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Abstract. Wind predictions in complex terrain are important

for a number of applications. Dynamic downscaling of nu-

merical weather prediction (NWP) model winds with a high-

resolution wind model is one way to obtain a wind forecast

that accounts for local terrain effects, such as wind speed-

up over ridges, flow channeling in valleys, flow separation

around terrain obstacles, and flows induced by local surface

heating and cooling. In this paper we investigate the ability of

a mass-consistent wind model for downscaling near-surface

wind predictions from four NWP models in complex terrain.

Model predictions are compared with surface observations

from a tall, isolated mountain. Downscaling improved near-

surface wind forecasts under high-wind (near-neutral atmo-

spheric stability) conditions. Results were mixed during ups-

lope and downslope (non-neutral atmospheric stability) flow

periods, although wind direction predictions generally im-

proved with downscaling. This work constitutes evaluation of

a diagnostic wind model at unprecedented high spatial reso-

lution in terrain with topographical ruggedness approaching

that of typical landscapes in the western US susceptible to

wildland fire.

1 Introduction

Researchers from multiple disciplines rely on routine fore-

casts from numerical weather prediction (NWP) models to

drive transport and dispersion models, conduct wind assess-

ments for wind energy projects, and predict the spread of

wildfires. These applications require fine-scale, near-surface

wind predictions in regions where rugged terrain and vege-

tation have a significant effect on the local flow field. Ter-

rain effects such as wind speed-up over ridges, flow chan-

neling in valleys, flow separation around terrain obstacles,

and enhanced surface roughness alter the flow field over spa-

tial scales finer than those used for routine, operational NWP

forecasting.

Numerous operational mesoscale NWP model forecast

products are available in real-time, such as those provided

by National Centers for Environmental Prediction (NCEP).

Access to these output products is facilitated by automated

archiving and distribution systems such as the National Oper-

ational Model Archive and Distribution System (NOMADS).

These routine forecast products are highly valuable to re-

searchers and forecasters, for example, as inputs to drive

other models. In many cases, however, the spatial resolution

of the system of interest (e.g., wildland fire spread) is much

finer than that of the NWP model output.

The model grid horizontal resolution in operational NWP

models is limited due to, in part, the high computational de-

mands of NWP. Routine gridded forecast products are typi-

cally provided at grid resolutions of 3 km or larger. The High-

Resolution Rapid Refresh (HRRR) model produces 3 km

output grids and is currently the highest-resolution opera-

tional forecast in the US.

NWP models have been run successfully with grid resolu-

tions of less than 1 km in complex terrain for specific cases

when modifications were made to the meshing (Lundquist et

al., 2010) or PBL schemes (Ching et al., 2014; Seaman et al.,

2012) or when large-eddy simulation (LES) was used (Chow
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and Street, 2008). While successful for specific test cases,

these efforts employ specialized model configurations that

have not been incorporated into routine forecasting frame-

works, either because they are not sufficiently robust, have

not been thoroughly tested, or are too computationally in-

tense for routine forecasting. For example, the configuration

used in Seaman et al. (2012) is applicable for stable nocturnal

conditions only.

Additionally, these modifications require technical exper-

tise in NWP and access to substantial computing resources,

which many consumers of NWP output do not have. Per-

haps, the biggest limitation to running NWP models on grids

with fine horizontal resolution is the computational demand.

Time-sensitive applications, such as operational wildland fire

support, require fast solution times (e.g., less than 1 h) on

simple hardware (e.g., laptop computers with 1–2 proces-

sors). Thus, there remains a practical need for fast-running

tools that can be used to downscale coarse NWP model winds

in complex terrain.

Dynamic downscaling with a steady-state (diagnostic)

wind model is one option for obtaining near-surface high-

resolution winds from routine NWP model output (e.g.,

Beaucage et al., 2014). The NWP model provides an initial

wind field that accounts for mesoscale dynamics which is

then downscaled by a higher resolution wind model to en-

force conservation of mass and, in some cases, momentum

and energy on the flow field on a higher resolution grid that

better resolves individual terrain features. Dynamic down-

scaling can be done in a steady-state fashion for each time

step of the NWP model output. One advantage of using a

steady-state downscaling approach is that the spatial resolu-

tion can be increased with no additional computational cost

associated with an increase in temporal resolution.

Diagnostic wind models have primarily been evaluated

with observations collected over relatively simple, low-

elevation hills. Askervein Hill (Taylor and Teunissen, 1987)

and Bolund Hill (Berg et al., 2011) are the two mostly com-

monly used data sets for evaluating diagnostic wind mod-

els. These are both geometrically simple, low-elevation hills

compared to the complex terrain exhibited in many regions

of the western US susceptible to wildland fire. Lack of eval-

uations under more complex terrain is due in part to the

lack of high-resolution data sets available in complex terrain.

Recently, Butler et al. (2015) reported high-resolution wind

observations from a tall, isolated mountain (Big Southern

Butte) in the western US. Big Southern Butte is substantially

taller and more geometrically complex than both Askervein

and Bolund hills.

