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Abstract. Elemental carbon (EC) has been widely used as
a tracer to track the portion of co-emitted primary organic
carbon (OC) and, by extension, to estimate secondary OC
(SOC) from ambient observations of EC and OC. Key to this
EC tracer method is to determine an appropriate OC / EC ra-
tio that represents primary combustion emission sources (i.e.,
(OC /EC)pri) at the observation site. The conventional ap-
proaches include regressing OC against EC within a fixed
percentile of the lowest (OC/EC) ratio data (usually 5—
20 %) or relying on a subset of sampling days with low pho-
tochemical activity and dominated by local emissions. The
drawback of these approaches is rooted in its empirical na-
ture, i.e., a lack of clear quantitative criteria in the selection
of data subsets for the (OC / EC),ri determination. We exam-
ine here a method that derives (OC / EC)pri through calculat-
ing a hypothetical set of (OC / EC)yri and SOC followed by
seeking the minimum of the coefficient of correlation (R?)
between SOC and EC. The hypothetical (OC /EC)yi that
generates the minimum R2(SOC,EC) then represents the ac-
tual (OC / EC)pyj ratio if variations of EC and SOC are inde-
pendent and (OC / EC)pyi is relatively constant in the study
period. This Minimum R Squared (MRS) method has a clear
quantitative criterion for the (OC / EC)yyi calculation. This
work uses numerically simulated data to evaluate the accu-
racy of SOC estimation by the MRS method and to com-
pare with two commonly used methods: minimum OC /EC
(OC / ECnin) and OC / EC percentile (OC /EC19 %). Log-

normally distributed EC and OC concentrations with known
proportion of SOC are numerically produced through a pseu-
dorandom number generator. Three scenarios are consid-
ered, including a single primary source, two independent
primary sources, and two correlated primary sources. The
MRS method consistently yields the most accurate SOC
estimation. Unbiased SOC estimation by OC / ECyi, and
OC /EC19 o only occurs when the left tail of OC / EC dis-
tribution is aligned with the peak of the (OC /EC)pi dis-
tribution, which is fortuitous rather than norm. In contrast,
MRS provides an unbiased SOC estimation when measure-
ment uncertainty is small. MRS results are sensitive to the
magnitude of measurement uncertainty but the bias would
not exceed 23 % if the uncertainty is within 20 %.

1 Introduction

Organic carbon (OC) and elemental carbon (EC) are among
the major components of fine particular matter (PMaz5)
(Malm et al., 2004). EC is a product of carbon fuel-based
combustion processes and is exclusively associated with pri-
mary emissions whereas OC can be from both direct emis-
sions and be formed through secondary pathways. Differ-
entiation between primary organic carbon (POC) and sec-
ondary organic carbon (SOC) is indispensable for probing at-
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mospheric aging processes of organic aerosols and formulat-
ing effective emission control policies. However, direct SOC
measurement is not yet feasible, as there lacks knowledge of
its chemical composition at the molecular level. Due to its
exclusive origin in primary combustion sources, EC was first
proposed by Turpin and Huntzicker (1991) to serve as the
tracer to track POC from primary combustion sources and, by
extension, to estimate SOC as SOC is simply the difference
between OC and POC. This EC tracer method only requires
measurements of OC and EC. Due to its simplicity, the EC
tracer method has been widely adopted in studies reporting
ambient OC and EC measurements (e.g., Castro et al., 1999;
Cao et al., 2004; Yu et al., 2004). If OC and EC concen-
trations are available and primary OC from non-combustion
sources (OChon-comb) 1S negligible, SOC can be estimated us-
ing EC as the tracer for combustion source POC (Turpin and
Huntzicker, 1995):

POC = (OC / EC)pi x EC )
SOC = OCtota| — (OC/EC)pn x EC (2)

where (OC / EC)pyri is the OC /EC ratio in freshly emitted
combustion aerosols, and OCiqta1 and EC are available from
ambient measurements. Abbreviations used in this study are
summarized in Table 1.

The key step in the EC tracer method is to determine an ap-
propriate OC / EC ratio that represents primary combustion
emission sources (i.e., (OC / EC)yri) at the observation site.
Various approaches in deriving (OC / EC)pyi reported in the
literature are either based on emission inventory (Gray et al.,
1986) or ambient observation data. Using ambient observa-
tion data, three approaches are the most common: (1) regress-
ing measured OC vs. EC data from times of low photochemi-
cal activity and dominated by local emissions; (2) regressing
measured OC vs. EC data on a fixed percentile of the low-
est OC / EC ratio (usually 5-20 %) data to represent samples
dominated by primary emissions (Lim and Turpin, 2002; Lin
et al., 2009); and (3) simply taking the minimum OC /EC
ratio during the study period to approximate (OC /EC)pri
(Castro et al., 1999). Combinations of the fixed percentile
and the minimum (OC / EC),yj approaches were also used in
order to accommodate different sample sizes available. For
example, Pio et al. (2011) suggested using the lowest 5%
subset to obtain the (OC / EC)pri, and if the sample size of
5% subset is less than three, the lowest three data points are
used to determine (OC / EC)pri. These approaches have the
drawback in that there is not a clear quantitative criterion in
the data selection for the (OC /EC)pi determination. Mil-
let et al. (2005) was the first to propose an algorithm that
explores the inherent independency between pollutants from
primary emissions (e.g., EC) and products of secondary for-
mation processes (e.g., SOC) to derive the primary ratios
(e.9., (OC /EC)pri) for species with multiple source types.
More specifically, for the determination of (OC / EC)jyi, the
assumed (OC / EC)yyi value is varied continuously. At each
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hypothetical (OC / EC)pri, SOC is calculated for the data set
and a correlation coefficient value (R?) of EC vs. SOC (i.e.,
R?(EC,S0OC)) is generated. The series of R?(EC,SOC) val-
ues are then plotted against the assumed (OC / EC)pyj values.
If variations of EC and SOC are independent, the assumed
(OC /EC)pri corresponding to the minimum R?(EC,SOC)
would then represent the actual (OC / EC)pyi ratio. Such an
approach obviates the need for an arbitrary selection crite-
rion, as the algorithm seeks the minimum point, which is
unique to the data set. However, this method has largely been
overlooked, with only one study reporting its use (Hu et al.,
2012) since its debut, which may be a result of a lack of eval-
uation of its method performance. Hereafter for the conve-
nience of discussion, we call this method the minimum R
squared (MRS) method. An example illustration of the MRS
method is shown in Fig. 1. We have developed a computer
program in Igor Pro (WaveMetrics, Inc. Lake Oswego, OR,
USA) to facilitate MRS calculation and it is available from
https://sites.google.com/site/wuchengust.

