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Abstract. In the southeastern US, substantial emissions of

isoprene from deciduous trees undergo atmospheric oxida-

tion to form secondary organic aerosol (SOA) that con-

tributes to fine particulate matter (PM2.5). Laboratory studies

have revealed that anthropogenic pollutants, such as sulfur

dioxide (SO2), oxides of nitrogen (NOx), and aerosol acid-

ity, can enhance SOA formation from the hydroxyl radical

(OH)-initiated oxidation of isoprene; however, the mecha-

nisms by which specific pollutants enhance isoprene SOA

in ambient PM2.5 remain unclear. As one aspect of an in-

vestigation to examine how anthropogenic pollutants influ-

ence isoprene-derived SOA formation, high-volume PM2.5

filter samples were collected at the Birmingham, Alabama

(BHM), ground site during the 2013 Southern Oxidant and

Aerosol Study (SOAS). Sample extracts were analyzed by

gas chromatography–electron ionization-mass spectrometry

(GC/EI-MS) with prior trimethylsilylation and ultra perfor-

mance liquid chromatography coupled to electrospray ion-

ization high-resolution quadrupole time-of-flight mass spec-

trometry (UPLC/ESI-HR-QTOFMS) to identify known iso-

prene SOA tracers. Tracers quantified using both surrogate

and authentic standards were compared with collocated gas-

and particle-phase data as well as meteorological data pro-

vided by the Southeastern Aerosol Research and Character-

ization (SEARCH) network to assess the impact of anthro-

pogenic pollution on isoprene-derived SOA formation. Re-

sults of this study reveal that isoprene-derived SOA trac-

ers contribute a substantial mass fraction of organic matter

(OM) (∼ 7 to ∼ 20 %). Isoprene-derived SOA tracers corre-

lated with sulfate (SO2−
4 ) (r2

= 0.34, n= 117) but not with

NOx . Moderate correlations between methacrylic acid epox-

ide and hydroxymethyl-methyl-α-lactone (together abbrevi-

ated MAE/HMML)-derived SOA tracers with nitrate radical

production (P[NO3]) (r2
= 0.57, n= 40) were observed dur-

ing nighttime, suggesting a potential role of the NO3 radi-

cal in forming this SOA type. However, the nighttime cor-

relation of these tracers with nitrogen dioxide (NO2) (r2
=

0.26, n= 40) was weaker. Ozone (O3) correlated strongly
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with MAE/HMML-derived tracers (r2
= 0.72, n= 30) and

moderately with 2-methyltetrols (r2
= 0.34, n= 15) during

daytime only, suggesting that a fraction of SOA formation

could occur from isoprene ozonolysis in urban areas. No

correlation was observed between aerosol pH and isoprene-

derived SOA. Lack of correlation between aerosol acidity

and isoprene-derived SOA is consistent with the observation

that acidity is not a limiting factor for isoprene SOA for-

mation at the BHM site as aerosols were acidic enough to

promote multiphase chemistry of isoprene-derived epoxides

throughout the duration of the study. All in all, these results

confirm previous studies suggesting that anthropogenic pol-

lutants enhance isoprene-derived SOA formation.

1 Introduction

Fine particulate matter, suspensions of liquid or solid aerosol

in a gaseous medium that are less than or equal to 2.5 µm

in diameter (PM2.5), play a key role in physical and chem-

ical atmospheric processes. They influence climate patterns

both directly, through the absorption and scattering of solar

and terrestrial radiation, and indirectly, through cloud forma-

tion (Kanakidou et al., 2005). In addition to climatic effects,

PM2.5 has been demonstrated to pose a human health risk

through inhalation exposure (Pope and Dockery, 2006; Hal-

lquist et al., 2009). Despite the strong association of PM2.5

with climate change and environmental health, there remains

a need to more fully resolve its composition, sources, and

chemical formation processes in order to develop effective

control strategies to address potential hazards in a cost-

effective manner (Hallquist et al., 2009; Boucher et al., 2013;

Noziére et al., 2015).

Atmospheric PM2.5 is comprised in a large part (up to

90 % by mass in some locations) of organic matter (OM)

(Carlton et al., 2009; Hallquist et al., 2009). OM can be de-

rived from many sources. Primary organic aerosol (POA)

is emitted from both natural (e.g., fungal spores, vegeta-

tion, vegetative detritus) and anthropogenic sources (fossil

fuel and biomass burning) prior to atmospheric processing.

As a result of large anthropogenic sources, POA is abun-

dant largely in urban areas. Processes such as natural plant

growth, biomass burning, and combustion also yield volatile

organic compounds (VOCs), which have high vapor pres-

sures and can undergo atmospheric oxidation to form sec-

ondary organic aerosol (SOA) through gas-to-particle phase

partitioning (condensation or nucleation) with subsequent

particle-phase (multiphase) chemical reactions (Grieshop et

al., 2009).

With around 600 Tg emitted into the atmosphere per year,

isoprene (2-methyl-1,3-butadiene, C5H8) is the most abun-

dant volatile non-methane hydrocarbon (Guenther et al.,

2012). The abundance of isoprene is particularly high in the

southeastern US due to emissions from broadleaf deciduous

tree species (Guenther et al., 2006). Research over the last

decade has revealed that isoprene, via hydroxyl radical (OH)-

initiated oxidation, is a major source of SOA (Claeys et al.,

2004; Edney et al., 2005; Kroll et al., 2005, 2006; Surratt

et al., 2006, 2010; Lin et al., 2012, 2013a). In addition, it

is known that SOA formation is enhanced by anthropogenic

emissions, namely oxides of nitrogen (NOx) and sulfur diox-

ide (SO2), that are a source of acidic aerosol onto which

photochemical oxidation products of isoprene are reactively

taken up to yield a variety of SOA products (Edney et al.,

2005; Kroll et al., 2006; Surratt et al., 2006, 2007b, 2010;

Lin et al., 2013b).

Recent work has begun to elucidate some of the critical

intermediates of isoprene oxidation that lead to SOA forma-

tion through acid-catalyzed heterogeneous chemistry (Kroll

et al., 2005; Surratt et al., 2006). Under low-NOx condi-

tions, such as in a pristine environment, multiple isomers

of isoprene epoxydiols (IEPOX) have been demonstrated to

be critical to the formation of isoprene SOA (Paulot et al.,

2009). On advection of IEPOX to an urban environment

and mixing with anthropogenic emissions of acidic sulfate

aerosol, SOA formation is enhanced (Surratt et al., 2006;

Lin et al., 2012, 2013b). This pathway has been shown to

yield 2-methyltetrols as major SOA constituents of ambi-

ent PM2.5 (Claeys et al., 2004; Surratt et al., 2010; Lin et

al., 2012). Further work has revealed a number of addi-

tional IEPOX-derived SOA tracers, including C5-alkene tri-

ols (Wang et al., 2005; Lin et al., 2012), cis- and trans-3-

methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) (Lin

et al., 2012; Zhang et al., 2012), IEPOX-derived organosul-

fates (OSs) (Lin et al., 2012), and IEPOX-derived oligomers

(Lin et al., 2014). Some of the IEPOX-derived oligomers

have been shown to contribute to aerosol components known

as brown carbon that absorb light in the near ultraviolet (UV)

and visible ranges (Lin et al., 2014). Under high-NOx con-

ditions, such as encountered in an urban environment, iso-

prene is oxidized to methacrolein (MACR) and SOA for-

mation occurs via the further oxidation of MACR (Kroll

et al., 2006; Surratt et al., 2006) to methacryloyl perox-

ynitrate (MPAN) (Chan et al., 2010; Surratt et al., 2010;