In this work, we investigate the ability of a mass-

conserving wind model, WindNinja (Forthofer et al., 2014a),

for dynamically downscaling NWP model winds over Big

Southern Butte. WindNinja is a diagnostic wind model de-

veloped for operational wildland fire support. It is primar-

ily designed to simulate mechanical effects of terrain on the

flow, which are most important under high-wind conditions;

however, WindNinja also contains parameterizations for lo-

cal thermal effects, which are more important under periods

of weak external forcing. WindNinja has primarily been eval-

uated under high-wind conditions, which are thought to be

most important for wildland fire behavior, and so the thermal

parameterizations have not been thoroughly tested. Wind-

Ninja has previously been evaluated against the Askervein

Hill data (Forthofer et al., 2014a) and found to capture impor-

tant terrain-induced flow features, such as ridgetop speed-up,

and it has been shown to improve wildfire spread predictions

in complex terrain (Forthofer et al., 2014b).

We focus on downscaling wind in this work because it is

typically more spatially and temporally variable than temper-

ature or relative humidity, and thus, more important to pre-

dict at high spatial resolution. Wind is also often the driving

environmental variable for wildfire behavior.

The goals of this work were to (1) investigate the accuracy

of NWP model near-surface wind predictions in complex ter-

rain on spatial scales relevant for processes driven by local

surface winds, such as wildland fire behavior and (2) assess

the ability of a mass-consistent wind model to improve these

predictions through dynamic downscaling. Wind predictions

are investigated from four NWP models operated on differ-

ent horizontal grid resolutions. This work constitutes one of

the first evaluations of a diagnostic wind model with data

collected over terrain with a topographical ruggedness ap-

proaching that of western US landscapes susceptible to wild-

land fire.

2 Model descriptions and configurations

WRF is an NWP model that solves the non-hydrostatic, fully

compressible Navier-Stokes equations using finite difference

method (FDM) discretization techniques (Skamarock et al.,

2008). All of the NWP models investigated in this work

use either the Advanced Research WRF (ARW) or the non-

hydrostatic multi-scale model (NMM) core of the WRF

model (Table 1).

2.1 Routine Weather Research and Forecasting

(WRF-UW)

Routine WRF-ARW forecasts with 4 km horizontal grid

resolution were acquired from the University of Wash-

ington Atmospheric Sciences forecast system (www.atmos.

washington.edu/mm5rt/info.html). These forecasts are re-

ferred to as WRF-UW. The outer domain of WRF-UW has

a horizontal grid resolution of 36 km and covers most of the

western US and northeastern Pacific Ocean. This outer do-

main is initialized with NCEP Global Forecast System (GFS)

1-degree runs. The 36 km grid is nested down to 12 km,

4 km, and an experimental 1.33 km grid which covers a lim-

ited portion of the Pacific Northwest. The 4 km grid inves-

tigated in this study covers the Pacific Northwest, includ-

ing Washington, Oregon, Idaho, and portions of California,
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Table 1. Model specifications.

Model Horizontal grid Number vertical Firstlayer height∗ Top height∗ Numerical Run

resolution layers (m a.g.l.) (m a.g.l.) core frequency

NAM 12 km 26 200 15 000 NMM 00:00, 06:00, 12:00, 18:00 UTC

WRF-UW 4 km 38 40 16 000 ARW 00:00, 12:00 UTC

HRRR 3 km 51 8 16 000 ARW hourly

WRF-NARR 1.33 km 33 38 15 000 ARW NA

WindNinja 138 m 20 1.92 931 NA NA

∗ Approximate average height a.g.l.

Nevada, Utah, Wyoming, and Montana. Physical parame-

terizations employed by WRF-UW include the Noah Land

Surface Model (Chen et al., 1996), Thompson microphysics

(Thompson et al., 2004), Kain–Fritsch convective scheme

(Kain, 2004), Rapid Radiative Transfer Model (RRTM) for

longwave radiation (Mlawer et al., 1997), Dudhia (1989)

for shortwave radiation, and the Yonsei University (YSU)

boundary layer scheme (Hong et al., 2006). WRF-UW is run

at 00:00 and 12:00 UTC and generates hourly forecasts out to

84 h. The computational domain consists of 38 vertical lay-

ers. The first grid layer is approximately 40 m a.g.l. and the

average model top height is approximately 16 000 m a.g.l.

2.2 Weather Research and Forecasting Reanalysis

(WRF-NARR)

WRF-ARW reanalysis runs were performed using the

NCEP North American Regional Reanalysis (NARR) data

(Mesinger et al., 2006). The reanalysis runs are referred to as

WRF-NARR. The same parameterizations and grid nesting

structures used in WRF-UW were also used for the WRF-

NARR simulations, except that the WRF-NARR inner do-

main had 33 vertical layers and a horizontal grid resolu-

tion of 1.33 km (Table 1). Analysis nudging (e.g., Stauffer

and Seaman, 1994) was used above the boundary layer in

the outer domain (36 km horizontal grid resolution). Hourly

WRF-NARR simulations were run for 15-day periods with

12 h of model spin up prior to each simulation. The first grid

layer was approximately 38 m a.g.l. and the average model

top height was approximately 15 000 m a.g.l. WRF-NARR

differs from the other models used in this study in that it is

not a routinely run model. These were custom simulations

conducted by our group to provide a best-case scenario for

the NWP models. Routine forecasts are already available at

this resolution for limited domains (e.g., UW provides WRF

simulations on a 1.33 km grid for a small domain in the Pa-

cific Northwest of the US) and are likely to become more

widely available at this grid resolution in the near future.