With ambient OC and EC samples, the accuracy of esti-
mated SOC by different (OC / EC)prj methods is difficult to
evaluate due to the lack of a direct SOC measurement. The
objective of this study is to investigate, through numerical
simulations, the bias of SOC estimates by three different im-
plementations of the EC tracer method. Hypothetic EC, OC,
and (OC / EC)pri data sets with known break-down of POC
and SOC values are numerically synthesized, then SOC is
estimated and compared with the “true” SOC as defined by
the synthetic data sets. As such, bias of SOC estimates using
the various implementations of the EC tracer method can be
quantified.

2 Evaluation of the minimum R squared method
2.1 Data generation

We first examine ambient OC and EC for the purpose of iden-
tifying distribution features that can serve as the reference
basis for parameterizing the numerical experiments. The 1-
year hourly EC and OC measurement data from three sites in
the PRD (one suburban site in Guangzhou, a general urban
site and a roadside site in Hong Kong, with more than 7000
data at each site), are plotted in Fig. S1 in the Supplement
document for the whole year data sets and Figs. S2-S4 for
the seasonal subsets using the Nancun site as the example.
A brief account of the field ECOC analyzers and their field
operation is provided in the Supplement. A detailed descrip-
tion of the measurement results and data interpretation for
the sites will be given in a separate paper. The distributions
of measured OC, EC and OC / EC are fitted by both normal
and log-normal distribution curves and then examined by the
Kolmogorov—-Smirnov (K-S) test. The K-S statistic, D, in-
dicates that log-normal fits all three distributions better than
the normal distribution (D values are shown in Figs. S1-S4).
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Table 1. Abbreviations.

Abbreviation  Definition

EC elemental carbon

EC1,EC) EC from source 1 and source 2 in the two sources scenario
fec1 fraction of EC from source 1 to the total EC

fsoc ratio of SOC to OC

MRS minimum R squared method

MRS’ a variant of MRS that use EC from individual sources as input
MT Mersenne twister pseudorandom number generator

n sample size in MT data generation

oC organic carbon

OC/EC OC to EC ratio

(OC/EC)pri  primary OC /EC

OC/ECy199 OC/EC at 10 % percentile

OC / ECpin minimum OC / EC

OChon-comb OC from non-combustion sources

PDF probability density function of a distribution

POC primary organic carbon

ROA ratio of averages

RSD relative standard deviation

RSDgc RSD of EC

RSDpoc RSD of POC

RSDsoc RSD of SOC

soC secondary organic carbon

SOCsp SOC formed from semi-volatile POC

y_pri ratio of the (OC / EC)pyj of source 2 to source 1

£EC, £OC measurement uncertainty of EC and OC

yunc relative measurement uncertainty

y_RSD the ratio between the RSD values of (OC / EC)pyj and EC

Therefore, log-normal distributions are adopted to define the
OC, EC and OC / EC distributions during data generation in
our numerical experiments. Statistics of these ambient OC
and EC, along with a few other measurements reported in
the literature, are summarized in Table 2 and are considered
as the reference for data generation to better represent the
real situation.

The probability density function (PDF) for the log-normal
distribution of variable x is
_ (nw-pw?

xe 202 . 3)

1
f(x,,u,a)—xam

The two parameters, u and o, of the log-normal PDF are
related to the average and standard deviation of x through
the following equations:

sp?
u=In(avg) — 0.5 x In(1+W) 4)

()

First, realistic average and standard deviation values of EC,
(OC / EC)pri, and OC (e.g. Figs. S1-S5) are adopted to cal-
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culate p and o. Then the pseudorandom number generator
uses u and o to synthesize EC and OC data sets.

