
Observation distance [km]

−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

R
e
la

tiv
e
 e

rr
o
r

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140
Observation distance [km]

        

0 20 40 60 80 100 120 140
−1.0

−0.5

0.0

0.5

1.0

1.5
Surface BC conc. (constant)

0 20 40 60 80 100 120 140
Observation distance [km]

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

R
e
la

tiv
e
 e

rr
o
r

 

 

 

 

 

 

0 20 40 60 80 100 120 140
Observation distance [km]

        

0 20 40 60 80 100 120 140
−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6
AOT (dirac)

0 20 40 60 80 100 120 140
Observation distance [km]

−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

R
e
la

tiv
e
 e

rr
o
r

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140
Observation distance [km]

        

0 20 40 60 80 100 120 140
−1.0

−0.5

0.0

0.5

1.0

1.5
Surface BC conc. (dirac)

0 20 40 60 80 100 120 140
Observation distance [km]

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

R
e
la

tiv
e
 e

rr
o
r

 

 

 

 

 

 

0 20 40 60 80 100 120 140
Observation distance [km]

        

Figure 18. Relative spatial sampling error (monthly data) for four
randomly distributed sites as a function of distance to the grid point,
assuming two different weighting functions. The red lines indicate
the errors for a single site (see also Fig. 14). Results from WRF-
Chem MADE over W. Europe. Further explanation in Sect. 3.2.

glint or high surface albedo. Sayer et al. (2010) show that
in the case of Advanced Along Track Scanning Radiometer
(AATSR) observations (nominal 10× 10 km pixel) and the
GEOS-Chem model (5◦× 4◦ grid box) it is extremely un-
likely that more than 50 % of a model grid box would be
covered by observations; that is, space-filling aggregations
over global model grid boxes are very unlikely.

10.3 Multiple observations in a model grid box

Instead of a space-filling aggregation, one could average
multiple observations in the same grid box before compari-
son to the grid point value and hopefully reduce sampling er-
rors. The idea here is that if the observations are sufficiently
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Figure 19. Relative spatial sampling error (monthly data) in case of
linear interpolation of model values to the observation, as a function
of distance to the grid point. The red lines indicate the errors without
interpolation (see also Fig. 14). Results from WRF-Chem MADE
over W. Europe. Further explanation in Sect. 3.2.

far apart and represent fairly independent samplings of the
field within the grid box, their average should be distributed
closer to the (weighted) grid-box average than an individual
observation. This is similar to the previous subsection, ex-
cept far fewer observations are needed and no space-filling
aggregation is required. This strategy may be employed for
surface sites as well as for satellite data.

Figure 18 show errors in case of four independently dis-
tributed observations throughout the grid box. Clearly, aver-
aging multiple observations helps to reduce spatial sampling
errors, even when the Dirac-δ weighting function is assumed!
However, note that this improvement is less in case of more
localised weighting functions. For the constant weighting
function, we also see that smallest errors now occur not at a
distance of 0 km, but at a distance of 50 to 70 km (for the lin-
ear weighting function this minimum shifts closer to the grid
point). This is quite understandable; close to the grid point,
multiple observations are clustered together. Hence they will
not be very different. As distance increases, the randomly
distributed observations sample more of the grid box. Ob-
viously, using more observations than four will give better
results (not shown).
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Figure 20. Change (relative to Fig. 14) in 1q82 (for monthly rela-
tive sampling errors) due to interpolation, as a function of distance
to the grid point. All three weighting functions and two interpola-
tion methods are considered. Similar graphs for1q50 and1q96 can
be shown.

Note that Fig. 18 does not suggest that any set of four ob-
servations reduces sampling errors; if those observations are
very close together, averaging them will hardly improve on
the error.