2.3 North American Mesoscale Model (NAM)

The North American Mesoscale (NAM) model is an op-

erational forecast model run by NCEP for North America

(http://www.emc.ncep.noaa.gov/index.php?branch=NAM).

The NAM model uses the NMM core of the WRF model.

The NAM CONUS domain investigated in this study has a

horizontal grid resolution of 12 km. NAM employs the Noah

Land Surface model (Chen et al., 1996), Ferrier et al. (2003)

for microphysics, Kain (2004) for convection, GFDL (Lacis

and Hansen, 1974) for longwave and shortwave radiation,

and the Mellor–Yamada–Janjic (MJF) boundary layer

scheme (Janjic, 2002). The NAM model is initialized with

12 h runs of the NAM Data Assimilation System. It is run

four times daily at 00:00, 06:00, 12:00, and 18:00 UTC and

generates hourly forecasts out to 84 h. The computational

domain consists of 26 vertical layers. The first grid layer

is approximately 200 m a.g.l. and the average model top

height is approximately 15000 m a.g.l. NAM forecasts are

publicly available in real time from NCEP. Although the

12 km horizontal resolution used in NAM is not sufficient to

resolve the butte, this resolution is sufficient for resolving

the surrounding Snake River Plain and therefore can be used

to generate a domain-average flow for input to WindNinja.

2.4 High-Resolution Rapid Refresh (HRRR)

The High-Resolution Rapid Refresh (HRRR) system is a nest

inside of the NCEP-Rapid Refresh (RAP) model (13 km hor-

izontal grid resolution; http://ruc.noaa.gov/hrrr/). HRRR has

a horizontal grid resolution of 3 km and is updated hourly.

HRRR uses the WRF model with the ARW core and em-

ploys the RUC-Smirnova Land Surface Model (Smirnova

et al., 1997, 2000), Thompson microphysics (Thompson et

al., 2004), RRTM longwave radiation (Mlawer et al., 1997),

Goddard shortwave radiation (Chou and Suarez, 1994), the

MYJ boundary layer scheme (Janjic, 2002). HRRR is ini-

tialized from 3 km grids with 3 km radar assimilation over

a 1 h period. HRRR is currently the highest resolution op-

erational forecast available in real time. The computational

domain consists of 51 vertical layers. The first grid layer is

approximately 8 m a.g.l. and the average model top height is

approximately 16 000 m a.g.l.
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Figure 1. Terrain representation (m a.s.l.) in WindNinja, WRF-NARR, HRRR, and WRF-UW for the Big Southern Butte. Crosses indicate

surface sensor locations. Maps are projected in the Universal Transverse Mercator (UTM) zone 12 coordinate system. Axis labels are eastings

and northings in m. Profiles in gray are the average elevations for rows and columns in the panel. NAM (12 km) terrain is represented by just

four cells and is not shown here.

2.5 WindNinja

WindNinja is a mass-conserving diagnostic wind model de-

veloped and maintained by the USFS Missoula Fire Sciences

Laboratory (Forthofer et al., 2014a). The theoretical formula-

tion is described in detail in Forthofer et al. (2014a). Here we

provide a brief overview of the modeling framework. Wind-

Ninja uses a variational calculus technique to minimize the

change in an initial wind field while conserving mass locally

(within each cell) and globally over the computational do-

main. The numerical solution is obtained using finite element

method (FEM) techniques on a terrain-following mesh con-

sisting of layers of hexahedral cells that grow vertically with

height.

WindNinja includes a diurnal slope flow parameterization

(Forthofer et al., 2009). The diurnal slope flow model used

in WindNinja is the shooting flow model in Mahrt (1982). It

is a one-dimensional model of buoyancy-driven flow along a

slope. A micrometeorological model similar to the one used

in CALMET (Scire et al., 2000; Scire and Robe, 1997) is

used to compute surface heat flux, Monin-Obukhov length,

and boundary layer height. The slope flow is then calculated

as a function of sensible heat flux, distance to ridgetop or

valley bottom, slope steepness, and surface and entrainment

drag parameters. The slope flow is computed for each grid

cell and added to the initial wind in that grid cell. Additional

details can be found in Forthofer et al. (2009).

WindNinja was used to dynamically downscale hourly

10 m wind predictions from the above NWP models. The

WindNinja computational domain was constructed from

30 m resolution Shuttle Radar Topography Mission (SRTM)

data (Farr et al., 2007). The 10 m NWP winds were bilin-

early interpolated to the WindNinja computational domain

and used as the initial wind field. Layers above and below the

10 m height were fit to a logarithmic profile (neutral atmo-

spheric stability) based on the micrometeorological model.