The Mersenne twister (MT) (Matsumoto and Nishimura,
1998), a pseudorandom number generator, is used in data
generation. MT is provided as a function in Igor Pro. The
system clock is utilized as the initial condition for generation
of pseudorandom numbers. The data generated by MT have
a very long period of 21° 97_1 permitting large data size
and ensuring that pseudorandom numbers are statistically in-
dependent between each data generation. The latter feature
ensures the independent relationship between EC and non-
combustion related SOC data. The case with combustion-
related SOC is briefly discussed in Sect. 3. MT also al-
lows assigning a log-normal distribution during pseudoran-
dom number generation to constrain the data. For the veri-
fication of the log-normality of MT generated data, a series
of K-S tests on the generated data for 5000 runs are con-
ducted. As shown in Fig. S6, 94.4% of runs pass the K-
S test. Hence the performance of MT can satisfy the log-
normal distributed data generation requirement in this study.
In a previous study, Chu (2005) used a variant of sine func-
tions to simulate POC and EC, which limited the data size
to 120, and the frequency distributions of POC and EC ex-
hibited multiple peaks, a characteristic that is not realistic for
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Table 2. Summary of statistics of OC and EC in ambient samples.

Location Site Sampling Time RSDgc  RSDgpoc  SOC fsoc Ref
Type Period resolution (%) (%)  estimation mass fraction
method (%)
Avg  Min  Max

Hong Kong, Suburban  Jul 2006, 24h PMF 25% 6% 79% Huetal. (2010)
PRD local days

Jul 20086, 65% 46% 89%

regional days
Hong Kong, Urban May 2011-Apr 2012 1h 51 % EC tracer PMF Huang et al. (2014)
PRD
Guangzhou, Rural Jul 2006 1h 154 % 115% EC tracer 47% 80% Huetal. (2012)
PRD
Guangzhou, Suburban  Feb 2012-Jan 2013 1h 86 % 84% EC tracer 41% 0% 86%  This study
PRD
Beijing Urban Winter 2005 1lh EC tracer 19% Lin et al. (2009)

Spring 2006 20%

Summer 2006 45%

Fall 2006 23%
Pittsburgh Suburban  Jul 2001-Aug 2002 2-4h EC tracer 38% Polidori et al. (2006)
Mt. Tai, Rural Mar-Apr 2007 1h 89 % EC tracer 60 % Wang et al. (2012)
China Jun-Jul 2007 69 % 73%
Jeju Island, Rural May-Jun 2009 1h 53% 117%  EC tracer 31% Batmunkh et al. (2011)
Korea Aug-Sep 2009 57% 102 % 18%
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Figure 1. llustration of the minimum R squared method (MRS) to
determine OC / ECpyj using 1 year of hourly OC and EC measure-
ments at a suburban site in the Pearl River Delta, China. The red
curve shows the correlation coefficient (RZ) between SOC and EC
as a function of assumed OC / ECpyj. The shaded area in tan repre-
sents the frequency distribution of the OC / EC ratio for the entire
OC and EC data set. The green dashed curve is the cumulative fre-
quency curve of OC / EC ratio.

ambient measurements. The key information utilized in the
EC tracer method is the correlation between EC and POC as
well as the irrelevance between EC and SOC. The time se-
ries information is not needed in EC tracer method, making
pseudorandom number generator a good fit for the evaluation
purpose.

The procedure of data generation for the single emission
source scenario is illustrated in Fig. 2 and implemented by
scripts written in Igor Pro. EC is first generated with the fol-
lowing parameters specified: sample size (n), average and
relative standard deviation (RSD%) of the whole data set
(see Supplement). The EC data set statistically follows a log-
normal distribution, while the sequence of each data point is
randomly assigned. POC is then calculated by multiplying
EC by (OC/EC)pri (Eq. 1). For simplicity, (OC / EC)pri is
set to be a single value, while an analysis incorporating ran-
domly generated log-normally distributed (OC / EC)pyi val-
ues can be found in the Supplement, and a brief summary
is given in Sect. 2.2. SOC data are independently generated
in a similar way to that for EC. The sum of POC and SOC
then yields the synthesized OC. OC and EC data generated
in this way are used to calculate SOC by different implemen-
tations of the EC tracer method. The bias of SOC estimation
can then be evaluated by comparing the calculated SOC with
the “true” SOC values. Data generation for the scenarios with
two primary emission sources is similar to the single source
scenario and the steps are illustrated in Fig. S7.

www.atmos-chem-phys.net/16/5453/2016/

2.2 Scenario study

Three scenarios are considered. Scenario 1 (S1) considers
one single primary emission source. Scenario 2 (S2) con-
siders two correlated primary emission sources, i.e., two
sets of EC, POC, and each source has a single but differ-
ent (OC / EC)pj value. An example of S2 is combined ve-
hicular emissions from diesel-fuel and gasoline-fuel vehi-
cles. These two sources of vehicular emissions have differ-
ent (OC / EC)pri, but often share a similar temporal variation
pattern, making them well correlated. Scenario 3 (S3) con-
siders two independent primary emission sources and sim-
ulates an ambient environment influenced by two indepen-
dent primary emission sources, e.g. local vehicular emissions
(lower (OC /EC)pri) and regional biomass burning (higher
(OC/EC)pri)-

In the following numerical experiments, three
(OC /EC)pi estimation methods are examined and com-
pared, including MRS, OC/ECyp4 and OC/ECnin. As
a single point, OC /ECmin, in ambient samples may be
subjected to large random uncertainties, thus data with
the lowest 1% OC /EC are adopted instead to derive the
OC / ECnin.

