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Abstract. In this study, methods are proposed to diagnose
the causes of errors in air quality (AQ) modelling systems.
We investigate the deviation between modelled and observed
time series of surface ozone through a revised formulation
for breaking down the mean square error (MSE) into bias,
variance and the minimum achievable MSE (mMSE). The
bias measures the accuracy and implies the existence of sys-
tematic errors and poor representation of data complexity, the
variance measures the precision and provides an estimate of
the variability of the modelling results in relation to the ob-
served data, and the mMSE reflects unsystematic errors and
provides a measure of the associativity between the modelled
and the observed fields through the correlation coefficient.
Each of the error components is analysed independently and
apportioned to resolved processes based on the correspond-
ing timescale (long scale, synoptic, diurnal, and intra-day)
and as a function of model complexity.

The apportionment of the error is applied to the AQMEII
(Air Quality Model Evaluation International Initiative) group
of models, which embrace the majority of regional AQ mod-
elling systems currently used in Europe and North America.

The proposed technique has proven to be a compact esti-
mator of the operational metrics commonly used for model
evaluation (bias, variance, and correlation coefficient), and
has the further benefit of apportioning the error to the origi-
nating timescale, thus allowing for a clearer diagnosis of the
processes that caused the error.

1 Introduction

Due to their use for regulatory applications and to support
legislation, air quality (AQ) models must model correctly
and be correctly applied, justifying the need for a thorough
evaluation. A framework for the operational and scientific
evaluation of geophysical models was already envisaged in
the early 1980s (Fox, 1981; Wilmott et al., 1985), the for-
mer being “a comparison with data exclusively within a par-
ticular application context”, and the latter defined as “some
understanding of cause-and-effect relationship that relies on
testing model components and extensively detailed data col-
lection” (Fox, 1981). Thirty years later, as AQ models be-
came more and more complex and their range of applica-
bility widened, Dennis et al. (2010) further elaborated the
concept of model evaluation by proposing a four-level eval-
uation, according to which different complementary aspects
of the models should be tested, namely:

a. operational: the level of agreement of model results with
observations;

b. dynamic: ability of the modelling system to respond to
changes (in emissions, or in meteorological events);

c. diagnostic: identify and attribute the source of the error
to the relevant process;

d. probabilistic: confidence and uncertainty levels of the
modelled results.

In the framework originally designed by Dennis et
al. (2010), the diagnostic component plays a central role. It
(i) answers the fundamental issue left open by the operational
screening, in other words whether the model provides the
right answer for the right reason, (ii) provides feedback to
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developers to help make model improvements, and (iii) sets
the basis for the probabilistic evaluation (Fig. 1 of Dennis et
al., 2010).

Over the years, and despite the increasing relevance of
modelling systems for AQ applications, model evaluation
continues to rely almost exclusively on operational evalua-
tion, which basically involves gauging the model’s perfor-
mance using distance, variability and associativity metrics.
This common practice has little or no impact on model im-
provement, as it does not target the source of the modelling
error and does not discriminate between the reasons for ap-
propriate or inappropriate performance.

Such a requirement is even more pressing these days, with
current state-of-the-science AQ modelling systems account-
ing for an increasing number of coupled physical processes
and being described using hundreds of modules, which are
the result of decades of targeted and, generally, independent
investigations. Furthermore, AQ modelling systems typically
depend on external sources for the inputs of meteorology and
emissions data, as well as for boundary conditions. These
fields are generally produced by other models (which, in
turn, depend on external sources for initial and/or boundary
conditions) and, after substantial processing, are used by the
AQ modelling systems with no guarantee of being unbiased
and/or accurate. The bias introduced by these inputs, along
with the uncertainty associated with model error, the lineari-
sation of non-linear processes and omitted and unresolved
variables and processes, all contribute to the model error. The
extensive use of AQ models for AQ assessment and planning
is equally important, and requires a good knowledge of the
model capabilities and deficiencies that would allow for a
more educated use of the modelling systems and their results.

Recently, the AQMEII (Air Quality Model Evaluation In-
ternational Initiative) activity (Rao et al., 2011) applied the
approach proposed by Dennis et al. (2010), by organising
model evaluation activities (AQMEII 1, 2 and 3) using oper-
ational (Solazzo et al., 2012a, b, 2013a; Im et al., 2015a, b),
probabilistic (Solazzo et al., 2013b; Kioutsioukis and Gal-
marini, 2014) and diagnostic (Hogrefe et al., 2014; Makar et
al., 2015) evaluation frameworks.

The study we present here follows and complements the
previous investigations based on the AQMEII models col-
lected in the first and second phases of the activity (AQMEII1
and AQMEII2). The main aim is to introduce a novel method
that combines operational and diagnostic evaluations. This
method helps apportion the model error to its components,
thereby identifying the space/timescale at which it is most
relevant and, when possible, to infer which process/es could
have generated it. This work is designed to support the anal-
ysis of the currently ongoing third phase of the AQMEII ac-
tivity (Galmarini et al., 2015).

2 Mean square error as a comprehensive metric

For the model evaluation strategy proposed, we start by
breaking down the mean square error (MSE) (used here as
unique metric to evaluate model performance) into the sum
of the variance (and covariance) and the squared bias. The er-
ror and its components are then calculated on the spectrally
decomposed time series of modelled and observed hourly
ozone mixing ratios. The advantage of this evaluation strat-
egy is 2-fold:

– With respect to a conventional operational evaluation,
the new method allows for a more detailed assessment
of the distance between model results and observations
given the breakdown of the error into bias, variance and
covariance and their associated interpretations.