Nguyen et al., 2015). It has recently been shown that when

MPAN is oxidized by OH it yields at least two SOA precur-

sors, methacrylic acid epoxide (MAE) and hydroxymethyl-

methyl-α-lactone (HMML) (Surratt et al., 2006, 2010; Lin

et al., 2013a; Nguyen et al., 2015). Whether SOA precursors

are formed under high- or low-NOx conditions, aerosol acid-

ity is a critical parameter that enhances the reaction kinetics

through acid-catalyzed reactive uptake and multiphase chem-

istry of either IEPOX or MAE (Surratt et al., 2007b, 2010;

Lin et al., 2013b). In addition to MACR, other key oxidation

products of isoprene, including glycolaldehyde, methylgly-

oxal, and hydroxyacetone, can undergo multiphase chemistry

to yield their respective OS derivatives (Olsen et al., 2011;

Schindelka et al., 2013; Shalamzari et al., 2013; Noziere

et al., 2015). However, the contribution of isoprene on the
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glyoxal-, methylglyoxal-, and hydroxyacetone-derived OS

mass concentrations in the atmosphere remains unclear since

these SOA tracers can also be formed from a wide variety

of biogenic and anthropogenic precursors (Galloway et al.,

2009; Liao et al., 2015).

Due to the large emissions of isoprene, an SOA yield

of even 1 % would contribute significantly to ambient SOA

(Carlton et al., 2009; Henze et al., 2009). This conclusion

is supported by measurements showing that up to a third

of total fine organic aerosol (OA) mass can be attributed

to IEPOX-derived SOA tracers in Atlanta, GA (JST), dur-

ing summer months (Budisulistiorini et al., 2013, 2015). A

recent study in Yorkville, GA (YRK), similarly found that

IEPOX-derived SOA tracers comprised 12–19 % of the fine

OA mass (Lin et al., 2013b). Another Southern Oxidant and

Aerosol Study (SOAS) site at Centreville, Alabama (CTR),

revealed that IEPOX–SOA contributed 18 % of total OA

mass (Xu et al., 2015). The individual ground sites corrob-

orate recent aircraft-based measurements made in the Stud-

ies of Emissions and Atmospheric Composition, Clouds, and

Climate Coupling by Regional Surveys (SEAC4RS) aircraft

campaign, which estimated an IEPOX–SOA contribution of

32 % to OA mass in the southeastern US (Hu et al., 2015).

It is clear from the field studies discussed above that

particle-phase chemistry of isoprene-derived oxidation prod-

ucts plays a large role in atmospheric SOA formation. How-

ever, much remains unknown regarding the exact nature

of its formation, limiting the ability of models to accu-

rately account for isoprene SOA (Carlton et al., 2010b; Fo-

ley et al., 2010). Currently, traditional air quality models

in the southeastern US do not incorporate detailed particle-

phase chemistry of isoprene oxidation products (IEPOX or

MAE/HMML) and generally underpredict isoprene SOA for-

mation (Carlton et al., 2010a). Recent work demonstrates

that incorporating the specific chemistry of isoprene epoxide

precursors into models increases the accuracy and number of

isoprene SOA predictions (Pye et al., 2013; Karambelas et

al., 2014; McNeilll, 2015), suggesting that understanding the

formation mechanisms of biogenic SOA, especially with re-

gard to the effects of anthropogenic emissions, such as NOx
and SO2, will be key to more accurate models. More accu-

rate models are needed in order to devise cost-effective con-

trol strategies for reducing PM2.5 levels. Since isoprene is

primarily biogenic in origin, and therefore not controllable,

the key to understanding the public health and environmental

implications of isoprene SOA lies in resolving the effects of

anthropogenic pollutants.

This study presents results from the 2013 SOAS, where

several well-instrumented ground sites dispersed through-

out the southeastern US made intensive gas- and particle-

phase measurements from 1 June to 16 July 2013. The pri-

mary purpose of this campaign was to examine, in greater

detail, the formation mechanisms, composition, and prop-

erties of biogenic SOA, including the effects of anthro-

pogenic emissions. This study pertains specifically to the re-

sults from the Birmingham, Alabama (BHM), ground site,

where the city’s substantial urban emissions mix with bio-

genic emissions from the surrounding rural areas, creating

an ideal location to investigate such interactions. The results

presented here focus on analysis of PM2.5 collected on fil-

ters during the campaign by gas chromatography–electron

ionization-mass spectrometry (GC/EI-MS) and ultra perfor-

mance liquid chromatography coupled to electrospray ion-

ization high-resolution quadrupole time-of-flight mass spec-

trometry (UPLC/ESI-HR-QTOFMS). The analysis of PM2.5

was conducted in order to determine quantities of known iso-

prene SOA tracers using collocated air quality and meteoro-

logical measurements to investigate how anthropogenic pol-

lutants including NOx , SO2, aerosol acidity (pH), PM2.5 sul-

fate (SO2−
4 ), and O3 affect isoprene SOA formation. These

results, along with the results presented from similar stud-

ies during the 2013 SOAS campaign, seek to elucidate the

chemical relationships between anthropogenic emissions and

isoprene SOA formation in order to provide better parameter-

izations needed to improve the accuracy of air quality models

in this region of the US.

2 Methods

2.1 Site description and collocated data

Filter samples were collected in the summer of 2013 as

part of the SOAS field campaign at the BHM ground site

(33.553◦ N, 86.815◦W). In addition to the SOAS campaign,

the site is also part of the Southeastern Aerosol Research and

Characterization Study (SEARCH) (Fig. S1 of the Supple-

ment), an observation and monitoring program initiated in

1998. SEARCH and this site are described elsewhere in de-

tail (Hansen et al., 2003; Edgerton et al., 2006). The BHM

site is surrounded by significant transportation and industrial

sources of PM. West of BHM are US 31 and I-65 highways.

To the north, northeast and southwest of BHM several cok-

ing ovens and an iron pipe foundry are located (Hansen et al.,

2003).

2.2 High-volume filter sampling and analysis methods

2.2.1 High-volume filter sampling

From 1 June to 16 July 2013, PM2.5 samples were collected

onto Tissuquartz™ Filters (8× 10 in., Pall Life Sciences) us-

ing high-volume PM2.5 samplers (Tisch Environmental) op-

erated at 1 m3 min−1 at an ambient temperature described

in detail elsewhere (Budisulistiorini et al., 2015; Riva et al.,

2016). All quartz filters were prebaked prior to collection.

The procedure consisted of baking filters at 550 ◦C for 18 h

followed by cooling to 25 ◦C over 12 h.

The sampling schedule is given in Table 1. Either two

or four samples were collected per day. The regular sched-

ule consisted of two samples per day – one during the day,
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the second at night – each collected for 11 h. On intensive

sampling days, four samples were collected, with the single

daytime sample being subdivided into three separate peri-

ods. The intensive sampling schedule was conducted on days

when high levels of isoprene, SO2−
4 and NOx were forecast

by the National Center for Atmospheric Research (NCAR)

using the Flexible Particle dispersion model (FLEXPART)

(Stohl et al., 2005) and Model for Ozone and Related Chem-

ical Tracers (MOZART) (Emmons et al., 2010) simulations.

Details of these simulations have been summarized in Bud-

isulistiorini et al. (2015); however, these model data were

only used qualitatively to determine the sampling schedule.

The intensive collection frequency allowed enhanced time

resolution for offline analysis to examine the effect of anthro-

pogenic emissions on the evolution of isoprene SOA tracers

throughout the day.