2.2.1 Single primary source scenario

Both OC /EC19 % and OC / ECpin methods rely on a sub-
set of ambient OC and EC data to approximate (OC / EC)yyi.
Figure 3 provides a conceptual illustration of the relation-
ships between (OC / EC)yri and the ambient OC / EC data,
both are described to exhibit a log-normal distribution. As
primary emissions move away from sources and aging pro-
cesses start in the atmosphere, SOC is added to the particle
OC fraction, elevating OC / EC above (OC / EC)pi. This in
effect broadens the OC / EC distribution curve and shifts the
distribution to the right along the OC / EC axis, and the de-
gree of broadening and shift depends on degree of aging pro-
cess. The conventional EC tracer method using OC / EC1g o
and OC / ECyin assumes that the left tail of ambient OC / EC
distribution is very close to (OC / EC)pi. This assumption,
however, is fortuitous, rather than the norm. Two parameters,
the distance between the means of the (OC / EC),;j and ambi-
ent OC / EC distributions and the relative breadth of the two
distributions, largely determines the closeness of the approx-
imation of OC / EC19 o and OC / ECpin to (OC / EC)pri. The
distance between the two distributions depends on the frac-
tion of SOC in OC (i.e., fsoc), while the width of the am-
bient OC / EC distribution is closely associated with RSD of
SOC (RSDsoc) and the width of the (OC / EC)yyi distribu-
tion is reflected in RSDpoc and RSDgc. As shown in Fig. 3a,
only an appropriate combination of distance of the two distri-
bution means and variances could lead to a close approxima-
tion of the (OC / EC)pri by OC / EC1g ¢ or OC / ECpin (i-€.,
the left tail of OC / EC distribution). If the ambient aerosol
has a significant fsoc shifting the ambient OC / EC distri-
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Figure 2. Schematic diagram of pseudorandom number generation for the single emission source scenario that assumes (OC / EC)pyj is a
single value. The data series (EC and SOC), generated by Mersenne twister (MT) pseudorandom number generator, statistically follow a
log-normal distribution, but the sequence of each data point is randomly assigned.

bution such that its left tail is beyond (OC / EC)pyi (Fig. 3b),
then the left tail would overestimate (OC / EC)pri. Underesti-
mation of (OC / EC)pri could also happen in theory as shown
in Fig. 3c if the ambient minimum OC / EC (left tail) is less
than the mean of the (OC /EC)py distribution (i.e., under
conditions of very small fsoc).

The above analysis reveals that fsoc, RSDsoc, RSDpoc,
and RSDgc are key parameters in influencing the accuracy
of SOC estimation. As a result, they are chosen in the subse-
quent sensitivity tests in probing the SOC estimate bias under
conditions of different carbonaceous aerosol compositions.

SOC estimation bias in S1 as a function of RSDgpc and
RSDgc is shown in Fig. 4a and b. The SOC estimate by MRS
is not affected by the magnitude of RSDgc and RSDsoc,
and is in excellent agreement with the true values (Fig. 4).
In comparison, SOC by OC/ECip9 and OC/ECyy is
consistently biased lower and the degree of negative bias
becomes larger with decreasing RSDsoc or RSDgc. The
OC /EC10 o method always produces larger negative bias
than the OC / ECpin method. At RSDsoc and RSDgc at
50 %, SOC estimate has a —14 % bias by (OC / EC)min and
a —45% bias by OC /EC1p . These results confirm the
hypothesis illustrated in the conceptual diagram (Fig. 3)
that the validity of using the left tail of OC /EC distribu-
tion depends on the distance of its distribution mean from
(OC / EC)pri and the distribution breadth. Both OC / ECyq ¢
and the OC / ECpin methods underestimate SOC and the
degree of underestimation by the OC /EC1g ¢ method is
worse.

Atmos. Chem. Phys., 16, 5453-5465, 2016

For the representation of (OC /EC)yyi in the simulated
data as lognormally distributed data, analysis is also per-
formed to evaluate SOC estimation bias as a function of
RSDgc, RSDsoc, and fsoc. Table S2 summarizes the re-
sults obtained with adopting most probable ambient condi-
tions (i.e., RSDgc: 50-100%, fsoc: 40-60%). SOC bias
by MRS is within 4 % when measurement uncertainty is ig-
nored. In comparison, SOC bias by OC / ECyyin is more sen-
sitive to assumption of log-normally distributed (OC / EC)pri
than single value (OC / EC)pyi, including the dependency on
RSDgc and RSDsoc with varied fsoc.

2.2.2 Scenarios assuming two primary sources

In the real atmosphere, multiple combustion sources impact-
ing a site is normal. We next evaluate the performance of the
MRS method in scenarios of two primary sources and arbi-
trarily dictate that the (OC / EC)pyj Of source 1 is lower than
source 2. By varying fec1 (proportion of source 1 EC to total
EC) from test to test, the effect of different mixing ratios of
the two sources can be examined. Common configurations in
S2 and S3 include the following: ECygta) = 2 £ 0.4 pugC m=3;
feca varies from 0 to 100 %, ratio of the two OC / ECy;; val-
ues (y_pri) vary in the range of 2-8.