The computational domain consisted of 20 vertical layers.

The first grid layer is 1.92 m a.g.l. and the average model top

height is 931 m a.g.l.

2.6 Terrain representation

The four NWP models used in this study employ an imple-

mentation of the WRF model. They use different initial and

boundary conditions, incorporate different parameterizations

for sub-grid processes, such as land surface fluxes, convec-

tion, and PBL evolution, but in terms of surface wind predic-

tions under the conditions investigated in this study (inland,

dry summertime conditions), the horizontal grid resolution is

arguably the most important difference among the models.

The horizontal grid resolution affects the numerical solution

since fewer terrain features are resolved by coarser grids.

Coarser grids essentially impart a smoothing effect which

distorts the actual geometry of the underlying terrain (Fig. 1).

As horizontal cell size and terrain complexity increase, the

accuracy of the terrain representation and thus, the accuracy

of the near-surface flow solution deteriorate.

3 Evaluations with field observations

3.1 Observations at Big Southern Butte

Surface wind data (Butler et al., 2015) collected from an

isolated mountain (Big Southern Butte, hereafter “BSB”;

43.395958◦ N, 113.02257◦W) in southeast Idaho were used

to evaluate surface wind predictions (Fig. 1). BSB is a pre-

dominantly grass-covered volcanic cinder cone with a hori-

zontal scale of 5 km and a vertical scale of 800 m and sur-

rounded in all directions by the relatively flat Snake River

Plain. The portion of the Snake River Plain surrounding BSB

slopes downward gently from the northeast to the southwest.

Atmos. Chem. Phys., 16, 5229–5241, 2016 www.atmos-chem-phys.net/16/5229/2016/
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Three-meter wind speeds and directions were measured

with cup-and-vane anemometers at 53 locations on and

around BSB. The anemometers have a measurement range

of 0–44 m s−1, a resolution of 0.19 m s−1 and 1.4◦, and are

accurate to within ±0.5 m s−1 and ±5◦. The anemometers

measured wind speed and direction every second and logged

30 s averages. We averaged these 30 s winds over a 10 min

period at the top of each hour (5 min before and 5 min after

the hour). The 10 min averaging period was chosen to corre-

spond roughly with the timescale of wind predictions from

the NWP forecasts. The NWP output is valid at a particular

instant in time, but there is always some inherent temporal

averaging in the predictions. The temporal averaging associ-

ated with a given prediction depends on the time-step used in

the NWP model and is typically on the order of minutes. The

10 min averaged observed data are referred to in the text as

“hourly” observations (since they are averaged at the top of

each hour) and are compared directly with the hourly model

predictions.

Butler et al. (2015) observed the following general flow

features at BSB. During periods of weak synoptic and

mesoscale forcing (hereafter referred to collectively as “ex-

ternal forcing”), the observed surface winds at BSB were de-

coupled from the large-scale atmospheric flows, except for at

high-elevation ridgetop locations. Diurnal slope flows dom-

inated the local surface winds under periods of weak exter-

nal forcing. There were frequent periods of strong external

forcing, during which the diurnal slope winds on BSB were

completely overtaken by the larger-scale winds. These peri-

ods of strong external forcing at BSB were typically char-

acterized by large-scale southwesterly flow aligned with the

Snake River Plain, although occasionally there were also

strong early morning winds from the northeast. Under peri-

ods of strong external forcing wind speeds commonly varied

by as much as 15 m s−1 across the domain due to mechanical

effects of the terrain (e.g., speed-up over ridges and lower

speeds on leeward slopes). Additional details regarding the

BSB field campaign can be found in Butler et al. (2015).

3.2 Evaluation methods

Hourly observations were compared against corresponding

hourly predictions from the most recent model run. Mod-

eled and observed winds were compared by interpolating the

modeled surface wind variables to the observed surface sen-

sor locations at each site. The 10 m winds from the NWP

forecasts were interpolated to sensor locations, using bilinear

interpolation in the horizontal dimension and a log profile in

the vertical dimension. A 3-D interpolation scheme was used

to interpolate WindNinja winds to the sensor locations. This

3-D interpolation was possible because the WindNinja do-

main had layers above and below the surface sensor height

(3.0 m a.g.l.). A 3-D interpolation scheme was not possible

for the NWP domains since there were not any layers below

the 3 m surface sensor height.

Model performance was quantified in terms of the mean

bias, root mean square error (RMSE), and standard deviation

of the error (SDE):

ϕ′ =
1

N

N∑
i=1

ϕ′ (1)

RMSE=

[
1

N

N∑
i=1

(
ϕ′i
)2]1/2

(2)

SDE=

[
1

N − 1

N∑
i=1

(
ϕ′i −ϕ′

)2
]1/2

, (3)

where ϕ′ is the difference between simulated and observed

variables and N is the number of observations.