In total, 120 samples were collected throughout the field

campaign with a field blank filter collected every 10 days

to identify errors or contamination in sample collection and

analysis. All filters were stored at −20 ◦C in the dark un-

til extraction and analysis. In addition to filter sampling of

PM2.5, SEARCH provided a suite of additional instruments

at the site that measured meteorological and chemical vari-

ables, including temperature, relative humidity (RH), solar

radiation (SR), barometric pressure (BP), trace gases (i.e.,

CO, O3, SO2, NOx , and NH3), and continuous PM mon-

itoring. The exact variables measured with their respective

instrumentation are summarized in Table S1 of the Supple-

ment.

2.2.2 Isoprene-derived SOA analysis by GC/EI-MS

SOA collected in the field on quartz filters was extracted

and isoprene tracers quantified by GC/EI-MS with prior

trimethylsilylation. A 37 mm diameter circular punch from

each filter was extracted in a pre-cleaned scintillation vial

with 20 mL of high-purity methanol (LC-MS CHROMA-

SOLV grade, Sigma-Aldrich) by sonication for 45 min.

The extracts were filtered through polytetrafluorethylene

(PTFE) syringe filters (Pall Life Science, Acrodisc®, 0.2-

µm pore size) to remove insoluble particles and resid-

ual quartz fibers. The filtrate was then blown dry under

a gentle stream of N2 at room temperature. The dried

residues were immediately trimethylsilylated by reaction

with 100 µL of N,O-bis(trimethylsilyl)trifluoroacetamide

(BSTFA) + trimethylchlorosilane (TMCS) (99:1 v/v, Su-

pelco) and 50 µL of pyridine (anhydrous, 99.8 %, Sigma-

Aldrich) at 70 ◦C for 1 h. Trimethylsilyl derivatives of car-

bonyl and hydroxyl functional groups were measurable by

our GC/EI-MS method. Derivatized samples were analyzed

within 24 h after trimethylsilylation using a Hewlett-Packard

(HP) 5890 Series II gas chromatograph coupled to an HP

5971A mass selective detector. The gas chromatograph was

equipped with an Econo-Cap®-EC®-5 Capillary Column

(30 m × 0.25 mm i.d.; 0.25 µm film thickness) to separate

Table 1. Sampling schedule during SOAS at the BHM ground site.

No. of samples Sampling schedule Dates

per day

Two (regular) Day: 08:00–19:00 1–9 June

Night: 20:00–07:00 next day 13 June

17–28 June

2–9 July

15 July

Four (intensive) Intensive 1: 08:00–12:00 10–12 June

Intensive 2: 13:00–15:00 14–16 June

Intensive 3: 16:00–19:00 29–30 June

Intensive 4: 20:00–07:00 next day 1, 9–14 July

trimethylsilyl derivatives before MS detection. 1 µL aliquots

were injected onto the column. Operating conditions and pro-

cedures have been described elsewhere (Surratt et al., 2010).

Extraction efficiency was assessed and taken into ac-

count for the quantification of all SOA tracers. Efficiency

was determined by analyzing four prebaked filters spiked

with 50 ppmv of 2-methyltetrols, 2-methylglyceric acid, lev-

oglucosan, and cis- and trans-3−MeTHF-3,4-diols. Extrac-

tion efficiency was above 90 % and was used to correct

the quantification of samples. Extracted ion chromatograms

(EICs) of m/z 262, 219, 231, and 335 were used to quan-

tify the cis-/trans-3-MeTHF-3,4-diols, 2-methyltetrols and

2-methylglyceric acid, C5-alkene triols, and IEPOX-dimers,

respectively (Surratt et al., 2006).

2-Methyltetrols were quantified using an authentic refer-

ence standard that consisted of a mixture of racemic dias-

teroisomers. Similarly, 3-MeTHF-3,4-diol isomers were also

quantified using authentic standards; however, 3-MeTHF-

3,4-diol isomers were detected in few field samples. 2-

Methylglyceric acid was also quantified using an authen-

tic standard. Procedures for synthesis of the 2-methyltetrols,

3-MeTHF-3,4-diol isomers, and 2-methylglyceric acid have

been described elsewhere (Zhang et al., 2012; Budisulis-

tiorini et al., 2015). C5-alkene triols and IEPOX dimers

were quantified using the average response factor of the 2-

methyltetrols.

To investigate the effect of IEPOX-derived OS hydrol-

ysis or decomposition during GC/EI-MS analysis, known

concentrations (i.e., 1, 5, 10, and 25 ppmv) of the au-

thentic IEPOX-derived OS standard (Budisulistiorini et al.,

2015) were directly injected into the GC/EI-MS follow-

ing trimethylsilylation. Ratios of detected 2-methyltetrols

to the IEPOX-derived OS were applied to estimate the to-

tal IEPOX-derived SOA tracers in order to avoid double

counting when combining the GC/EI-MS and UPLC/ESI-

HR-QTOFMS SOA tracer results.

Atmos. Chem. Phys., 16, 4897–4914, 2016 www.atmos-chem-phys.net/16/4897/2016/
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2.2.3 Isoprene-derived SOA analysis by

UPLC/ESI-HR-QTOFMS

A 37 mm diameter circular punch from each quartz filter

was extracted following the same procedure as described

in Sect. 2.2.2 for the GC/EI-MS analysis. However, after

drying, the dried residues were reconstituted with 150 µL

of a 50 : 50 (v/v) solvent mixture of methanol (LC-MS

CHROMASOVL grade, Sigma-Aldrich) and high-purity wa-

ter (Milli-Q, 18.2 M�). The extracts were immediately an-

alyzed by the UPLC/ESI-HR-QTOFMS (6520 Series, Agi-

lent) operated in the negative ion mode. Detailed operating

conditions have been described elsewhere (Riva et al., 2016).

Mass spectra were acquired at a mass resolution of 7000–

8000.

Extraction efficiency was determined by analyzing three

prebaked filters spiked with propyl sulfate and octyl sulfate

(electronic grade, City Chemical LLC). Extraction efficien-

cies were in the range of 86–95 %. EICs ofm/z 215, 333, and

199 were used to quantify the IEPOX-derived OS, IEPOX-

derived dimer OS, and the MAE-derived OS, respectively

(Surratt et al., 2007a). EICs were generated with a ±5 ppm

tolerance. Accurate masses for all measured organosulfates

(OSs) were within ±5 ppm. For simplicity, only the nom-

inal masses are reported in the text when describing these

products. IEPOX-derived OS and IEPOX-derived dimer OS

were quantified by the IEPOX-derived standard synthesized

in-house (Budisulistiorini et al., 2015). The MAE-derived

OS was quantified using an authentic MAE-derived OS stan-

dard synthesized in-house by a procedure to be described

in a forthcoming publication (1H nuclear magnetic reso-

nance (NMR) trace, Fig. S2). Although the MAE-derived

OS (Gómez-González et al., 2008), which is more formally

called 3-sulfooxy-2-hydroxy-2-methyl propanoic acid, has

been chemically verified from the reactive uptake of MAE

on wet acidic sulfate aerosol (Lin et al., 2013a), the term

MAE/HMML-derived OS will be used hereafter to denote

the two potential precursors (MAE and HMML) contribut-

ing to this OS derivative as recently discussed by Nguyen et

al. (2015). It should be noted that Nguyen et al. (2015) pro-

vided indirect evidence for the possible existence of HMML.

As a result, further work is needed to synthesize this com-

pound to confirm its structure and likely role in SOA forma-

tion from isoprene oxidation.