– Decomposing the MSE into spectral signals allows for
the precise identification of where each portion of the
model error predominantly occurs. Given that specific
processes are associated with specific scales, the appor-
tionment of the error components to their relevant scales
helps to more precisely identify which processes de-
scribed in the model could be responsible for the error.
Information about the nature of the error and the class of
process can significantly help modellers and developers
to improve model performance.

The data used are produced by the modelling communities
participating in AQMEII1 and AQMEII2 over the European
(EU) and North American (NA) continental-scale domains
for the years 2006 (AQMEII1) and 2010 (AQMEII2).

2.1 Error decomposition

The MSE is the squared difference of the modelled (mod)
and observed (obs) values:

MSE= E(mod-obs)2 =
∑nt
i=1(modi − obsi)2

nt
, (1)

where E(·) denotes expectation and nt is the length of the
time series. The bias is

bias= E(mod-obs) (2)

i.e. bias=mod−obs. Thus, the following relationship holds:

MSE= var(mod-obs)+ bias2, (3)

which is a well-known property of the MSE, (var(·) is the
variance operator). By using the property of the variance for
correlated fields:

var(mod-obs)= var(mod)+ var(obs)− 2cov(mod,obs), (4)

the final formulation for the MSE components reads as fol-
lows:

MSE= bias2
+ var(mod)+ var(obs)− 2cov(mod,obs), (5)
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where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs)= cov(obs,obs)= cov(mod,mod)= var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE=(mod− obs)2+ (σmod− σobs)
2

+ 2(1− r)σmodσobs. (6)

In Eq. (6), the variance term is expressed as the differ-
ence between the standard deviation of the model and that of
the observations, and the covariance term (last term on the
right) includes r , the coefficient of correlation between the
observed and modelled time series. The ratios of the three
terms on the right-hand side of Eq. (6) to the overall MSE are
known as Theil’s coefficients (Pindick and Rubinfeld, 1998).
Murphy (1988) provided examples of the scores that can be
developed using the components of the MSE.

The bias measures the departure of the modelled from the
observed results, and is a measure of systematic error, since
it measures the extent to which the average modelled val-
ues deviate from the observed ones. The bias is commonly
used to express the degree of “trueness”, i.e. “the closeness of
agreement between the average value obtained from a large
series of measurements and the true value” (Johnson, 2008).
The variance shows whether the modelled variability is com-
patible with that observed. Finally, the covariance term rep-
resents the unexplained proportion of the MSE due to the
remaining unsystematic errors; i.e. it represents the remain-
ing error after deviations from the mean values have been ac-
counted for. This latter term is a measure of the lack of corre-
lation of the model with comparable observations, and is con-
sidered the least “worrisome” portion of the error (Pindick
and Rubinfeld, 1998).

Aiming at minimising the MSE, the only controlled vari-
ables in Eq. (6) are mod and σmod, and differentiating with
respect to them yields the conditions that minimise the MSE:


∂MSE

∂mod
= 2

(
mod− obs

)
= 0

∂MSE
∂σmod

= 2(σm− σobs)+ 2(1− r)σobs = 0

i.e. the best agreement between modelled and observed val-
ues is achieved by{

mod= obs
σm = rσobs

, (7)

which analytically corresponds to the aforementioned items
(a) and (b). By inserting Eq. (7) into Eq. (6), the minimum
achievable MSE (mMSE) is

mMSE= σ 2
obs(1− r

2), (8)

which is the unexplained portion of the error, as it reflects the
share of observed variance that is not explained by the model
(r2 is the coefficient of determination). The presence of an
unexplained part of the error suggests a modification of the
MSE decomposition in Eq. (6) in such a way as to explicitly
include mMSE:

MSE=
(
mod− obs

)2
+ (σmod− rσobs)

2
+mMSE. (9)

The decompositions in Eqs. (5), (6) and (9) contain all the
relevant operational metrics usually applied to score mod-
elling systems (bias, variance, correlation coefficient), and
therefore prove to be a compact estimator of accuracy (bias),
precision (variance) and associativity (unexplained portion
through the correlation coefficient). Eq. (9) has been explic-
itly derived in this study to help evaluate AQ models.

Ideally, the entire error should be attributable to unsys-
tematic fluctuations. From a model development perspective,
the variance and covariance are possibly more revealing of
model deficiencies than is the bias term, as they are pro-
duced by the AQ model itself, while the bias is also due to
external sources (e.g. emissions, boundary conditions). From
the application viewpoint, however, it is the overall error that
counts, which is mostly made up of the bias.