3.3 Case selection

We selected a 5-day period from 15–19 July 2010 for model

evaluations. This specific period was chosen because it in-

cluded periods of both strong and weak external forcing, con-

ditions were consistently dry and sunny, and was a period for

which we were able to acquire forecasts from all NWP mod-

els selected for investigation in this study.

The observed data from the 5-day period were broken into

periods of upslope, downslope, and externally driven flow

conditions to further investigate model performance under

these particular types of flow regimes. We used the parti-

tioning schemes described in Butler et al. (2015). Externally

driven events were partitioned out by screening for hours dur-

ing which wind speeds at a designated sensor (R2, located

5 km southwest of the butte in flat terrain) exceeded a prede-

termined threshold wind speed of 6 m s−1. This sensor was

chosen because it was located in flat terrain far from the butte

and therefore was representative of near-surface winds that

were largely unaffected by the butte itself. Hours of upslope

and downslope flows (i.e., observations under weak exter-

nal forcing) were then partitioned out of the remaining data.

Additional details regarding the partitioning scheme can be

found in Butler et al. (2015). Statistical metrics were com-

puted for these 5-day periods.

We also chose one specific hour representative of each

flow regime within the 5-day period to qualitatively inves-

tigate model performance for single flow events under the

three flow regimes. This direct comparison of NWP model

predictions, downscaled predictions, and observations for

single events was done in order to get a visual sense for how

the models performed spatially while avoiding any inadver-

tent complicating issues that may have arose from temporal

averaging over the flow regimes.
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Figure 2. Observed vs. predicted wind speeds for the 5-day eval-

uation period at Big Southern Butte. Dashed black line is the line

of agreement. Colored lines are linear regressions (quadratic fit);

dashed lines are NWP models and solid lines are NWP forecasts

downscaled with WindNinja. Shading indicates 95 % confidence in-

tervals.

4 Results and discussion

4.1 Overview of the 5-day simulations

Figure 2 shows observed vs. forecasted wind speeds during

the 5-day period. The following generalizations can be made.

The NWP models predicted wind speeds below 5 m s−1 rea-

sonably well on average, although HRRR tended to over pre-

dict at speeds below 3 m s−1 (Fig. 2). There is a lot of scat-

ter about the regression lines, but the regressions follow the

line of agreement fairly well up to observed speeds around

5 m s−1. Downscaling did not improve wind speed predic-

tions much in this range. NWP forecast accuracy declined

for observed speeds between 5 and 10 m s−1, and accuracy

sharply dropped off for observed speeds above 10 m s−1.

This is indicated by the rapid departure of the NWP model

regression lines from the line of agreement (Fig. 2). Down-

scaling improved wind speed predictions for all NWP fore-

casts for observed speeds greater than around 5 m s−1 and the

biggest improvements were for observed speeds greater than

10 m s−1 (Fig. 2). This is indicated by the relative proximity

of the downscaled regression lines to the line of agreement

(Fig. 2).

Poor model accuracy at higher speeds is largely due to the

models under predicting windward slope and ridgetop wind

speeds. Observed speeds at these locations were often three

or four times higher than speeds in other locations in the

study area (e.g., note the spatial variability in Fig. 3). But-

ler et al. (2015) showed that the highest observed speeds oc-

curred on upper elevation windward slopes and ridgetops and

the lowest observed speeds occurred on the leeward side of

the butte and in sheltered side drainages on the butte itself.

Downscaling with WindNinja offers improved predictions at

these locations as indicated by Fig. 2 (regression lines in

closer proximity to the line of agreement) and Fig. 3 (spa-

tial variability in predictions more closely matches that of

the observations).

Additionally, the downscaled NAM wind speeds were

as accurate as the downscaled HRRR and WRF-UW wind

speeds (Fig. 2). This indicates that the NAM forecast was

able to capture the important large-scale flow features around

BSB such that the additional resolution provided by HRRR

and WRF-UW was not essential to resolve additional flow

features in the large-scale flow around BSB.

The accuracy of the NAM forecast at BSB is likely due to

the fact that Snake River Plain which surrounds BSB is rela-

tively flat and extends more than 50 km in all directions from

the butte. Even a 12 km grid resolution would be capable of

resolving the Snake River Plain and diurnal flow patterns

within this large, gentle-relief drainage. Coarse-resolution

models would not be expected to offer this same level of ac-

curacy in areas of more extensive complex terrain, however.

In areas surrounded by highly complex terrain it may be nec-

essary to acquire NWP model output on finer grids in order

to resolve the regional flow features.

The NWP forecasts predicted the overall temporal trend

in wind speed (Fig. 3), but underestimated peak wind speeds

due to under predictions on ridgetops and windward slopes as

previously discussed, and also occasionally in the flat terrain

on the Snake River Plain surrounding the butte (Fig. 4).

NWP models with coarser resolution grids predicted less

spatial variability in wind speed (Fig. 3). This is because

there were fewer grid cells covering the domain, and thus

fewer prediction points around the butte. The spatial variabil-

ity in the downscaled wind speed predictions more closely

matched that of the observed data, although the highest

speeds were still under predicted (Fig. 3). Although down-

scaling generally improved the spatial variability of the pre-

dictions, there were cases where NWP errors clearly propa-

gated into the downscaled simulations. For example, HRRR

frequently over predicted morning wind speeds associated

with down-drainage flow on the Snake River Plain; this er-

ror was amplified in the downscaled simulations, especially

at the ridgetop locations (e.g., Figs. 3–4, 15–17 July).