EICs of m/z 155, 169, and 139 were used to quan-

tify the glyoxal-derived OS, methylglyoxal-derived OS, and

the hydroxyacetone-derived OS, respectively (Surratt et al.,

2007a). In addition, EICs of m/z 211, 260, and 305 were

used to quantify other known isoprene-derived OSs (Surratt

et al., 2007a). Glycolic acid sulfate synthesized in-house was

used as a standard to quantify the glyoxal-derived OS (Gal-

loway et al., 2009), and propyl sulfate was used as a surrogate

standard to quantify the remaining isoprene-derived OSs.

2.2.4 OC and WSOC analysis

A 1.5 cm2 square punch from each quartz filter was analyzed

for total organic carbon (OC) and elemental carbon (EC)

by the thermal-optical method (Birch and Cary, 1996) on a

Sunset Laboratory OC–EC instrument (Tigard, OR) at the

National Exposure Research Laboratory (NERL) at the US

Environmental Protection Agency, Research Triangle Park,

NC. The details of the instrument and analytical method have

been described elsewhere (Birch and Cary, 1996). In addition

to the internal calibration using methane gas, four different

mass concentrations of sucrose solution were used to verify

the accuracy of the instrument during the analysis.

Water-soluble organic carbon (WSOC) was measured in

aqueous extracts of quartz fiber filter samples using a total

organic carbon (TOC) analyzer (Sievers 5310C, GE Water &

Power) equipped with an inorganic carbon remover (Sievers

900). To maintain low background carbon levels, all glass-

ware used was washed with water, soaked in 10 % nitric acid,

and baked at 500 ◦C for 5 h and 30 min prior to use. Samples

were extracted in batches that consisted of 12–21 PM2.5 sam-

ples and field blanks, one laboratory blank, and one spiked

solution. A 17.3 cm2 filter portion was extracted with 15 mL

of purified water (> 18 M�, Barnstead Easypure II, Thermo

Scientific) by ultra-sonication (Branson 5510). Extracts were

then passed through a 0.45 µm PTFE filter to remove insolu-

ble particles. The TOC analyzer was calibrated using potas-

sium hydrogen phthalate (KHP, Sigma-Aldrich) and was ver-

ified daily with sucrose (Sigma-Aldrich). Samples and stan-

dards were analyzed in triplicate; the reported values corre-

spond to the average of the second and third trials. Spiked

solutions yielded recoveries that averaged (±1 standard de-

viation) 96± 5 % (n= 9). All ambient concentrations were

field blank subtracted.

2.2.5 Estimation of aerosol pH by ISORROPIA

Aerosol pH was estimated using a thermodynamic model,

ISORROPIA-II (Nenes et al., 1998). SO2−
4 , nitrate (NO−3 ),

and ammonium (NH+4 ) ion concentrations measured in

PM2.5 collected from BHM, as well as RH, temperature,

and gas-phase ammonia (NH3) were used as inputs into the

model. These variables were obtained from the SEARCH

network at BHM, which collected the data during the period

covered by the SOAS campaign. The ISORROPIA-II model

estimates particle hydronium ion concentration per unit vol-

ume of air (H+, µg m−3), aerosol liquid water content (LWC,

µg m−3), and aqueous aerosol mass concentration (µg m−3).

The model-estimated parameters were used in the following

formula to calculate the aerosol pH:
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Aerosol pH=−log10aH+ =−log10

( H+air

LMASS

× ρaer× 1000
)
, (1)

where aH+ is H+ activity in the aqueous phase (mol L−1),

LMASS is total liquid-phase aerosol mass (µg m−3), and ρaer

is aerosol density. Details of the ISORROPIA-II model and

its ability to predict pH, LWC, and gas-to-particle partition-

ing are not the focus of this study and are discussed elsewhere

(Fountoukis et al., 2009).

2.2.6 Estimation of nighttime NO3

Nitrate radical (NO3) production (P[NO3]) was calculated

using the following equation:

P[NO3] = k [NO2] [O3] , (2)

where [NO2] and [O3] correspond to the measured ambient

NO2 and O3 concentrations (mol cm−3), respectively, and k

is the temperature-dependent rate constant (Herron and Huie,

1974; Graham and Johnston, 1978). Since no direct measure

of NO3 radical was made at this site during SOAS, P[NO3]

was used as a proxy for NO3 radicals present in the atmo-

sphere to examine whether there is any association of it with

isoprene-derived SOA tracers.

3 Results and discussion

3.1 Overview of the study

The campaign extended from 1 June through 16 July 2013.

Temperature during this period ranged from a high of 32.6 ◦C

to a low of 20.5 ◦C, with an average of 26.4 ◦C. RH varied

from 37–96 % throughout the campaign, with an average of

71.5 %. Rainfall occurred intermittently over 2–3-day peri-

ods and averaged 0.1 in. per day. Wind analysis reveals that

air masses approached largely from the south-southeast at an

average wind speed of 2 m s−1. Summaries of meteorologi-

cal conditions as well as wind speed and direction during the

course of the campaign are given in Table 2 and illustrated in

Figs. 1 and 2.

The average concentration of carbon monoxide (CO), a

combustion byproduct, was 208.7 ppbv. The mean concen-

tration of O3 was significantly higher (t test, p value < 0.05)

on intensive sampling days (37.0 ppbv) compared to regu-

lar sampling days (25.2 ppbv). Campaign average concentra-

tions of NOx , NH3, and SO2 were 7.8, 1.9, and 0.9 ppbv,

respectively. On average, OC and WSOC levels were 7.2

(n= 120) and 4 µg m−3 (n= 100), respectively. The largest

inorganic component of PM2.5 was SO2−
4 , which averaged

2 µg m−3 with excursions between 0.4 and 4.9 µg m−3 dur-

ing the campaign. NH+4 and NO−3 were present at low levels,

Figure 1. Wind rose illustrating wind direction during the campaign

at the BHM site. Bars indicate direction of incoming wind, with 0◦

set to geographic north. Length of bar size indicates frequency with

color segments indicating the wind speed in meters per second.

Figure 2. Time series of (a) meteorological data, (b) trace gases,

(c) PM2.5 constituents, (d) MAE/HMML-derived SOA tracers, and

(e) IEPOX-derived SOA tracers during the 2013 SOAS campaign at

the BHM site.

averaging 0.66 and 0.14 µg m−3, respectively. Time series of

gas and PM2.5 components are shown in Fig. 2. WSOC ac-

counted for 35 % of OC mass (Fig. S3a), and was smaller

than that recently reported in rural areas during SOAS (Bud-
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isulistiorini et al., 2015; Hu et al., 2015) but consistent with

previous observations at the BHM site (Ding et al., 2008).

WSOC /OC ratios are commonly lower in urban than ru-

ral areas, as a consequence of higher primary OC emissions;

thus, PM at BHM probably contains increased OC.