In Scenario 2 (i.e., two correlated primary sources), three
factors are examined, including feci1, y_pri and fsoc, to
probe their effects on SOC estimation. By varying feci,
the effect of different mixing ratios of two sources can
be examined, as fgcy is expected to vary within the same
ambient data set as a result of spatiotemporal dynamics

www.atmos-chem-phys.net/16/5453/2016/
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Figure 3. Conceptual diagram illustrating three scenarios of the relationship between (OC / EC)pyj and ambient OC / EC measurements. Both
are assumed to be log-normally distributed. (a) Ambient minimum (left tail) is equal to the peak of (OC /EC)pyj. (b) Ambient minimum
OC / EC (left tail) is larger than the mean of (OC / EC)jpyi. (c) Ambient minimum OC / EC (left tail) is less than the peak of (OC / EC)pyi.
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Figure 4. Bias of SOC determination as a function of (a) RSDgc;
(b) RSDgoc. Different representation of (OC/EC)pyi include
MRS, OC/ECnin, and OC/EC1q . Fixed input parameters:
n=8000, EC=2+1pgCm=3, (OC/ EC)pri =05, POC=1+
0.5ugC m—3, fsoc = 40%, and SOC = 0.67 + 0.34 ugC m—3.

of air masses. MRS reports unbiased SOC, irrespective of
different fgc1 and fsoc or y_pri (Fig. 5). In compari-
son, SOC by OC/EC199 and OC/ECni, are underesti-
mated. The degree of underestimation depends on fsoc, €.9.,
—12% at fsoc = 25% versus —20% at fsoc = 40 % in the
OC / ECpin method while the magnitude of underestimation
has a very weak dependence on fsoc in the OC /ECig %
method, staying around —40% as fsoc is doubled from
20 to 40%. The degree of SOC bias by OC /ECjg 4 and
OC / ECpin are independent of fgcy and y_pri, as SOC bias
is associated with RSDgc, RSDsoc and fsoc. Since two pri-
mary sources are well correlated, RSDgc is equivalent be-
tween the two sources. As a result, the overall RSDgc is con-
stant when fgc1 and y_pri vary, and the SOC bias is inde-
pendent of fgcy and y_pri.

In summary, in scenarios of two well-correlated primary
combustion sources, MRS always produces unbiased SOC
estimates while OC / ECpyin and OC / ECyg 9, consistently
underestimate SOC, with OC / EC1g o, producing larger neg-
ative bias.

www.atmos-chem-phys.net/16/5453/2016/

As for Scenario 3 in which two independent primary
sources co-exist, SOC estimates by MRS could be biased and
the degree and direction of bias depends on fec1. Figure 6a
shows the variation of SOC bias with fec1 when fsoc is
fixed at 40 %. The variation of SOC bias by MRS with fgc1
follows a pseudo-sine curve, exhibiting negative bias when
fec1 <50% (i.e., EC is dominated by source 2, the higher
(OC / EC)pri source) and positive bias when fgc1 > 50 % and
the range of bias are confined to —20 to —40% under the
condition of fsoc =40%. In comparison, the OC / ECin
and OC / EC1p o, methods again consistently underestimate
SOC by more than —50 %, with the bias worsened in the
OC / EC1g o method.

The bias variation range becomes narrower with increas-
ing fsoc in the MRS method, as shown by the boxplots for
four fsoc conditions (20, 40, 60, and 80 %) in Fig. 6b. The
MRS-derived SOC bias range is reduced from —20 to +40 %
at fsoc =40% to —10 to +20% at fsoc = 60%, further
to —6 to +10% at fsoc = 80%. In the other two methods,
the SOC bias does not improve with increasing fsoc. De-
pendence of the SOC estimation bias on y_pri is examined
in Fig. 6¢ showing the higher y_pri induces a higher am-
plitude of the SOC bias. If OC is dominated by SOC (e.g.,
fsoc = 80%), SOC bias by MRS is within 10 %.

A variant of MRS implementation (denoted as MRS') is
examined, with the important difference that EC; and ECy,
attributed to source 1 and source 2, respectively, are used
as inputs instead of total EC. With the knowledge of EC
breakdown between the two primary sources, (OC / EC)pri1
can be determined by MRS from EC; and OCigtg. Simi-
larly (OC / EC)pri2 can be calculated by MRS from EC; and
OCiotal. SOC is then calculated with the following equation:

SOC = OCiotal — (OC / EC) iy X ECy
— (OC /EC)pyip x ECo. (6)

MRS’ produces unbiased SOC, irrespective of the different
carbonaceous compositions (Fig. 6). However, we note that

Atmos. Chem. Phys., 16, 5453-5465, 2016



5460

N
=)
|

-]
o
1

C. Wu and J. Z. Yu: Determination of primary combustion source OC / EC ratio

Sample size n=8000
EC=2pgC m™ fy,=40%

(a)

—— MRS—— OC/EC,y

404

1(b)

&
=1

IS
o

A
ird

&
1=

I (c)

o i O

20 I
_ OC/EC,,;1=0.5 OC/EC, ;=4 T T
8 by MRS <
< 7] MRS
2 0t AW A MNANW A N, G o] 8
3 S Vepeeed S OoERbah
8 5o s T 5
é-zo .%-20} _g 20 G = =
B OC/EC,, ©
% 0] E 0] _;__Q__Q_W_;_ § OC/ECW%
o 4 B
o o
o o
N n

&
S
1

OC/ECyy

0 20

T T T T 1
40 60

feca(%)

-804

-804

2 468246282468

Y_pri

Figure 5. SOC bias in Scenario 2 (two correlated primary emission sources of different (OC / EC)pyi) as estimated by four different EC
tracer methods denoted in red, blue and yellow. (a) SOC bias as a function of fgc1. Results shown here are calculated using fsoc = 40%
as an example. (b) Range of SOC bias shown in boxplots for four fsoc conditions (20, 25, 30 and 40 %). (c) Range of SOC bias shown
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there is a great challenge in meeting the data needs of MRS’
as EC4 and EC; are not available.