The mean bias, RMSE, and SDE for wind speed and wind

direction were smaller in nearly all cases for the downscaled

simulations than for the NWP forecasts during the 5-day pe-

riod (Table 2). Mean biases in wind speed were all slightly

negative and NAM and WRF-UW had the largest mean bi-

ases. The RMSE and SDE in wind speed were largest for

Atmos. Chem. Phys., 16, 5229–5241, 2016 www.atmos-chem-phys.net/16/5229/2016/
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Figure 3. Observed (black) and predicted (colored) winds speeds at all sensors for 15–19 July 2010 at Big Southern Butte. Top panels are

WindNinja predictions. Bottom panels are NWP predictions.

HRRR. Although mean bias, RMSE, and SDE in wind di-

rection for the downscaled forecasts were smaller or equal to

those for the NWP forecasts, the differences were small, with

a maximum reduction in mean bias in wind direction of just

4◦.

It is difficult to draw too many conclusions from the

spatially and temporally averaged 5-day statistics, however,

since this period included a range of meteorological condi-

tions (e.g., high-wind events from different directions, ups-

lope flow, downslope flow) each of which could have been

predicted with a different level of skill by the models. Quali-

tatively, however, the 5-day results demonstrate that the spa-

tial variability in the downscaled winds better matches that

of the observed winds at BSB (Fig. 3) and, although the re-

ductions were small in some cases, nearly all statistical met-

rics also improved with downscaling. The analysis is broken

down by flow regime in the next section for more insight into

model performance.

4.2 Performance under Upslope, downslope, and

externally forced flows

Local solar heating and cooling was a primary driver of the

flow during the slope flow regime at BSB (Butler et al.,

2015), with local thermal effects equal to or exceeding the

local mechanical effects of the terrain on the flow. Because

there is weak external forcing (i.e., input wind speeds to

WindNinja are low), the downscaling is largely driven by the

diurnal slope flow parameterization in WindNinja during the

slope flow regimes.

During upslope flow, the diurnal slope flow parameteriza-

tion increases speeds on the windward slopes and reduces

speeds (or reverses flow and increases speeds, depending on

the strength of the slope flow relative to the prevailing flow)

on lee slopes due to the opposing effects of the prevailing

wind and the thermal slope flow. The parameterization has

the opposite effect during downslope flow; windward slope

speeds are reduced (or possibly increased if downslope flow

is strong enough to reverse the prevailing flow) and lee side

speeds are enhanced.

4.2.1 Wind speed

The biggest improvements in wind speed predictions from

downscaling occurred during externally driven flow events

(Fig. 5). This is not surprising since the highest spatial vari-

ability in the observed wind speeds occurred during high-

wind events due to mechanically induced effects of the ter-

rain, with higher speeds on ridges and windward slopes and

lower speeds in sheltered side drainages and on the lee side
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Figure 4. Observed (black line) and predicted (colored lines) wind speeds for sensor R2 located 5 km southwest of Big Southern Butte on

the Snake River Plain and sensor R26 located on a ridgetop. Dashed colored lines are NWP models and solid colored lines are WindNinja.

of the butte (Figs. 6–8). Since WindNinja is designed primar-

ily to simulate the mechanical effects of the terrain on the

flow, it is during these high-wind events that the downscal-

ing has the most opportunity to improve predictions across

the domain. This has important implications for wildfire ap-

plications since high-wind events are often associated with

increased fire behavior.

The NWP models tended to under predict wind speeds on

the windward slopes, ridgetops, and surrounding flat terrain,

and over predict on the lee side of the butte during high wind

events (e.g., Fig. 6). The largest NWP errors in wind speed

during high wind events were on the ridgetops, where speed-

up occurred and the NWP under predicted speeds. These

largest wind speed errors were reduced by downscaling (e.g.,

Fig. 6). Downscaling reduced NWP wind speed errors in

most regions on the butte, although the general trend of un-

der predicting wind speeds on the windward side and over

predicting on the lee side did not change (e.g., Fig. 6).

There were consistent improvements in predicted wind

speeds from downscaling during the upslope regime, al-

though the improvements were smaller than for the exter-

nally driven regime (Fig. 5). Wind speeds were lower dur-

ing the slope flow regimes than during the externally forced

regime (Figs. 6–8), and thus, smaller improvements were

possible with downscaling. There was some speed-up pre-

dicted on the windward side of the butte during the represen-

tative upslope case which appeared to match the observed

wind field (Fig. 8).