2.2 Spectral decomposition of modelled and observed
time series

Hourly time series of (modelled and observed) ozone con-
centrations have been decomposed using an iterative mov-
ing average approach known as the Kolmogorov–Zurbenko
(kz) low-pass filter (Zurbenko, 1986), whose applications to
ozone are vastly documented in the literature (Rao et al.,
1997; Wise and Comrie, 2005; Hogrefe et al., 2000, 2014;
Galmarini et al., 2013; Kang et al., 2013; Solazzo and Gal-
marini, 2015). The kz filter depends on two parameters: the
length of the moving average window m and the number of
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iterations k(kzm,k). Since the kz is a low-pass filter, the fil-
tered time series consists of the low-frequency fluctuating
component, while the difference between two filtered time
series provides a band-pass filter. This latter property is used
to decompose the ozone concentration time series as

O3 = LT(O3)+SY(O3)+DU(O3)+ ID(O3), (10)

where LT is the long-term component (periods longer than
21 days), SY is the synoptic component (weather processes
that last between 2.5 and 21 days), DU is the diurnal compo-
nent (day/night alternation period between 0.5 and 2.5 days)
and ID is the intra-day component accounting for fast-acting
processes (less than 12 h). The decomposition presented in
Eq. (10) is such that the original time series is perfectly re-
turned by the summation of the components (see Appendix A
for details). Dealing with 1 year of data, any filter longer
than the LT component would not be meaningful. The pe-
riods of the components correspond to well-defined peaks
in the power spectrum of ozone, e.g. as detailed in Rao et
al. (1997) and Hogrefe et al. (2000).

The LT component is the baseline and incorporates the
bias of the original (un-decomposed time series. The other
components (SY, DU and ID) are zero-mean fluctuations
around the LT time series and are therefore unbiased. The
band-pass nature of the SY, DU and ID components is such
that they only account for the processes occurring in the time
window the filter allows the signal to “pass”. For instance, the
DU component is insensitive to processes outside the range
of 0.5 to 2.5 days.

Further properties of the spectrally decomposed ozone
time series of AQMEII derived by Galmarini et al. (2013),
Hogrefe et al. (2014) and Solazzo and Galmarini (2015) are
as follows:

– The DU component accounts for more than half of the
total variance, followed by the LT and SY components.

– The ID component has the smallest influence due to the
small amplitude of its fluctuations.

– The variance of the spectral component is neither
strongly nor systematically associated with the area-
type of the monitoring stations (i.e. rural, urban, sub-
urban).

– Due to the bias, most of the error is accounted for by the
LT component, followed by the DU component. The ID
contributes very little to the overall MSE.

Further important technicalities of the spectral decompo-
sition, including a method to estimate the contribution of the
spectral cross-components (the overlapping regions of the
power spectrum) to the total error, are reported in the Ap-
pendix A.

The signal decomposition of Eq. (10) is applied to the
full-year time series. However, to evaluate the model per-
formance with regard to ozone, the analysis is restricted to

the months of May to September, i.e. when the production of
ozone due to photochemistry is most relevant.

3 Data and models used

The observational data set derived from the surface AQ mon-
itoring networks operating in the EU and NA constitutes the
same data set used in the first and second phases of AQMEII
to support model evaluation. Only stations with over 75 %
valid records for the whole periods and located at altitudes
below 1000 m have been used for this analysis. Details of
the modelled regions and number of receptor stations are re-
ported in Table 1.

Since the main scope of this study is to introduce the error
apportionment methodology (rather than to strictly evaluate
the models), the analysis is presented for continental areas for
convenience and easier display of the results. However, given
the size of the domains and the heterogeneity of climatic and
emission conditions, dedicated analyses for three sub-regions
in both continents are proposed in the Supplement (Figs. S1
to S3).

There are profound differences between the modelling
systems that participated in AQMEII1 and AQMEII2. The
two sets of models have been applied to different years (2006
for phase 1 and 2010 for phase 2) and are therefore dissimi-
lar with respect to the input data of emissions and boundary
conditions for chemistry. The AQ models of the second phase
are coupled (online chemistry feedbacks on meteorology),
while those of the first phase are not. The effect of using on-
line models for simulating ozone accounts for the impact of
aerosols on radiation and therefore on temperature and pho-
tolysis rates (Baklanov et al., 2014).

The model settings and input data for phase I are described
in Solazzo et al. (2012a, b, 2013a), Schere et al. (2012) and
Pouliot et al. (2012); for phase II, similar information is pre-
sented in Im et al. (2015a, b), Brunner et al. (2015) and
Pouliot et al. (2015).

Table 2 summarises the features of the modelling systems
analysed in this study with regard to ozone concentrations
in the EU or NA. The modelling contribution to the two
phases of AQMEII consists of 12 and 9 models and of 8 and
3 models for EU and NA, respectively. Solazzo et al. (2012a,
2013b) showed the existence of a subset of models, whose
ensemble mean, MSEbest, optimises the accuracy (minimum
error over all possible ensemble mean combinations). The
set and number of models composing MSEbest varies by pol-
lutant and, for the same pollutant, by the examined period
(year, season, etc.). In this study MSEbest is identified for the
continent-wide-averaged time series of ozone concentration
and for the un-decomposed ozone time series (i.e. not spec-
trally decomposed) during the period May–September. There
are circumstances where a single model outscores any com-
bination of models. In such cases the MSEbest is identified
with the best single model.
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Table 1. Features of the modelled domains

Europe North America

phase 1 phase 2 phase 1 phase 2

Simulated year 2006 2010 2006 2010

Extension (−10,39)◦W; (30,65)◦ N (−125,−55)◦W; (26,51)◦ N

Number of receptors 1339 1360 672 652
(min validity= 75 %; max altitude= 1000 m)

Detailed analysis of the main differences in emissions,
boundary conditions, and meteorology between the modelled
years of 2006 (AQMEII1) and 2010 (AQMEII2) is presented
in Stoeckenius et al. (2015). A summary of the performance
of the two suites of model runs is provided in Makar et
al. (2015), showing that the AQMEII1 models generally per-
formed better than the AQMEII2 models, based on standard
operational metrics. However, the use of standard evalua-
tion methods does not allow for the assessment of whether
the feedback processes have an effect on the deterioration of
model performance, or rather the different sets of emissions
and boundary conditions. We try to assess the problem using
the error apportionment method outlined above.