Diurnal variation of meteorological parameters, trace

gases, and PM2.5 components is shown in Fig. S4 of the Sup-

plement. Temperature dropped during nighttime and reached

a maximum in the afternoon (Fig. S4a). Conversely, RH

was low during the day and high at night. High NOx lev-

els were found in the early morning and decreased during

the course of the day (Fig. S4c), most likely due to the for-

mation of NOx sinks (e.g., RONO2, ROONO2, and HNO3)

as well as possibly due to increasing planetary boundary

layer (PBL) heights. O3 reached a maximum concentra-

tion between 12:00–15:00 local time due to photochemistry

(Fig. S4b). SO2 was slightly higher in the morning (Fig. S4c)

but decreased during the day, most likely as a result of PBL

dynamics. NH3 remained fairly constant throughout the day

(Fig. S4c). No significant diurnal variation was found in

the concentration of inorganic PM2.5 components, including

SO2−
4 , NO−3 , and NH+4 (Fig. S4d). Unfortunately, a measure-

ment of isoprene could not be made at BHM during the cam-

paign. However, the diurnal trend of isoprene levels might be

similar to the data at the CTR site (Xu et al., 2015), which

is only 61 miles away from BHM. Xu et al. (2015) observed

the highest levels of isoprene (∼ 6 ppb) at CTR in the mid-

afternoon (15:00 local time) and its diurnal trend was simi-

lar to isoprene OA measured by the Aerodyne Aerosol Mass

Spectrometer (AMS) during the SOAS campaign at the CTR

site.

3.2 Characterization of isoprene SOA

Table 3 summarizes the mean and maximum concen-

trations of known isoprene-derived SOA tracers detected

by GC/EI-MS and UPLC/ESI-HR-QTOFMS. Levoglucosan

was also analyzed as a tracer for biomass burning. Among

the isoprene-derived SOA tracers, the highest mean con-

centration was for 2-methyltetrols (376 ng m−3), followed

by the sum of C5-alkene triols (181 ng m−3) and the

IEPOX-derived OS (165 ng m−3). The concentrations ac-

count for 3.8, 1.8, and 1.6 %, respectively, of total OM

mass. It is noteworthy that maximum concentrations of

2-methylerythritol (a 2-methyltetrol isomer; 1049 ng m−3),

IEPOX-derived OS (865 ng m−3), and (E)-2-methylbut-3-

ene-1,2,4-triol (879 ng m−3) were attained during the inten-

sive sampling period of 16:00–19:00 local time on 15 June

2013, following 5 consecutive days of dry weather (Fig. 2a

and d) when high levels of isoprene, SO2−
4 , and NOx were

forecast.

Our investigation for the potential of OS hydroly-

sis or decomposition during GC/EI-MS analysis demon-

strated that only 1.7 % of 2-methylthreitol and 2.4 % of 2-

methylerythritol could be derived from the IEPOX-derived

Figure 3. The bar chart shows average daytime and nighttime con-

centrations of isoprene-derived SOA tracers with 95 % confident in-

terval. No significant variation between daytime and nighttime was

observed.

OSs. In order to accurately estimate the mass concentra-

tions of the IEPOX-derived SOA tracers, we took this ef-

fect into account. Together, the IEPOX-derived SOA tracers,

which represent SOA formation from isoprene oxidation pre-

dominantly under the low-NOx pathway, comprised 92.45 %

of the total detected isoprene-derived SOA tracer mass at

the BHM site. This contribution is slightly lower than ob-

servations reported at rural sites located in Yorkville, GA

(97.50 %), and Look Rock, Tennessee (LRK) (97 %) (Lin et

al., 2013b; Budisulistiorini et al., 2015).

The sum of MAE/HMML-OS and 2-methylglyceric acid

(2-MG), which represent SOA formation from isoprene ox-

idation predominantly under the high-NOx pathway, con-

tributed 3.25 % of the total isoprene-derived SOA tracer

mass, while the OS derivative of glycolic acid (GA sulfate)

contributed 3.3 %. The contribution of GA sulfate was con-

sistent with the level of GA sulfate measured by the airborne

NOAA Particle Analysis Laser Mass Spectrometer (PALMS)

over the continental US during the Deep Convective Clouds

and Chemistry Experiment and SEAC4RS (Liao et al., 2015).

However, the contribution of GA sulfate to the total OM

at BHM (0.3 %) is lower than aircraft-based measurements

made by Liao et al. (2015) near the ground in the eastern

US (0.9 %). GA sulfate can form from biogenic and anthro-

pogenic emissions other than isoprene, including glyoxal,

which is thought to be a primary source of GA sulfate (Gal-

loway et al., 2009). For this reason, GA sulfate will not be

further discussed in this study.

Isoprene SOA contribution to total OM was estimated by

assuming the OM /OC ratio of 1.6 based on recent studies

(El-Zanan et al., 2009; Simon et al., 2011; Ruthenburg et al.,

2014; Blanchard et al., 2016). On average, isoprene-derived

SOA tracers (sum of both IEPOX- and MAE/HMML-derived

SOA tracers) contributed ∼ 7 % (ranging up to ∼ 20 % at

times) of the total particulate OM mass. The average con-

tribution is lower than that measured at other sites in the SE
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Table 2. Summary of collocated measurements of meteorological variables, gaseous species, and PM2.5 constituents.

Category Condition Average SD Minimum Maximum

Meteorology Rainfall (in.) 0.1 0.2 0.0 1.4

Temp (◦C) 26.4 3.0 20.5 32.7

RH (%) 71.5 15.0 36.9 96.1

BP (mbar) 994.2 3.9 984.2 1002.4

SR (W m−2) 303.7 274.5 7.0 885.0

Trace gas (ppbv) O3 31.1 14.8 8.3 62.2

CO 208.7 72.0 99.6 422.9

SO2 0.9 0.8 0.1 3.7

NO 1.3 1.2 0.1 7.0

NO2 6.6 5.1 1.0 22.7

NOx 7.8 6.0 1.3 29.7

NOy 9.1 5.8 2.2 30.4

HNO3 0.3 0.2 0.1 1.0

NH3 1.9 0.8 0.7 4.0

PM2.5 (µg m−3) OC 7.2 3.2 1.4 14.9

EC 0.6 0.5 0.1 2.7

WSOC 4.0 1.8 0.5 7.5

SO2−
4

2.0 0.9 0.4 4.9

NO−
3

0.1 0.1 0.0 0.8

NH+
4

0.7 0.3 0.2 1.2

Aerosol pH 1.8 0.1 1.6 1.9

USA, including both rural LRK (Budisulistiorini et al., 2015;

Hu et al., 2015) and urban Atlanta, GA (Budisulistiorini et

al., 2013). The contribution of SOA tracers to OM in the cur-

rent study was estimated on the basis of the offline analy-

sis of filters, while tracer estimates in the two earlier stud-

ies were based on online Aerodyne Aerosol Chemical Spe-

ciation Monitor (ACSM)/AMS measurements. The low iso-

prene SOA /OM ratio is consistent with the low WSOC /OC

ratio reported in Sect. 3.1, suggesting a larger contribution of

primary OA or hydrophobic secondary OM originating from

anthropogenic emissions to the total OM at BHM. However,

it should be noted that total IEPOX-derived SOA mass at

BHM may actually be closer to ∼ 14 % since recent mea-

surements by the Aerodyne ACSM at LRK indicated that

tracers could only account for ∼ 50 % of the total IEPOX-

derived SOA mass resolved by the ACSM (Budisulistiorini et

al., 2015). Unfortunately, an Aerodyne ACSM or AMS was

not available at the BHM site to confirm that IEPOX-derived

SOA mass at BHM might account for 14 % (on average) of

the total OM mass.

Levoglucosan, a biomass-burning tracer, averaged 1 % of

total OM with spikes up to 8 %, the same level measured for

2-methylthreitol and (E)-2-methylbut-3-ene-1,2,4-triol (Ta-

ble 3). The ratio of average levoglucosan at BHM relative to

CTR was 5.4, suggesting significantly more biomass burning

impacting the BHM site.