Results were mixed for the downslope regime, as wind

speeds improved with downscaling for WRF-UW and NAM,

but not for WRF-NARR or HRRR (Fig. 5). The poor wind

speed predictions from HRRR during the downslope regime
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Table 2. Model mean bias, root mean square error (RMSE), and standard deviation of errors (SDE) for surface wind speeds and directions

during the 5-day evaluation period at Big Southern Butte. Downscaled values are in parentheses. Smaller values are in bold. The 5-day period

includes the Downslope, Upslope, and Externally driven time periods.

Time period Statistic NAM WRF-UW HRRR WRF-NARR

Wind Speed (m s−1)

5-day Bias −0.84 ( − 0.67) −1.17 ( − 0.95) −0.40 ( − 0.14) −0.31 ( − 0.08)

RMSE 2.31 (2.04) 2.39 (2.07) 2.52 (2.47) 2.33 (2.21)

SDE 2.15 (1.92) 2.08 (1.83) 2.49 (2.47) 2.31 (2.21)

Downslope Bias −1.07 ( − 0.76) −1.15 ( − 0.74) −0.09 (0.48) −0.48 (0.12)

RMSE 2.08 (1.92) 2.03 (1.83) 2.36 (2.66) 2.19 (2.28)

SDE 1.79 (1.77) 1.67 (1.68) 2.36 (2.62) 2.14 (2.28)

Upslope Bias −0.81 ( − 0.74) −1.11 ( − 0.98) −0.81 ( − 0.75) 0.06 (0.05)

RMSE 1.73 (1.62) 2.02 (1.86) 1.93 (1.81) 1.86 (1.86)

SDE 1.52 (1.44) 1.69 (1.58) 1.76 (1.64) 1.86 (1.86)

Externally-driven Bias −0.57 (−0.62) −1.28 (−1.32) −0.94 (−1.03) −0.22 (−0.33)

RMSE 3.06 (2.48) 3.21 (2.58) 3.17 (2.59) 2.92 (2.39)

SDE 3.00 (2.40) 2.94 (2.22) 3.02 (2.38) 2.92 (2.37)

Wind Direction (◦)

5-day Bias 59 (56) 57 (53) 64 (60) 57 (54)

RMSE 76 (72) 74 (71) 80 (76) 73 (71)

SDE 47 (46) 47 (46) 47 (46) 46 (46)

Downslope Bias 67 (60) 61 (56) 76 (67) 66 (61)

RMSE 83 (77) 78 (72) 88 (81) 81 (75)

SDE 49 (47) 48 (46) 46 (46) 47 (45)

Upslope Bias 55 (52) 58 (54) 56 (56) 52 (49)

RMSE 70 (67) 74 (71) 72 (72) 68 (65)

SDE 44 (42) 46 (45) 45 (46) 44 (42)

Externally-driven Bias 48 (49) 45 (46) 51 (50) 44 (46)

RMSE 64 (65) 63 (65) 68 (67) 62 (65)

SDE 43 (44) 44 (47) 45 (44) 43 (46)

is partly due to the fact that HRRR tended to over predict

early morning winds associated with down drainage flows

on the Snake River Plain. These errors were amplified by the

downscaling, especially at ridgetop locations (Fig. 4). In real-

ity, the high-elevation ridgetop locations tended to be decou-

pled from lower-level surface winds during the slope flow

regimes due to flow stratification. WindNinja assumes neu-

tral atmospheric stability, however, so this stratification is

not handled. A parameterization for non-neutral atmospheric

conditions is currently being tested in WindNinja.

The diurnal slope flow parameterization in WindNinja re-

sulted in lower speeds on the windward side and higher

speeds on the lee side of the butte for the representative

downslope case (Fig. 7). These downscaled speeds better

matched those of the observed wind field, although speeds

were still under predicted for ridgetops and a few other lo-

cations around the butte (Fig. 7). The high observed speeds

at the ridgetop locations are not likely due to thermal slope

flow effects, but could be from the influence of gradient-level

winds above the nocturnal boundary layer. These ridgetop

locations are high enough in elevation (800 m above the sur-

rounding plain) that they likely protruded out of the nocturnal

boundary layer and were exposed to the decoupled gradient-

level winds. Butler et al. (2015) noted that ridgetop winds

did not exhibit a diurnal pattern and tended to be decoupled

from winds at other locations on and around the butte. Lack

of diurnal winds at the summit of the butte is also confirmed

by National Oceanic and Atmospheric Administration Field

Research Division (NOAA-FRD) mesonet station data col-

lected at the top of BSB (described in Butler et al., 2015;

http://www.noaa.inel.gov/projects/INLMet/INLMet.htm).

Under predictions on the lower slopes and on the plain sur-

rounding the butte could be due to overly weak slope flows

being generated by the slope flow parameterization in Wind-

Ninja (Figs. 7–8). Overly weak slope flows could be caused

by a number of things: improper parameterization of surface

or entrainment drag parameters, poor estimation of the depth

of the slope flow, or deficiencies in the micrometeorological
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Figure 5. Root-mean-square error in wind speed (left) and wind direction (right) at Big Southern Butte for the 5-day evaluation period

(N = 4149), and downslope (N = 1593), upslope (N = 717), and externally driven (N = 966) periods within the 5-day period. Sample size:

N = number of hours× number of sensor locations.