4 Results for the spatially averaged time series

4.1 MSE of spectral components

Figure 1 reports the MSE share of the spectral components
and cross-components for each model, for both phases of
AQMEII, derived from the ozone time series spatially av-
eraged over each continental area. The spatial average is car-
ried out prior to the spectral decomposition and error appor-
tionment.

The LT share of the total MSE is the largest in abso-
lute value for both continents and both simulated years. The
LT share ranges between 9.9 % (GEM-AQ, AQMEII1, NA)
and 86.7 % (WRF/Chem, AQMEII1, NA), and averages at
∼34 and ∼46.5 % for the EU and ∼50.6 and ∼47 % for NA
(AQMEII1 and AQMEII2, respectively).

The second largest share of the total MSE is of the DU
component, accounting for ∼20 % (all cases), followed by
the SY component. Depending on the model, the MSE share
of the remaining spectral components and cross-components
varies significantly. Being the intermediate timescales, the
overlap of the DU and SY components is likely to be more
significant than the overlap of the LT and ID scales. The con-
tribution of DUcc and SYcc to the total error can be as high as
17 % (DUcc for GEM-AQ, AQMEII1, NA) and 16 % (SYcc
for MM5-CAMx, AQMEII1, EU). Overall, the DUcc terms
(interaction of DU with the neighbouring SY and ID scales)
are significant in both continents (∼10 %), while the share of

the SY component and cross-components is more significant
in the EU.

The ID component has a little impact on the total MSE
(negligible in some instances), exceeding the 3 % share only
for the two EU instances of the L.-Euros model.

The results of Fig. 1 help identify the timescales and asso-
ciated processes for which the largest improvement in model
accuracy can be achieved. The LT component has the largest
share of the error due to the bias (error breakdown is dis-
cussed in the next section), but “internal” chemical pro-
cesses, transport and deposition also occur at this timescale.
Diurnal processes are the second largest source of error, in-
cluding, among others, chemistry, boundary layer dynam-
ics, radiation forcing and their interactions. The processes in
the SY band bridge meteorological and chemical processes,
and discern between the fast-acting diurnal processes and the
baseline. As such, although the SY signal is not as strong as
that of the DU components (variance of SY is comparable to
the variance of ID; see Hogrefe et al., 2014), it accounts for
a significant portion of the total error, as discussed next.

4.2 The quality of the error: error apportionment

The error breakdown (Eq. 9) of each spectral component
complements the analysis presented in the previous section,
and is reported in Fig. 2 (please note that results in Fig. 2
are reported in ppb2 for reason of clarity). The bias (only in-
cluded in the LT component) is the average amount by which
the modelled time series is displaced with respect to the ob-
served time series, and is the main source of error. The bias
can be either due to “internal” model errors, or inherited from
external drivers (emissions, meteorology, boundary condi-
tions). Based on the experience matured within AQMEII,
while the internal model errors are of interest for model de-
velopment because they are generated by systematic mod-
elling errors, the bias introduced by external drivers is re-
sponsible for the largest share of modelling errors.

From the continental average error breakdown of Fig. 2
we can conclude that the majority of EU models (in both
AQMEII phases) have small bias (continental-wide average),
with the important exceptions of CCLM-CMAQ and Muscat
models in AQMEII1, and CMAQ in AQMEII2, which intro-
duced large positive biases. The bias for the NA continent is
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Figure 1. Share (in %) of the total MSE in the main spectral components and the cross-components (see Appendix for detail) for (a) AQMEII1
and (b) AQMEII2. Top panel: EU; lower panel: NA.
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Table 2. Modelling systems participating in the first (a) and second (b) phases of AQMEII for Europe and North America.

(a) Model Grid (km) Emissions Chemical BC

Code Met AQ

EUROPE – AQMEII 1

DK1 MM5 DEHM 50 Global emission databases, EMEP Satellite measurements
FR3 MM5 Polyphemus 24 Standarda Standard
HR1 PARLAM-PS EMEP 50 EMEP model From ECMWF and forecasts
UK2 WRF CMAQ 18 Standarda Standard
US4 WRF WRF/Chem 22.5 Standarda Standard
FI1 ECMWF SILAM 24 Standard anthropogenic;

In-house biogenic
Standard

FR4 MM5 Chimere 25 MEGAN, Standard Standard
PL1 GEM GEM-AQ 25 Standard over AQMEII region;

Global EDGAR/GEIA over the rest of the global
domain

Global variable grid set-up (no boundary
conditions)

NL1 ECMWF Lotos-EUROS 25 Standarda Standard
DE1 COSMO Muscat 24 Standarda Standard
US3 MM5 CAMx 15 MEGAN, Standard Standard
DE3 COSMO-CLM CMAQ 24 Standarda Standard

NORTH AMERICA – AQMEII 1

CA1 GEM AURAMS 45 Standardb Climatology
PL1 GEM GEM-AQ 25 Standard over AQMEII region;

Global EDGAR/GEIA over the rest of the global
domain

Global variable grid set-up (no boundary
conditions)

PT1 MM5 CAMx 24 Standard LMDZ-INCA
US1 WRF CAMQ 12 Standard Standard
US3 WRF CAMx 12 Standard Standard
FR4b WRF CHIMERE
DK1 MM5 DEHM 50 Global emission databases, EMEP Satellite measurements
DE3 COSMO-CLM CMAQ 24 Standarda Standard
ES3 WRF WRF/Chem 23 Standard Standard