10.4 Interpolating model data among grid points

By interpolating the model data to the location of an obser-
vation, it may be possible to reduce spatial sampling errors
for observations located away from the model grid point. The
idea is to construct virtual model data for a virtual grid box
centred on the observation. This interpolation can be per-
formed in different ways; here we consider linear interpola-
tion and distance-weighted averaging. Figure 19 shows that
linear interpolation in case of a constant weighting function
clearly has a beneficial effect on spatial sampling errors, es-
pecially for observations far from the global model’s grid
point. Notice that from about 80 km distance, errors become
constant and no longer increase with distance (they are al-
ways larger than the errors for an observation at the grid
point). Obviously, the impact depends on the weighting func-
tion and interpolation method, as shown in Fig. 20. Figure 20
shows that interpolation is most beneficial for observations
farthest from the grid point and can actually lead to larger er-
rors close to the grid point (especially for distant-weighted
averaging). Interestingly, the more localised the weighting
function, the more beneficial the interpolation (presumably
because the global model data are now identical to observa-
tions at the grid point). Finally, this figure shows that lin-
ear interpolation performs better than distance-weighted av-
erage. This holds for all observables and all regions we con-
sidered.

Much the same conclusions can be stated for instantaneous
values, except that the beneficial impact of interpolation is
less pronounced.

11 Flight campaigns

Unlike satellite or ground-site observations, measurements
taken during a flight campaign cannot be properly aver-
aged over time (at least on timescales from days to months
and longer). To simulate the (nearly) instantaneous measure-
ments during horizontal legs of flight campaigns, we use nar-
row tracks: 10 km wide and 210 km long, centred on the grid
point and running in either east–west or north–south direc-
tion. Profiles of spatial sampling errors for such flight cam-
paign data can be seen in Fig. 21. Compared to instantaneous
point observations (also shown), the flight campaign obser-
vations are less affected by spatial sampling issues because
they sample a larger part of the grid box. Even so, signif-
icant instantaneous RMS errors exist, varying between 10
and 41 % for extinction, 10 and 46 % for N10 and 21 and
100 % for black carbon concentrations at different altitudes
and for different regions (these errors are for a best-case sce-
nario: a grid-box long flight path centred on the grid point).
For Congo, spatial sampling errors can be quite different de-
pending on whether the flight path runs north–south or east–
west around 6 km a.g.l. Prevailing wind flows are east–west,
resulting in similarly orientated plumes. If the flight track ob-
servations are within and along such a plume, spatial sam-
pling errors will be large and positively biased. If the flight
track observations are across such a plume, errors will be
smaller and (over a large domain) unbiased.

The Congo results highlight a particular issue with flight
campaign data: if the flight tracks have deliberately been
chosen to follow observed aerosol plumes, perfect observa-
tions will overestimate perfect model values by significant
amounts.

Almost vertical legs of flight campaigns should experience
errors like those discussed for point observations, Sect. 7.
Notice that we do not consider the vertical extent of a global
model’s grid box in our analysis.

12 Conclusions

The spatial resolutions of current global aerosol models
and the observations used to evaluate them are very dif-
ferent. Model grid-point values are representative of areas
of ∼ 200× 200 km2 but individual observations seldom see
more than ∼ 10× 10 km2 of the atmosphere. This difference
in the field of view should affect the evaluation of models
with observations but has received little attention in the liter-
ature. We believe our paper is the first systematic and qual-
itative study of the differences between a perfect model and
perfect observations due to spatial sampling.

Using high-resolution simulations for six different regions
by two different regional models and one global model, we
show that spatial sampling errors can be substantial across
a range of observables (AOT, extinction, PM2.5, black car-
bon concentrations, number concentrations and CCN). These
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Figure 21. Relative spatial sampling error (for measurements during horizontal legs of a flight campaign) as a function of model level (left
vertical axis) and altitude above ground level (a.g.l., right vertical axis) for extinction, N10 and black carbon concentrations. The grey shaded
error ranges are for north–south flights. Similar error ranges for east–west flights are shown in black lines. The results of Fig. 10 are also
shown in red lines. The usual interquantile ranges1q50 (solid),1q82 (dashed) and1q96 (dotted) are shown. Further explanation in Sect. 3.2.

spatial sampling errors fluctuate in time and space, de-
pending on emission sources, grid locations, weather and
aerosol processes. Ultimately, they constitute noise that will
be present in any model evaluation and that can not be elim-
inated entirely unless model grid sizes become smaller than
observational fields of view.