IEPOX- and MAE/HMML-derived SOA tracers ac-

counted for 18 and 0.4 % of the WSOC mass, respectively

(Fig. S3b), lower than the respective contributions of 24 and

0.7 % measured at LRK (Budisulistiorini et al., 2015).

Figure 3 shows no difference for the average day and night

concentration of isoprene-derived SOA tracers, suggesting

that the majority of isoprene SOA tracers are potentially

long-lived and formed upwind. A recent study by Lopez-

Hilfiker et al. (2016) at the CTR site during the 2013 SOAS

demonstrated that isoprene-derived SOA was comprised of

effectively nonvolatile material, which could allow for this

type of SOA to be long-lived in the atmosphere. Although

2-MG and MAE-derived OS are known to form under high-

NOx conditions (Lin et al., 2013a), no correlation between

2-MG and MAE-derived OS with NOx (Table 4) is observed

at the BHM. This supports the idea that isoprene SOA trac-

ers likely formed at upwind locations and were subsequently

transported to the sampling site. Higher isoprene emissions

during the daytime and cooler nighttime temperatures do not

appear to cause any differences between daytime and night-

time isoprene-derived SOA tracer concentrations. Figures 4

and 5 show the variation of isoprene-derived SOA tracers

during intensive sampling periods. The highest concentra-

tions were usually observed in samples collected from 16:00

to 19:00, local time; however, no statistically significant dif-

ference was observed between intensive periods. This obser-

vation illustrates the importance of the higher time resolution

of the tracer data during intensive sampling periods over the

course of the campaign (Tables S2–S6). An additional conse-

quence of the intensive sampling periods was the resolution
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Table 3. Summary of isoprene-derived SOA tracers measured by GC/EI-MS and UPLC/ESI-HR-QTOFMS.

Max Mean

SOA tracers m/z Frequency of concentration concentration Isoprene SOA % of total

detection (%)a (ng m−3) (ng m−3) mass fraction (%)b OMc

Measured by GC/EI-MS

2-methylerythritold 219 99.2 1048.9 269.0 33.8 2.7

2-methylthreitold 219 100.0 388.9 107.3 13.5 1.1

(E)-2-methylbut-3-ene-1,2,4-triole 231 96.7 878.9 112.7 14.2 1.1

(Z)-2-methylbut-3-ene-1,2,4-triole 231 95.8 287.8 38.9 4.9 0.4

2-methylbut-3-ene-1,2,3-triole 231 94.2 503.3 28.9 3.6 0.3

2-methylglyceric acidd 219 93.3 35.0 10.8 1.4 0.1

cis-3-MeTHF-3,4-diold 262 22.5 98.9 6.9 0.9 0.1

trans-3-MeTHF-3,4-diold 262 10.0 137.6 8.6 1.1 0.1

IEPOX-derived dimere 333 10.0 2.2 0.0 0.0 0.0

Levoglucosand 204 100.0 922.6 98.7 – 1.0

Measured by UPLC/DAD-ESI-HR-QTOFMS

IEPOX-derived OSs

C5H11O7S−
d

215 100.0 864.9 164.5 20.7 1.6

C10H21O10S−
f

333 1.7 0.3 0.0 0.0 0.0

MAE-derived OSd

C4H7O7S− 199 100.0 35.7 7.2 1.9 0.1

GA sulfated

C2H3O6S− 155 100.0 75.2 26.2 3.3 0.3

Methylglyoxal-derived OSg

C3H5O6S− 169 97.5 10.5 2.7 0.3 0.0

Isoprene-derived OSsg

C5H7O7S− 211 97.5 5.2 1.4 0.2 0.0

C5H10NO9S− 260 90.0 3.9 0.3 0.0 0.0

C5H9N2O11S− 305 5.0 3.3 2.9 0.4 0.0

Hydroxyacetone-derived OSg

C2H3O5S− 139 30.8 2.6 0.2 0.0 0.0

a Total filters: 120.
b Mass fraction is the contribution of each species among total known isoprene-derived SOA mass detected by GC/EI-MS and UPLC/DAD-ESI-HR-QTOFMS.
c OM /OC = 1.6.
d OA tracers quantified by authentic standards.
e SOA tracers quantified by 2-methyltetrols as a surrogate standard.
f SOA tracer quantified by IEPOX-derived OS (m/z 215) as a surrogate standard.
g SOA tracers quantified by propyl sulfate as a surrogate standard.

of a significant correlation between isoprene SOA tracers and

O3, to be discussed in more detail in Sect. 3.3.2.

3.3 Influence of anthropogenic emissions on

isoprene-derived SOA

3.3.1 Effects of reactive nitrogen-containing species

During the campaign, no isoprene-derived SOA tracers, in-

cluding MAE/HMML-derived OS and 2-MG, correlated

with NOx or NOy (r2
= 0, n= 120). This is inconsistent

with the current understanding of SOA formation from iso-

prene oxidation pathways under high-NOx conditions, which

proceeds through the uptake of MAE (Lin et al., 2013a),

and, as recently suggested, HMML (Nguyen et al., 2015),

to yield 2-MG and its OS derivative. Plume age, as a ratio of

NOx :NOy , in this study was highly correlated with O3 (r2
=

0.79, n= 120), which is consistent with the relative diurnal

variation of NOx , NOy , and O3 as discussed in Sect. 3.1.

This correlation might also be explained by the photolysis

of NO2, which is abundant due to traffic at the urban ground

site, resulting in the formation of tropospheric O3. A negative

correlation coefficient (r2
= 0.22, n= 120) between plume

age and 2-MG abundance was found as a consequence of

relative diurnal variations. The peak of 2-MG was observed

in the afternoon after NOx has decreased. This correlation

leads to the hypothesis that the formation of 2-MG may be

associated with the ageing of air masses; however, further in-

vestigation is warranted. A previous study supported a major

role for NO3 in the nighttime chemistry of isoprene (Ng et

al., 2008). Correlation of IEPOX- and MAE/HMML-derived

SOA with nighttime NO2, O3, and P[NO3] were examined

in this study (Figs. 6 and 7). As shown in Fig. 6f, a moderate
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Table 4. Overall correlation (r2) of isoprene-derived SOA tracers and collocated measurements at BHM during 2013 SOAS campaign.

SOA tracers CO O3 NOx NOy SO2 NH3 SO4 NO3 NH4 OC WSOC pH

MAE/HMML-derived SOA tracers* 0.07 0.26 0.00 0.01 0.06 0.11 0.33 0.01 0.18 0.47 0.20 0.00

2-Methylglyceric acid 0.01 0.26 0.01 0.00 0.01 0.07 0.10 0.00 0.06 0.19 0.02 0.00

MAE-derived OS 0.10 0.14 0.00 0.02 0.07 0.09 0.38 0.01 0.18 0.32 0.23 0.01

IEPOX-derived SOA tracers** 0.04 0.05 0.00 0.01 0.05 0.01 0.36 0.00 0.21 0.24 0.12 0.00

2-Methylerythritol 0.00 0.16 0.03 0.02 0.01 0.00 0.30 0.02 0.18 0.18 0.19 0.00

2-Methylthreitol 0.00 0.13 0.02 0.03 0.02 0.00 0.20 0.01 0.16 0.17 0.15 0.00

(E)-2-methylbut-3-ene-1,2,4-triol 0.07 0.00 0.02 0.01 0.07 0.00 0.15 0.00 0.19 0.11 0.04 0.00

(Z)-2-methylbut-3-ene-1,2,4-triol 0.04 0.00 0.00 0.00 0.06 0.00 0.28 0.00 0.20 0.04 0.00 0.00