(b) Model Grid Emissions Chemical BC

Code Met AQ

EUROPE – AQMEII 2

AT1 WRF WRF/Chem 23 km Standard Standard
CH1 COSMO Cosmo-ART 0.22◦ Standard Standard
ES2a NMMB BSCCTM 0.20◦ Standard Standard
ES3 WRF WRF/Chem 23 km Standard Standard
NL2 RACMO LOTOS-EUROS 0.5◦× 0.25◦ Standard Standard
UK5 WRF CMAQ 18 km Standard Standard
UK4 MetUM UKCA RAQ 0.22◦ Standard Standard
DE3 COSMO Muscat 0.25◦ Standard Standard

NORTH AMERICA – AQMEII 2

ES1 WRF WRF/CHem 36 km Standard Standard
US6 WRF CMAQ 12 km Standard Standard
CA2f GEM MACH 15 km Standard Standard

Footnotes for (a): a standard anthropogenic emissions and biogenic emissions derived from meteorology
(temperature and solar radiation) and land use distribution implemented in the meteorological driver.
b Standard anthropogenic inventory but independent emission processing, exclusion of wildfires, and different
versions of BEIS(v3.09) used.
Refer to Solazzo et al. (2012a, b) and references therein for details.
Footnotes for (b): standard boundary conditions: 3-D daily chemical boundary conditions were provided by the
ECMWF IFS-MOZART model run in the context of the MACC-II project (Monitoring Atmospheric
Composition and Climate – Interim Implementation) at 3-hourly and 1.125 spatial resolution. Refer to Im et
al. (2015a, b) for details. Standard emissions: based on the TNO-MACC-II (Netherlands Organization for
Applied Scientific Research, Monitoring Atmospheric Composition and Climate - Interim Implementation)
framework for Europe and by the US EPA (Environmental Protection Agency) and Environment Canada for
North America. The 2008 National Emissions Inventory (https://www.epa.gov/air-emissions-inventories) and the
2008 Emissions Modeling Platform
(https://www.epa.gov/air-emissions-modeling/20072008-version-5-air-emissions-modeling-platforms) with
year-specific updates for 2006 and 2010 were used for the US portion of the modelling domain. Canadian
emissions were derived from the Canadian National Pollutant Release Inventory (http://www.ec.gc.ca/inrp-npri/)
and Air Pollutant Emissions Inventory (http://www.ec.gc.ca/inrp-npri/donnees-data/ap/index.cfm?lang=En)
values for the year 2006. Refer to Im et al. (2015a, b) for details.
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Figure 2.

more uniformly distributed across the models (model over-
prediction in both AQMEII phases), possibly indicating a
common source of (external) bias in the NA models. The bias
introduced by external fields is reflected by the bias of the
baseline component (LT). For the period between May and
September, the error in modelled ozone due to the boundary
condition is typically small (Solazzo et al., 2012; Im et al.,
2015; Giordano et al., 2015; Hogrefe et al., 2014), while the
emissions of ozone precursors and VOCs (volatile organic

compounds) are problematic, especially in the EU (Makar et
al., 2015; Brunner et al., 2015). We further notice that the ab-
sence of bias in some models may be caused by the presence
of compensating bias, i.e. spatially distributed biases of op-
posite signs. The spatial distribution of the MSE is discussed
in the next section. In all cases, the MSEbest model is, by def-
inition, the model with the lowest MSE and thus the one with
the smallest LT bias.

Atmos. Chem. Phys., 16, 6263–6283, 2016 www.atmos-chem-phys.net/16/6263/2016/
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Figure 2. MSE (ppb2) breakdown in bias squared, variance and mMSE of the spectral components ID, DU, SY, LT, based on Eq. (9). The
bias is entirely accounted for by the LT component. The sign within the share of bias and variance indicates model overestimation (+) or
underestimation (−) of mean concentration (bias) and variance. The colour of the mMSE share of the error is coded based on the values of
r , the correlation coefficient, according to the colour scale at the bottom of each plot. (a) AQMEII1 and (b) AQMEII2. Top panel: EU; lower
panel: NA.

The variance share of LT error is generally small (∼ 1–
2.5 ppb). This is not entirely unexpected, as the LT compo-
nent has a high signal-to-noise ratio with a well-structured
seasonal cycle, peaking in summer. While such a cycle is
typically well reproduced by the models, its phase and/or the

amplitude are not always well captured (Solazzo et al., 2012;
Im et al., 2015), leading to the variance error. The variance
error also originates from the different spatial support (in-
commensurability) of point measurements vs. gridded model
outputs. The latter have typically larger spatial support, while
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receptors are more likely to detect local-scale effects that en-
hance the observed variance.

The mMSE error of the LT component outweighs the vari-
ance error in most cases (in both the EU and NA), and is due
to the unexplained portion of observed variance. The pro-
cesses responsible for the mMSE error of the LT component
(such as deposition, transport, stratospheric mixing and pho-
tochemistry) act at timescales of more than 21 days.