Figure 6. Predicted and observed winds for an externally forced flow event at Big Southern Butte.

model used. The slope flow parameterization is being evalu-

ated in a companion paper.

4.2.2 Wind direction

The biggest improvement in wind direction predictions from

downscaling occurred during the downslope regime (Fig. 5).

Wind direction improved with downscaling for all NWP

models during periods of downslope flow. This indicates

that the diurnal slope flow model helped to orient winds

downslope. This is confirmed by inspection of the vector

plots for the representative downslope case which show the

downscaled winds oriented downslope on the southwest and

northeast faces of the butte (Fig. 7). Downscaling reduced

speeds on the northwest (windward) side of the butte, but

did not predict strong enough downslope flow in this region

to reverse the flow from the prevailing northwest direction

(Fig. 7). This again suggests that perhaps the diurnal slope

flow algorithm is predicting overly weak slope flows.

Wind direction predictions during the upslope regime also

improved with downscaling for all NWP models except

HRRR (Fig. 5). Downscaled winds for the representative up-

slope case were oriented upslope on the southwest (lee side)

of the butte and matched the observed winds in this region

well (Fig. 8). This is an improvement over the NWP wind

directions on the lee side of the butte.

There was no improvement in wind direction predic-

tions with downscaling during the externally driven regime

(Fig. 5). Looking at the vector plots during the representative

externally driven event (Fig. 6), it is clear why this would

be. The representative event was a high-wind event from the

southwest. Wind directions are well predicted on the wind-
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Figure 7. Predicted and observed winds for a downslope flow event at Big Southern Butte.

Figure 8. Predicted and observed winds for an upslope flow event at Big Southern Butte.

ward side of the butte, but not on the leeward side, where the

observed field indicates some recirculation in the flow field

(Fig. 6). The prevailing southwesterly flow is captured by

the NWP model, but the lee side recirculation is not. Wind-

Ninja does not predict the lee side recirculation, and thus,

the downscaling does not improve directions on the lee side

of the butte (Fig. 7). This is an expected result, as WindNinja

has been shown to have difficulties simulating flows on the

lee side of terrain features due to the fact that it does not

account for conservation of momentum in the flow solution

(Forthofer et al., 2014a).

5 Summary

The horizontal grid resolutions of NWP models investigated

in this study were too coarse to resolve the BSB terrain. Re-

sults showed that the NWP models captured the important

large-scale flow features around BSB under most conditions,

but were not capable of predicting the high spatial variabil-

ity (scale of 100s of meters) in the observed winds on and

around the butte induced by mechanical effects of the terrain

and local surface heating and cooling. Thus, surface winds

from the NWP models investigated in this study would not

be sufficient for forecasting wind speeds on and around the

butte at the spatial scales relevant for processes driven by lo-

cal surface winds, such as wildland fire spread.

Wind predictions generally improved for all NWP mod-

els by downscaling with WindNinja. The biggest improve-

ments occurred under high-wind events (near-neutral atmo-

spheric stability) when observed wind speeds were greater

than 10 m s−1. This finding has important implications for

fire applications since increased wildfire behavior is often

associated with high winds. Downscaled NAM wind speeds

were as accurate as downscaled WRF-UW and HRRR wind

speeds, indicating that an NWP model with 12 km grid res-

olution was sufficient for capturing the large-scale flow fea-

tures around BSB.

WindNinja did not predict the observed lee-side flow re-

circulation at BSB that occurred during externally forced

high wind events. Previous work has shown that WindNinja

has difficulties simulating lee-side flows (Forthofer et al.,

2014a). This is partly due to a lack of a momentum equation

in the WindNinja flow solution as discussed in Forthofer et

al. (2014a). Work is currently underway to incorporate an op-

tional momentum solver in WindNinja which is anticipated

to improve flow predictions on the lee-side of terrain obsta-

cles.
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Results indicated that WindNinja predicted overly weak

slope flows compared to observations. Weak slope flow could

be caused by several different issues within the diurnal slope

flow parameterization in WindNinja: improper parameteri-

zation of surface or entrainment drag parameters, poor esti-

mation of the depth of the slope flow, or deficiencies in the

micrometeorological model. These issues will be explored in

future work.

This work constitutes evaluation of a diagnostic wind

model at unprecedented high spatial resolution and ter-

rain complexity. While extensive evaluations have been per-

formed with data collected in less rugged terrain (e.g.,

Askervein Hill and Bolund Hill, relatively low-elevation hills

with simple geometry), to our knowledge, this study is the

first to evaluate a diagnostic wind model with data collected

in terrain with topographical ruggedness approaching that of

typical landscapes in the western US susceptible to wildland

fire. This work demonstrates that NWP model wind fore-

casts can be improved in complex terrain, especially under

high-wind events, through dynamic downscaling via a mass-

conserving wind model. These improvements should prop-

agate on to more realistic predictions from other model ap-

plications which are sensitive to surface wind fields, such as

wildland fire behavior, local-scale transport and dispersion,

and wind energy applications.
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