In scenario 3, the simulation results imply that three fac-
tors are associated with the SOC bias by MRS, including:
fec1, y_priand fsoc. The first factor controls whether SOC
bias by MRS is positive or negative. The latter two affect
the degree of SOC bias. For high fsoc conditions, the bias
could be acceptable. If EC; and EC, can be differentiated for
calculating individual (OC / EC)pri of each source, unbiased
SOC estimation is achievable regardless of what values fec1,
y_priand fsoc take.

2.3 Impact of measurement uncertainty
In the preceding numerical analysis, the simulated EC and
OC are not assigned any measurement uncertainty; however,

Atmos. Chem. Phys., 16, 5453-5465, 2016

in reality, every EC and OC measurement is associated with
a certain degree of measurement uncertainty. \We next ex-
amine the influence of OC and EC measurement uncertainty
on SOC estimation accuracy by different EC tracer methods.
Two uncertainty types are tested, i.e., constant relative uncer-
tainty (Case A); constant absolute uncertainty (Case B). This
section mainly focuses on sensitivity tests assuming differ-
ent degrees of Case A uncertainties. Results assuming Case B
uncertainties are discussed in the next section. The uncertain-
ties are assumed to follow a uniform distribution and gener-
ated separately by MT. It is also assumed that the uncertainty
(eec or eoc) is proportional to the concentration of EC and
OC through the multiplier yync (i.e., relative measurement
uncertainty).

www.atmos-chem-phys.net/16/5453/2016/
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Figure 7. Bias of SOC determination as a function of relative measurement uncertainty (yunc) and SOC / OC ratio (fsoc) by different
approaches of estimating (OC / EC)pyj, including ratio of averages (ROA), minimum R squared (MRS), OC /ECjg 9, and OC / ECpyjn.

Fixed input parameters: n = 8000, EC=2+ 1pgCm=3, (OC/ EC)pri = 0.5. Variable input parameters: (a) fsoc = 20%, SOC=0.25=+
0.13pgCm=3, (b) fsoc =40%, SOC=0.67+0.33ugCm=3, () fsoc =60%, SOC=15+0.75ugCm~3, and (d) fsoc = 80%,

SOC=442pgCm=3.

— YuncEC < eec < yuncEC (7
— yuncOC < goc < yuncOC (8)

In order to compare the estimated SOC with simulated SOC
with esoc, the measurement uncertainties of POC and SOC
are then back-calculated following the uncertainty propaga-
tion formula and assuming the same relative measurement
uncertainty for POC and SOC (Harris, 2010)

0C?
/
= (R — 9
Yunc = Yunc POCZ + SOC2 ©)
— ¥incPOC < epoc < ¥nc.POC (10)
— ¥ineSOC < esoc < YncSOC. (12)

The simulated EC, POC and SOC with measurement un-
certainties (abbreviated as ECsimulated, POCsimulated and
SOCsimulated respectively) are determined as

www.atmos-chem-phys.net/16/5453/2016/

ECsimulated = ECtrue + €&C (12)
POCsimulated = POCtrue + epoc (13)
SOCsimulated = SOCirue + £soc- (14)

Sensitivity tests of SOC estimation as a function of rel-
ative measurement uncertainty (yunc) and fsoc is per-
formed as shown in Fig. 7 by comparing the estimated
SOC with SOCsjmulated- Fixed input parameters include n =
8000; EC=2+1pgCm~3; (OC /EC)pri = 0.5. Studies by
Chu (2005) and Saylor et al. (2006) suggest that ratio of av-
erage POC to average EC (ROA, see Supplement for details)
is the best estimator of the expected primary OC / EC ratio
because it is mathematically equivalent to the true regres-
sion slope when the data contain no intercept. ROA is con-
firmed as the best representation of (OC / EC)pyi for SOC es-
timation, which shows no bias towards yync Or fsoc change.
MRS overestimates SOC and the positive bias increases with
yunc While decreasing with fsoc (Fig. 7). The SOC esti-
mates by OC / ECpin and OC /EC1g o, exhibit larger bias
than those by MRS. For example, as shown in Fig. 7a,
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when fsoc =20% and yync = 10 %, the bias of SOC by
MRS, OC/ECyp9 and OC/ECni, is 8, —28 and 36 %,
respectively. With increasing fsoc, the bias of SOC by
OC / ECmin decreases while the bias of SOC by OC / EC1g o
increases when yync = 10-20 %. MRS always demonstrates
the best performance in SOC determination amongst the
three (OC / EC)pri estimation methods. When yync could be
controlled within 20 %, the SOC bias by MRS does not ex-
ceed 23 % when fsoc = 20 % (Fig. 7a). If the fsoc ratio falls
in the range of 60-80 % and yync is <20 %, the OC / ECpin
has a similar performance as MRS, but SOC by OC / EC1p o
still shows a large bias (~ 41 %) (Fig. 7c and d).