The DU error (on average 3–4 ppb for AQMEII1 and 2–
3 ppb for AQMEII2) makes up the second highest contribu-
tion to the total error. The partitioning between variance and
the mMSE error varies greatly from model to model. How-
ever, a comparison of the two AQMEII phases shows that the
mMSE is predominant for AQMEII2, while the variance er-
ror (typically due to model under-prediction of the observed
variability) is most relevant in several cases of AQMEII1.
Therefore, at the DU scale, the “quality” of the error of the
AQMEII2 phase is higher than that of its AQMEII1 counter-
part. One possible explanation is the fact that coupled mod-
els were used in AQMEII2, while AQMEII1 exclusively used
non-coupled models. As already mentioned (end of Sect. 3),
Makar et al. (2015) found that AQMEII1 models performed
better overall with respect to AQMEII2. An analysis of the
LT component showed that the bias in the AQMEII2 models
is higher, possibly due to the 2010 emission inventory, while
an analysis of the DU error found that the variance error in
the AQMEII2 models is significantly reduced with respect
to the AQMEII1 models, and is almost null. We postulate
that the inclusion of feedback effects may have been benefi-
cial, and that the reduced performance of AQMEII2 models
is likely due to external bias. The residual mMSE error of the
DU component (∼ 1–2 ppb on average for both continents)
is mostly likely generated by a number of processes, includ-
ing chemistry, cloudiness, boundary layer transition and ver-
tical mixing. From Fig. 2, the values of the correlation coef-
ficient for the DU component are very high (exceeding 0.8
in the majority of the cases). Such a high performance can
be misleadingly optimistic though, because it mostly reflects
the 24 h and annual forcing embedded in both the observa-
tions and model values. Further analysis on the amplitude
and phase of the error can be more informative.

The SY error (almost entirely due to mMSE in AQMEII2)
is comparable across all models applied to the same conti-
nental domain (except for GEM-AQ and WRF/Chem, NA),
indicating that a possible common source of error may be due
to missing processes in the models related to the interaction
between chemistry and transport.

Finally, the error of the ID component is less than 1 ppb
(on average ∼ 0.2 ppb for AQMEII2) and is generated by
both variance (most commonly model over-prediction) and
mMSE. The fast-acting photochemical processes are, there-
fore, modelled with satisfactory precision, although the small
errors in the ID component can be quite large relative to the
total amount of ID variability. Furthermore, the spatial aver-
aging of the time series prior to the spectral decomposition

might have suppressed the variance of the ID component,
which is more uncorrelated in space than the other compo-
nents and would therefore tend to average out.

4.3 Spatial distribution of the spectral error
components

Maps of MSE by spectral components are reported in Figs. 3
to 6. As anticipated by the error analysis, the LT is the most
problematic source of error for both continents, although the
variety in the models’ behaviour does not allow for generali-
sation.

Some of the cases presented in Fig. 2, where the bias was
null (MM5-CAMx, MM5-DEHM for AQMEII1 and Cos-
moArt for AQMEII2, both in EU), show bias compensation,
typically due to model underestimation in the central part of
the EU (Germany, eastern France) and model overestimation
in the rest of the continent. The case of the CosmoArt model
(Fig. 5c) clearly shows the effect of the spatial averaging in
masking the error that is only cancelled when a continental
average is calculated. The model is in fact affected by severe
bias and component errors.

The Po Valley in Italy and the southern part of the EU
are the most problematic areas, affected by severe LT errors
(Figs. 3 and 5). The central and northern parts of the EU are
less problematic, especially for AQMEII2. The other compo-
nents of the error are significantly smaller than the LT error,
with some exceptions (especially for the DU component).
The length of the segment is in fact normalised to the largest
error for each model, to facilitate the interpretation and the
relative weight of each error component.

Concerning NA (Figs. 4 and 6), the DU error has more
weight and competes with the LT error in the central and
south-eastern parts of the continent. For AQMEII2, the SY
error is as significant as the LT error on the east coast
(Wrf/Chem, Fig. 6c). The greatest LT error is observed in
the coastal areas (east and west) and across the north-eastern
border between the USA and Canada (due primarily to model
underestimation in the east and north, and model overestima-
tion in the west).

The analysis presented provides a detailed breakdown of
the error in terms of error components, spectral decomposi-
tion and spatial distribution, thereby avoiding the pitfalls of
extreme averaging and providing a comprehensive analysis
of where the error occurs and the associated timescales and
processes, and whether the error is internally generated or
stems from the model’s input data.

5 MSE decomposition and complexity

In regression analysis and statistical learning theories, the
problem of under- and over-fitting complex systems is at the
root of the MSE decomposition into bias and variance. The
trade-off between bias and variance is strictly dependent on
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Figure 3. Spatial distribution of the MSE in the spectral components for the EU models of AQMEII1. The segments are centred at the
rural receptors’ position (clockwise from north: MSE of ID, DU, SY, and LT). Their length is proportional to the MSE magnitude, coded
according to the colour scale. For each model, the colour scale extends from zero up to the 75th percentile, and the last value of the scale is
the maximum MSE. The colour of the MSE values above the 75th percentile represents the maximum value. The tick-dashed LT segment
indicates model underestimation (low model bias), while thin continuous segment indicates model overestimation (high model bias). The
example in the last panel indicates how the maps reports the error of the spectral components at each receptor (the colours are arbitrary). The
example on the left represents the error at a receptor where the LT component is biased high, while the example on the right refers to a case
where the bias is negative. The other components do not change.
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Figure 4. As in Fig. 3, but for the NA models of AQMEII1.
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Figure 5. As in Fig. 3, but for the EU models of AQMEII2.
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Figure 6. As in Fig. 3, but for the NA models of AQMEII2.

the complexity of the model. Over-fitting occurs when too
many parameters and modules are added to the model: each
new module added to describe a process is a new source of
variance due to internal parameterisation and linearisation. In
other words, over-fitting is associated with the stochasticity
inherent to the data/model, and contributes to the increase in
variance and consequent decrease in bias. Under-fitting oc-
curs due to an oversimplification of the modelled processes,
and is an important source of bias as it is associated with the
deterministic property of the modelling activity (Hastie et al.,
2009).