2-methylbut-3-ene-1,2,3-triol 0.02 0.00 0.03 0.00 0.00 0.02 0.32 0.01 0.03 0.17 0.04 0.00

IEPOX-derived OS 0.02 0.14 0.03 0.00 0.00 0.00 0.27 0.00 0.16 0.29 0.29 0.00

IEPOX dimer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Other isoprene SOA tracers

GA sulfate

C2H3O6S− 0.30 0.23 0.01 0.00 0.08 0.09 0.27 0.00 0.19 0.38 0.18 0.00

Methylglyoxal-derived OS

C3H5O6S− 0.14 0.04 0.02 0.03 0.03 0.07 0.31 0.02 0.25 0.21 0.24 0.00

Isoprene-derived OSs

C5H7O7S− 0.01 0.23 0.03 0.01 0.00 0.02 0.21 0.00 0.16 0.31 013 0.00

C5H10NO9S− 0.17 0.00 0.12 0.14 0.10 0.14 0.31 0.16 0.23 0.20 0.07 0.00

C5H9N2O11S−
∗∗∗

0.32 0.71 0.66 0.58 0.42 0.02 0.68 0.50 0.42 0.00 0.50 0.00

Hydroxyacetone-derived OS

C2H3O5S− 0.02 0.10 0.08 0.07 0.05 0.00 0.00 0.03 0.00 0.01 0.01 0.00

Other tracer

Levoglucosan 0.00 0.09 0.02 0.01 0.02 0.00 0.00 0.02 0.00 0.08 0.04 0.01

∗ Summed tracers for MAE/HMML-derived SOA.
∗∗ Summed tracers for IEPOX-derived SOA.
∗∗∗ Found only in 6 of 120 filters.

The correlations in this table are positive.

correlation between MAE/HMML-derived SOA and night-

time P[NO3] (r2
= 0.57, n= 40) was observed. The regres-

sion analysis revealed a significant correlation at the 95 %

confidence interval (p value < 0.05) (Table S7). This finding

suggests that some MAE/HMML-derived SOA may form lo-

cally from the reaction of isoprene with the NO3 radical at

night. A field study reported a peak isoprene mixing ratio

in the early evening (Starn et al., 1998) as the PBL height

decreases at night. As a result, lowering PBL heights could

concentrate the remaining isoprene, NO2, and O3 that can

continue to react during the course of the evening. 2-MG for-

mation has been reported to be NO2-dependent via the for-

mation and further oxidation of MPAN (Surratt et al., 2006;

Chan et al., 2010). Hence, decreasing PBL may be related

to nighttime MAE/HMML-derived SOA formation through

isoprene oxidation by both P[NO3] and NO2.

Although P[NO3] depends on both NO2 and O3 lev-

els, O3 correlates moderately with MAE/HMML-derived

SOA tracers during the day (r2
= 0.48, n= 75) but not at

night (r2
= 0.08, n= 45). The effect of O3 on isoprene-

derived SOA formation during daytime will be discussed fur-

ther in Sect. 3.3.2. NO2 levels correlate only weakly with

MAE/HMML-derived SOA tracers (r2
= 0.26, n= 45), in-

dicating that NO2 levels alone do not explain the moderate

correlation of P[NO3] with these tracers. To our knowledge,

the correlation of P[NO3] with high-NOx SOA tracers has

not been observed in previous field studies, indicating that

further work is needed to examine the potential role of night-

time NO3 radicals in forming these SOA tracers.

As shown in Fig. 7f, IEPOX-derived SOA was weakly

correlated (r2
= 0.26, n= 40) with nighttime P[NO3]. The

correlation appears to be driven by the data at the low end

of the scale and could therefore be misleading. However,

Schwantes et al. (2015) demonstrated that NO3-initiated ox-

idation of isoprene yields isoprene nitrooxy hydroperoxides

(INEs) through the nighttime reaction of RO2 + HO2, which

upon further oxidation yielded isoprene nitrooxy hydroxye-

poxides (INHEs). The INHEs undergo reactive uptake onto

acidic sulfate aerosol to yield SOA constituents similar to

those of IEPOX-derived SOA. The present study raises the

Atmos. Chem. Phys., 16, 4897–4914, 2016 www.atmos-chem-phys.net/16/4897/2016/



W. Rattanavaraha et al.: Assessing the impact of anthropogenic pollution 4907

Figure 4. The box-and-whisker plot (n= 15) of (a) MAE/HMML-

derived SOA, (b) MAE/HMML-OS, and (c) 2-MG. These demon-

strate that the statistical distribution of SOA abundance during each

intensive sampling period. No significant variation amongst inten-

sive samples was observed.

possibility that a fraction of IEPOX-derived SOA comes

from NO3-initiated oxidation of isoprene at night. The work

of Ng et al. (2008), which only observed SOA as a conse-

quence of the RO2 + RO2 and RO2 + NO3 reactions dom-

inating the fate of the RO2 radicals, does not explain the

weak association between IEPOX-derived SOA tracers and

P[NO3] which we observe in this study. It is now thought

that RO2 + HO2 should dominate the fate of RO2 radicals in

the atmosphere (Paulot et al., 2009; Schwantes et al., 2015).

3.3.2 Effect of O3

During the daytime, O3 was moderately correlated

(r2
= 0.48, n= 75) with total MAE/HMML-derived

SOA (Fig. 6b). This correlation was stronger (r2
= 0.72,

n= 30, p value < 0.05; Table S7) when filters taken during

regular daytime sampling periods are considered, suggesting

that the formation of MACR (a precursor to MAE and

HMML) (Lin et al., 2013b; Nguyen et al., 2015) was

enhanced by oxidation of isoprene by O3 (Kamens et al.,

1982). O3 was not correlated (r2
= 0.08, n= 45) with

MAE/HMML-derived SOA at night (Fig. 6e). The latter

finding is consistent with the absence of photolysis to drive

the production of O3. However, residual O3 may play an

Figure 5. The box-and-whisker plot (n= 15) of (a) IEPOX-derived

SOA, (b) IEPOX-OS, (c) 2-methyltetrols, and (d) (E)-2-methylbut-

3-ene-1,2,4-triol. These demonstrate that the statistical distribution

of SOA abundance during each intensive sampling period. No sig-

nificant variation amongst intensive samples was observed.

important role at night to form MAE/HMML-derived SOA

via the P[NO3] pathway discussed in Sect. 3.3.1.

O3 was not correlated (r2
= 0.10, n= 75) with IEPOX-

derived SOA during daytime (Fig. 7b) but weakly corre-

lated with 2-methylerythritol (r2
= 0.25, n= 30) as shown

in Table S2, especially during Intensive 3 sampling peri-

ods (r2
= 0.34, n= 15; Table S5). An important observation

with regard to this result is that no correlation has been found

between O3 and 2-methyltetrols (r2<0.01) in previous field

studies (Lin et al., 2013b; Budisulistiorini et al., 2015). Iso-

prene ozonolysis yielded 2-methyltetrols in chamber studies

in the presence of acidified sulfate aerosol (Riva et al., 2016),

but C5-alkene-triols were not formed by this pathway. The

greatest abundance of isoprene-derived SOA tracers in day-

time samples was generally observed in Intensive 3 samples;

however, there was no statistically significant difference ob-

served between intensive samples. The moderate correlation

(r2
= 0.34, n= 15, p value < 0.05) between O3 and the 2-

methyltetrols observed in Intensive 3 samples occurred when

O3 reached maximum levels, suggesting that ozonolysis of

isoprene plays a role in 2-methyltetrol formation. Lack of

correlation between O3 and C5-alkene triols during Intensive
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Figure 6. Correlation of MAE/HMML-derived SOA tracers with

(a) daytime NO2, (b) daytime O3, (c) daytime P[NO3], (d) night-

time NO2, (e) nighttime O3, and (f) nighttime P[NO3]. Nighttime

P[NO3] correlation suggests that NO3 radical chemistry could ex-

plain some fraction of the MAE/HMML-derived SOA tracer con-

centrations.