Sensitivity studies of SOC estimation as a function of yync
and (OC / EC)yyi are performed and the results are shown in
Fig. S8. In all the three (OC / EC)yyi representations, SOC es-
timates are sensitive to yync but insensitive to the magnitude
of (OC / EC)pri. In the single primary source scenario (S1),
it is proved that the performance of MRS regarding SOC es-
timation is mainly affected by yync and to a lesser degree by
fsoc. Other variables such as (OC / EC)pyj and EC concen-
tration do not affect the accuracy of SOC estimation.

2.4 Impact of sample size

MRS relies on correlations of input variables and it is ex-
pected that MRS performance is sensitive to the sample size
of input data set. This section examines the sensitivity on
sample size by the three (OC /EC)p representations and
aims to provide suggestions for an appropriate sample size
when applying MRS on ambient OCEC data. Sample sizes
ranging from 20 to 8000 are tested and for each sample size
500 repeat runs are conducted to obtain statistically signif-
icant results. Both Case A (i.e., a constant relative uncer-
tainty of 10 %) and Case B (i.e., a constant absolute uncer-
tainty of +0.2 pgC m—2 for both OC and EC) are considered.
The measurement uncertainties in case B are generated sep-
arately by MT following a uniform distribution within the
range of 0.2 ugC m—3. The measurement uncertainties of
POC and SOC are then back-calculated following the uncer-
tainty propagation formula (Harris, 2010) and assuming the
ratio of epoc / esoc is the same as POC / SOC ratio (con-
trolled by fsoc).

The mean SOC bias by MRS is very small (< 3 %) for all
sample sizes while the standard deviation of SOC bias de-
creases with sample size (Fig. 8). The standard deviation of
SOC bias is ~ 430 % at the lowest test sample size (n = 20),
and decreases to less than £15% at n = 60 (the sample size
of 1-year sampling from an every-6-day sampling program)
and to less than £10% at » = 200. Similar patterns are ob-
served between Case A (Fig. 8a) and Case B (Fig. 8b) for
MRS and OC / EC1g ¢. For OC / ECpin, a larger bias is ob-
served in Case B than Case A for all sample sizes, as SOC
bias by OC / ECpjpn is more sensitive to measurement uncer-
tainty in the range of 0-10 % as shown in Fig. 7b. The stan-
dard deviation of SOC bias by OC / ECpin and OC / EC1g o
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Figure 8. SOC estimation bias as a function of sample size by
different approaches of estimating (OC / EC)pyj, including mini-
mum R squared (MRS), OC/EC1g o, and OC /ECnin, (a) as-
suming a fixed relative measurement uncertainty of 10% for OC
and EC; (b) assuming a fixed absolute measurement uncertainty
for OC and EC (0.2pugm—3). For each sample size, 500 repeat
runs were conducted. The empty circles represent mean of 500
repeat runs, the whiskers represent 1standard deviation. Parame-
ters used for testing: repeat runs=500, n = 20-8000, EC=8+
4pgCm=3, (OC/EC)pi=05, POC=4+2pgCm=3, fsoc =
40%, and SOC =2.67 +1.33pgCm=3.

both decrease with sample size as shown in Fig. 8. The mean
SOC bias of OC / ECpin decrease with increased sample size
while OC / ECyg o is insensitive to sample size. The sample
size dependency of all three (OC / EC)pyi representations is
not sensitive to fsoc as shown in Fig. S16. Other scenar-
ios considering (OC / EC)pri With a distribution and different
fsoc are discussed in the Supplement.

2.5 Impact of sampling time resolution

Besides hourly measurements of OC and EC by online
aerosol carbon analyzers, the MRS method could also be ap-
plied to offline measurements of OC and EC based on fil-
ters collected over longer durations (i.e., 24 h), which are
more readily available around the world. To explore the im-
pact of sampling duration (e.g., hourly vs. daily), we here
use 1-year hourly data at the suburban site of Guangzhou to
average them into longer intervals of 2-24 h. The 24 h aver-
aged samples yield a (OC / EC)pri of 2.53, 12 % higher than

www.atmos-chem-phys.net/16/5453/2016/
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Table 3. Summary of numerical study results under different scenarios?.

Tested parameter SOC bias
MRS?  MRS® OC / ECin OC/EC10 9%
Scenario 1 RSDgc +4% —13to—7% —43t0—-36%
Single source RSDsoc +4% —11t0 4% —42t0—-22%
yunc +10% —12t020% —43t0—32%
Scenario 2 fec1 +4% —20% —40%
Two correlated y_pri +4% —20% —40%
sources fsoc +4% —20% —40%
Scenario 3 fec1 —20t040% +£10% —50% —60%
Two independent  y_pri —20t040% +10% —50% —60%
sources fsoc —20t040% +10% —50% —60%

@ Results shown here are obtained assuming the following ambient conditions: RSDgc 50-100 %; fsoc 40-60 %; yunc 20 %;
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bt represents SOC overestimation and “—" represents underestimation; ¢ MRS': in S3, EC1 and EC2 are used for SOC

calculation.

the (OC / EC)pyj derived from hourly data (2.26). This comes
as a result of that OC / EC distributions are narrowed when
the averaging interval lengthens (Fig. 9), leading to elevation
of the MRS-derived (OC / EC)pri. As many PM 5 speciation
networks adopt a sampling schedule of one 24 h sample every
6 days, we further extract the every-6-day samples to do the
MRS calculation. The 1-year data yield six subsets of daily
samples, corresponding to six possible schedules of sampling
days with the every-6-day sampling frequency. The MRS cal-
culation produces the OC / ECyyi in the range of 2.37-2.75
(5-22% higher than the OC / ECyyi from the hourly data).
This example illustrates that if 24 h sample ECOC data are
used, SOC would be biased slightly lower in comparison
with those derived from the hourly data.