Assuming observations that do not coincide with the
global model’s grid point but are offset by 80 km (54 % of
randomly located observations in a 210× 210 km grid box
will be further away), the following statistics are offered. For
instantaneous data, RMS spatial sampling errors (defined as
observation minus global model value) are larger than 30 %,
typically between 40 and 80 % and may go up to 160 % (de-
pending on observable and region). These errors are typically
positively skewed and highly non-Gaussian. For monthly
data, RMS sampling errors are larger than 10 %, typically
between 10 and 40 % and may go up to 75 % (depending on
observable and region).

This noise can however be reduced; we have explored the
impact of spatial or temporal averaging of data as well as

selection of observations based on distance to a grid point
or interpolation of model data to the location of an obser-
vation. Our study suggests that while increased model reso-
lution will of course be beneficial, resolutions will need to
be 4 times higher (50× 50 km2 grid-box area) before spatial
sampling errors become significantly smaller. In the mean
time, we recommend that both model data and observations
are spatio-temporally averaged to ensure best agreement.
Here the model data must first be spatially interpolated to
and temporally collocated with the observation. Optimal av-
eraging procedures will depend on the spatio-temporal sam-
pling of the observations, the characteristics of the observ-
able and the requirements of the scientific community; so we
offer no single prescription although the results in this pa-
per provide some guidelines. Optimal strategies for evaluat-
ing models with observations need to receive more attention
from researchers.

Our results suggest that caution is needed when using in
situ measurements in global model evaluation. These mea-
surements consistently led to larger spatial sampling errors
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than remote sensing measurements like AOT. For instance,
monthly surface black carbon concentrations and number
densities for our simulations have RMS spatial sampling er-
rors of at least 30 and up to 80 %. Best-case scenarios for
flight campaign data still allowed spatial sampling errors of
100 % and typically the observation would underestimate the
model.

Regarding the large sampling errors in case of black car-
bon, other species (e.g. sulfate, sea salt) were not explicitly
analysed in this paper but show different results (not shown).
Sulfate errors tend to be rather small, probably due to the
multitude of sources and relatively long lifetimes. Sea salt,
on the other hand, shows large and systematic monthly sam-
pling errors along coastlines (unsurprisingly). Given the size
of our global model’s grid box, these errors extend quite far
into land or over sea. The important point here is that sam-
pling errors for species mass concentrations can be very dif-
ferent dependent on species, and hence have a big impact on
the evaluation of a model’s particle speciation.

It is likely that the spatial sampling errors estimated in this
paper are underestimates. First, Qian et al. (2010) showed
that model spatial variability over 75 km increased signifi-
cantly (by 60 to 100 %) when model resolution changed from
15 to 3 km. Our current high-resolution simulations have res-
olutions of 10 km. Second, our high-resolution simulations
do not resolve fine-scale structure below 10 km while many
in situ measurements actually have fields of view on the or-
der of millimetres to centimetres (e.g. particle inlets). Third,
our models are more limited in the spatio-temporal variation
of their emission sources than reality due to assumed and
constant diurnal patterns in anthropogenic emissions. Finally,
even high-resolution models will have to take a broad view
of aerosol and describe average properties (e.g. mass and/or
number densities) instead of modelling individual aerosols in
all their variety.

On the other hand, it is possible that in areas far away from
sources (e.g. the free troposphere over the remote ocean)
aerosol has mixed sufficiently to strongly reduce spatial sam-
pling errors (e.g. HIPPO measurements over the Pacific; see
also Weigum et al., 2012). Our simulations do not really al-
low us to explore this scenario.

In the interest of comparing likes to likes, this paper does
not consider that real observations may have very inter-
mittent temporal sampling, nor does it consider the impact
that precipitation may have on spatio-temporal variability of
aerosol (Gryspeerdt et al., 2015, for example). These issues
are the subject of further investigation.
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