The problem of the bias-variance trade-off becomes
markedly more complicated when dealing with complex
models with many degrees of freedom, such as AQ mod-
elling systems. Adding new modules to cope with unex-
plained physical processes can lead to a reduction in the bias
due to that specific process, but also feeds new variance and
possibly new bias into the model due to the non-linear inter-
action of the new module with existing ones, since reducing
the bias while preserving the variance is non-trivial.

Rao (2005), in the context of dispersion modelling, pro-
vided the theoretical variations of the total model uncertainty
by exploiting the components of the difference between the
modelled and observed variance (Fig. 1 of Rao et al., 2005).
Rao (2005) used the number of meteorological parameters in
the model as a measure of model complexity, and concluded
that the optimal model complexity could not be defined a
priori, but is a trial-and-error combination of the model, the
measurement error and the stochastic uncertainty.

In this study we attempt to derive the curves of the MSE
components (bias, variance and covariance) as a function of
model complexity, providing a first-time attempt to analyse
the error of a regional AQ model as function of its complex-
ity. The aim is to find the timescale dominated by the error
(and what type of error) and, if it exists, the time window
where the error decreases. The information obtained is of im-
mediate usefulness for model development, as it provides a
clear temporal cut-off that distinguishes the dynamics of the
error.

Figure 7 shows an example of the approach used to break
down model complexity, which basically relies on the re-
solved timescale of the model. The complexity of the model
is assumed to increase when the resolved timescale is short-
ened: the shorter the timescale, the more complex the model.
The timescale of the resolved processes is thus used as a
measure of the complexity, and is obtained by recursively
applying the kz filter to the ozone time series. The minimum
complexity is assumed to be represented by a model that can-
not resolve any temporal scale below ∼ 1 month (far right of
Fig. 7), while the maximum complexity corresponds to the
hourly time series, i.e. the standard model’s output (far left
of Fig. 7).

In Fig. 8, we report the spatially averaged curves of bias,
variance and covariance according to Eq. (6) as a function
of model complexity. According to the regression analysis
theories outlined above, we would expect the variance to in-

crease according to the complexity ( dσ 2
m

dcomplexity > 0), and the
distance between the modelled and observed variance to de-
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Figure 7. Example of the model complexity as time-resolved scale of the transport and dispersion processes: the minimum complexity (far
right) is a poor time-resolving time series obtained as kz(250,5) (∼ 1 month). The complexity increases towards the left, with the scale of
resolved processes becoming finer up to the maximum complexity (far left), which represents the full time series. The upper panel shows an
example of how the curves of the error for covariance, variance and bias vary according to complexity.

crease
(

d(σm−σo)
2

dcomplexity < 0
)

, and the opposite for the bias. The
curves of variance in Fig. 8 indeed turn downwards as pre-
dicted by the theory, while the curves of bias have a mixed
behaviour but are, basically, constant

(
d(mod−obs)2
dcomplexity ≈ 0

)
.

More specifically:

– The (σm−σo)
2 term decreases steadily but slowly to a

timescale of ∼ 1 day, after which it drastically drops
to significantly lower values. This indicates that (i) the
complexity of the AQ systems increases exponentially
at the DU timescales (not entirely surprising, given the
day/night behavioural properties of ozone), (ii) the ef-
forts made to improve the model capabilities on the
short-term processes governing the ozone dynamics im-
prove the model precision and (iii) there is a possible
lack of parameterisation and modelling of the processes
of transport and chemical transformation over periods
longer than 1–2 days.

– The fact that the bias varies only by small amounts indi-
cates that a fully evolved model, capable of reproducing
processes at the shortest timescales (turbulent disper-
sion, fast chemical reactions, even day/night variability,
etc.) is no more accurate than a basic model that only
accounts for long-term processes. This might indicate
that (i) the bias at the shorter timescales is introduced

entirely by the larger timescales, and/or (ii) the bias is
continuously fed into the model by an external source
acting at all scales, as for example the emissions data or
boundary conditions.

Summarising, in most cases (both continents, both
AQMEII phases), the (σm−σo)

2 term decreases sharply after
a timescale of resolved processes of ∼ 1 day; the bias term
is surprisingly independent on complexity; the covariance is
complementary to the variance. Thus, the bias is the error
term to which efforts should be expanded first, and current
studies are carried out to diagnose more precisely its origin
within AQ modelling systems.

6 Conclusions

This study presents a novel approach to model evaluation,
and aims to combine standard operational statistics with the
time allocation of the component error. The methodology we
propose tackles the issue of diagnostic evaluation from the
angle of the spectral decomposition and error breakdown of
model/data signals, introducing a compact operator for the
quantification of bias, variance and the correlation coeffi-
cient.