3 Caveats of the MRS method in its applications to
ambient data

Table 3 summarizes the performance in terms of SOC esti-
mation bias by the different implementations of the EC tracer
method, assuming typical variation characteristics for ambi-
ent ECOC data. When employing the EC tracer method on
ambient samples, it is clear that MRS is preferred since it
can provide more accurate SOC estimation.

If the sampling site is dominated by a single primary
source (similar to Scenario 1), MRS can perform much bet-
ter than the traditional OC / EC percentile and minimum ap-
proaches. Two issues should be paid attention to when ap-
plying MRS: (1) MRS relies on the independence of EC and
SOC. This assumption could be invalid if a fraction of SOC
is formed from semi-volatile POC (here referred as SOCgyp)
(Robinson et al., 2007). Since POC is well correlated with
EC, this SOCs,p would be attributed to POC by MRS, caus-
ing SOC underestimation. The interference of SOCsp will
be discussed in a separate paper. (2) OCnon-comb Will be at-
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Figure 9. OC / EC distributions assuming different average inter-
vals from 2 to 24 h and the corresponding MRS-derived OC / ECpyy;.
The bottom x axis represents averaging interval (e.g. 1 h is the orig-
inal data time resolution, 2h referring average 1h data into 2h
interval data, etc.). The top x axis represents the number of data
point corresponding to the respective data averaging interval. Dis-
tributions of OC / EC ratio at various averaging intervals are shown
as box plots (empty circles: average, the line inside the box: me-
dian, the box boundaries: 75th and the 25th percentile, and the
whiskers: 95th and 5th percentile). The red dots represent calcu-
lated (OC / EC)pri by MRS.

tributed to SOC if only EC is used as a tracer. If OCyon-comb
is small compared to SOC, such approximation is accept-
able. Otherwise quantification of its contribution is needed.
If a stable tracer for OCpon-comb is available, determination of
OChon-comb contribution by MRS is possible, since this sce-
nario is mathematically equivalent to S3 (e.g., relabel EC2 to
tracer of OCnon-comb and POC to OCron-comb)-

Atmos. Chem. Phys., 16, 5453-5465, 2016
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If the sampling site is influenced by two correlated primary
sources with distinct (OC / EC)pri (Scenario 2, e.g. urban
areas that have vehicular emission from both gasoline and
diesel), MRS is still much more reliable than the traditional
OC / EC percentile and minimum approaches. If the sam-
pling site is influenced by two independent primary sources
with distinct (OC / EC)pri (Scenario 3, e.g. vehicular emis-
sion and biomass burning), SOC estimation by MRS is bet-
ter than the other two conventional methods. But it should be
noted that possible bias may exist and the magnitude of bias
depends on the relative abundance between the two sources.
If tracers are available to demarcate the EC contributions by
the different primary sources, unbiased SOC estimation is
possible by employing these tracers in MRS.

4 Conclusions

In this study, the accuracy of SOC estimation by EC tracer
method is evaluated by comparing three (OC /EC)pyi de-
termination approaches using numerically simulated data.
The MRS method has a clear quantitative criterion for the
(OC/EC)pri calculation, while the other two commonly
used methods, namely minimum OC / EC (OC / ECpin) and
OC / EC percentile (e.g. OC / EC1g o), are empirical in na-
ture. Three scenarios are considered in the numerical simu-
lations to evaluate the SOC estimation bias by the different
EC tracer methods assuming typical variation characteristics
for ambient ECOC data. In the scenarios of a single primary
source and two well-correlated primary combustion sources,
SOC estimates by MRS are unbiased while OC / ECpi, and
OC /EC1g 9 consistently underestimate SOC when mea-
surement uncertainty is neglected. When measurement un-
certainty is considered, all three approaches produce biased
SOC estimates, with MRS producing the smallest bias. The
bias by MRS does not exceed 23 % when measurement un-
certainty is within 20% and fsoc is not lower than 20 %.
In the scenario of two independent primary sources, SOC by
MRS exhibit bias but still perform better than OC / ECpin
and OC / ECyg 4. If EC from each independent source can be
differentiated to allow calculation of individual (OC / EC)pyi
for each source, unbiased SOC estimation is achievable. Sen-
sitivity tests of OC and EC measurement uncertainty on SOC
estimation demonstrate the superior accuracy of MRS over
the other two approaches.

Sensitivity tests show that MRS produces mean SOC val-
ues with a very small bias for all sample sizes while the preci-
sion worsens as the sample size decreases. For a data set with
a sample size of 60, SOC bias by MRS is 2 & 15 %. When the
sample is 200, the results by MRS are improved to 2 &8 %.
It is clear that when employing the EC tracer method to es-
timate SOC, MRS is preferred over the two conventional
methods (OC / EC1g o and OC / ECpn) since it can provide
more accurate SOC estimation. We also evaluated the im-
pact of longer sampling duration on derived (OC / EC)pri and

Atmos. Chem. Phys., 16, 5453-5465, 2016

found that if 24 h sample ECOC data are used, SOC would be
biased slightly lower in comparison with those derived from
the hourly data.

The Supplement related to this article is available online
at doi:10.5194/acp-16-5453-2016-supplement.
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