When the analytical decomposition of the error into bias,
variance and mMSE is applied to the decomposition of the
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Figure 8.
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Figure 8. Evolution of error components (red: bias; blue: variance; black: covariance) as a function of model complexity. Complexity
increases from right (min) to left (MAX) and is calculated as the temporal scale of the resolved process using the kz filter on the modelled
signal: kz(i,5), i = 2, . . .,250.

signals into long-term, synoptic, inter-diurnal and diurnal
components, information can be gathered that helps reduce
the spectrum of possible sources of errors and pinpoint the
processes that are most active at a particular scale that need to
be improved. The procedure is denoted here as error appor-
tionment and provides an improved and more powerful ca-
pacity to identify the nature of the error and associate it with
a specific part of the spectrum of the model/measurement sig-
nal. The AQMEII set of models and measurements have been
used in the evaluation procedure.

After analysing the ozone concentrations gathered in the
two phases of AQMEII, which cover a number of modelling
systems in two different years and geographical areas, we
conclude that

– The bias component of the error is by far the most im-
portant source of error, and is mainly associated with
long-term processes and/or input fields (likely emis-
sions data or boundary conditions). With regard to the

model application, any effort to improve the current ca-
pabilities of AQ modelling systems are likely to have lit-
tle practical impact if this primary issue is not addressed
and solved.

– Most relevant to model development, the variance error
(the discrepancy between modelled and observed vari-
ance) is mainly associated with the DU component. At
a timescale of ∼ 1–2 days, the complexity of modelling
systems increases substantially and many processes are
involved; the fact that the variance error of the DU com-
ponent for the AQMEII2 runs is reduced with respect to
the AQMEII1 runs might indicate the benefits of includ-
ing feedback in the models. Such a conclusion could not
be drawn with simpler operational evaluation strategies.

– The limited magnitude of the variability of the SY and
LT signals produces little variance errors for these two
components, and only becomes comparable to the LT or
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DU error when the bias is negligible or the total MSE is
small.

– The mMSE error is predominant in some instances of
the analysed models, and is due to the random distri-
bution of modelled values. There are many causes of
mMSE error, including all “internal” processes that pro-
duce non-systematic errors such as noise, representa-
tiveness, the linearisation of non-linear process and tur-
bulence closure.

– The analysis of the spatial distribution of the error high-
lights the diversity in the behaviour of each modelling
system. The common spatial structures of the LT error
(for example in the central and southern EU) may reveal
common sources of error (e.g. emissions data), while
the error of the other components (especially DU and
SY) are peculiar to each model and need to be assessed
individually.

Analyses of the modelling results for the third phase of
AQMEII are currently building on the methodology outlined
in this study, with specific attention being given to the diag-
nostic of the error of the LT component in relation to external
forcing (emissions and boundary conditions) and of the DU
component with respect to the variance error.
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Appendix A

As in Hogrefe et al. (2000) and Galmarini et al. (2013), the
time windows (m) and the smoothing parameter (k) have
been selected as follows:

ID(t)= x(t)− kz3,3(x(t))

DU(t)= kz3,3(x(t))− kz13,5(x(t))

SY(t)= kz13,5(x(t))− kz103,5(x(t))

LT(t)= kz103,5(x(t))

x(t)= ID(t)+DU(t)+SY(t)+LT(t), (A1)

where x(t) is the time series vector.
A clear-cut separation of the components of Eq. (A1) can-

not be achieved, as the separation is a non-linear function
of the parameters m and k (Rao et al., 1997). It follows that
the components of Eq. (A1) are not completely orthogonal
and that some level of overlapping energy exists (Kang et al.,
2013). Galmarini et al. (2013) found that the explained vari-
ance by the spectral components account for 75 to 80 % of
the total variance, the remaining portion being explained by
the interactions between the components.

Assuming a spectral decomposition, which is valid for the
modelling and the observational time series, the MSE formu-
lation outlined in Galmarini et al. (2013) holds:

MSE(O3)=MSE(LT+SY+DU+ ID)=∑
MSE(spec comp)+

∑
MSE (cc)), (A2)

where spec comp are the diagonal terms, and LT, SY, DU,
ID and cc identifies the cross-components, i.e. the off-
diagonal terms deriving from the squared nature of the MSE:
LToSYm, SYoLTm, SYoDUm, DUoSYm, DUoIDm, IDoDUm,
LTmSYm, LToSYo, DUmSYm, DUmIDm, DUoSYo, DUoIDo
(o and m represent observed and modelled fields, respec-
tively). For simplicity, the cross-components are assumed to
be symmetric, so the o and m subscripts are dropped.

To isolate the contribution to MSE of a single spectral
component, we proceed as follows. We subtract a component
(e.g. LT) from the whole time series:

MSE(O3−LT(O3))=MSE(SY)+MSE(DU)
+MSE(ID)+ 2MSE(IDDU)+ 2MSE(IDSY)
+ 2MSE(DUSY). (A3)

By removing Eq. (A3) from Eq. (A2), the contribution of LT
and its cross-component is isolated:

Eq. A2−Eq. A3=MSE(LT)+MSE(LTID)
+MSE(LTSY)+MSE(LTDU). (A4)

We can further elaborate on Eq. (A4) to isolate the con-
tribution of each cross-component. For instance, the case of
SYLT:

MSE(SY-ID-DU)−MSE(SY)−MSE(LT)=
[MSE(SY)+MSE(LT)+ 2MSE(SYLT)]−
MSE(SY)−MSE(LT)= 2MSE(SYLT). (A5)

The procedure in Eq. (A5) has been applied to derive the
contribution of all cross-components.
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The Supplement related to this article is available online
at doi:10.5194/acp-16-6263-2016-supplement.
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