3 sampling (r2
= 0.10, n= 15) supports this contention. Pre-

vious studies (Nguyen et al., 2010; Inomata et al., 2014) pro-

posed that SOA formation from isoprene ozonolysis occurs

from stabilized Criegee intermediates (sCIs) that can fur-

ther react in the gas phase to form higher molecular weight

products that subsequently partition to the aerosol phase to

make SOA. Recent work by Riva et al. (2016) systemati-

cally demonstrated that isoprene ozonolysis in the presence

of wet acidic aerosol yields 2-methyltetrols and organosul-

fates unique to this process. Notably, no C5-alkene triols

were observed, which are known to form simultaneously

with 2-methyltetrols if IEPOX multiphase chemistry is in-

volved (Lin et al., 2012). Riva et al. (2016) tentatively pro-

posed that hydroperoxides formed in the gas phase from iso-

prene ozonolysis potentially partition to wet acidic sulfate

aerosols and hydrolyze to yield 2-methyltetrols as well as

the unique set of organosulfates observed (Riva et al., 2016).

Additional work using authentic hydroperoxide standards is

needed to validate this tentative hypothesis.

3.3.3 Effect of particle SO2−
4

SO2−
4 was moderately correlated with IEPOX-derived SOA

(r2
= 0.36, n= 117) and MAE/HMML-derived SOA (r2

=

0.33, n= 117) at the 95 % confidence interval as shown in

Table S7. The strength of the correlations was consistent

with studies at other sites across the southeastern US (Bud-

Figure 7. Correlation of IEPOX-derived SOA tracers with (a) day-

time NO2, (b) daytime O3, (c) daytime P[NO3], (d) nighttime NO2,

(e) nighttime O3, and (f) nighttime P[NO3]. Nighttime P[NO3] cor-

relation suggests that NO3 radical chemistry could explain some

fraction of the IEPOX-derived SOA tracer concentrations. The con-

tribution of nighttime P[NO3] to IEPOX-derived SOA would be

smaller than MAE/HMML-derived SOA due to the weaker corre-

lation.

isulistiorini et al., 2013, 2015; Lin et al., 2013b; Xu et al.,

2015). Aerosol surface area provided by acidic SO2−
4 has

been demonstrated to control the uptake of isoprene-derived

epoxides (Lin et al., 2012; Gaston et al., 2014; Nguyen et al.,

2014; Riedel et al., 2015).

Furthermore, SO2−
4 is proposed to enhance IEPOX-

derived SOA formation by providing particle water (H2Optcl)

required for IEPOX uptake (Xu et al., 2015). Aerosol

SO2−
4 also promotes acid-catalyzed ring-opening reactions of

IEPOX by H+, proton donors such as NH+4 , and nucleophiles

(e.g., H2O, SO2−
4 , or NO−3 ) (Surratt et al., 2010; Nguyen et

al., 2014). Since SO2−
4 tends to drive both particle water and

acidity (Fountoukis and Nenes, 2007), the extent to which

each influences isoprene SOA formation during field stud-

ies remains unclear. Multivariate linear regression analysis

on SOAS data from the CTR site and the Southeastern Cen-

ter for Air Pollution and Epidemiology (SCAPE) data set re-

vealed a statistically significant positive linear relationship

between SO2−
4 and the isoprene (IEPOX) OA factor resolved

by positive matrix factorization (PMF). On the basis of this

analysis the abundance of SO2−
4 was concluded to control the

isoprene SOA formation over broad areas of the southeast-

ern US directly (Xu et al., 2015), consistent with previous

reports (Lin et al., 2013; Budisulistiorini et al., 2013, 2015).

Another potential pathway for SO2−
4 levels to enhance iso-

prene SOA formation is through salting-in effects, through
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which the solubility of polar organic compounds would be

increased in aqueous solution with increasing salt concentra-

tion (Xu et al., 2015). However, systematic investigations of

this effect are lacking and further studies are warranted.

3.3.4 Effect of aerosol acidity

The aerosol at BHM was acidic throughout the SOAS cam-

paign (pH range 1.60–1.94, average 1.76) in accordance with

a study by Guo et al. (2015) that found aerosol pH ranging

from 0 to 2 throughout the southeastern US. However, no cor-

relation of pH with isoprene SOA formation was observed at

BHM, also consistent with previous findings using the ther-

modynamic models to estimate aerosol acidity in many field

sites across the southeastern US region, including YRK (Lin

et al., 2013b), JST (Budisulistiorini et al., 2013), and LRK

(Budisulistiorini et al., 2015). However, it is important to

point out that the lack of correlation between SOA tracers

and acidity may stem from the small variations in aerosol

acidity and the fact that aerosols are very acidic throughout

the campaign. Gaston et al. (2014) and Riedel et al. (2015)

recently demonstrated that an aerosol pH < 2 at atmospheri-

cally relevant aerosol surface areas would allow the reactive

uptake of IEPOX onto acidic (wet) sulfate aerosol surfaces

to be competitive with other loss processes (e.g., deposition

and reaction of IEPOX with OH). In fact, it was estimated

that under such conditions IEPOX would have a lifetime of

∼ 5 h. The constant presence of acidic aerosol has also been

observed at other field sites in the southeastern US (Bud-

isulistiorini et al., 2013, 2015; Xu et al., 2015), supporting the

conclusion that acidity is not the limiting variable in forming

isoprene SOA.

3.4 Comparison among different sampling sites during

2013 SOAS campaign

Table 5 summarizes the mean concentration and contri-

bution of each isoprene SOA tracer at BHM, CTR, and

LRK. BHM is an industrial–residential area; LRK and CTR

are rural areas, although LRK is influenced by a diur-

nal upslope–downslope cycle of air from an urban local-

ity (Knoxville) (Tanner et al., 2005). IEPOX-derived SOA

(isoprene SOA produced under low-NOx conditions) was

predominant at all three sites during the SOAS campaign,

while MAE/HMML-derived SOA (isoprene SOA produced

under high-NOx conditions) constituted a minor contribu-

tion. The average ratio of 2-methyltetrols to C5-alkene tri-

ols at BHM was 2.2, nearly double that of CTR (1.3) and

LRK (1.1). Although 2-methyltetrols and C5-alkene triols

are considered to form readily from the acid-catalyzed reac-

tive uptake and multiphase chemistry of IEPOX (Edney et

al., 2005; Surratt et al., 2006), Riva et al. (2016) recently

demonstrated that only 2-methyltetrols can be formed via

isoprene ozonolysis in the presence of acidic sulfate aerosol.

The detailed mechanism explaining isoprene ozonolysis is

still unclear, but acid-catalyzed heterogeneous reaction with

organic peroxides or H2O2 was considered to be a possi-

ble route for 2-methyltetrol formation. The higher levels of

the 2-methyltetrols observed at the urban BHM site indi-

cate a likely competition between the IEPOX uptake and

ozonolysis pathways. Together, these findings suggest that

urban O3 may play an important role in forming the 2-

methyltetrols observed at BHM. There were notable trends

found among the three sites: (1) average C5-alkene triol

concentrations were higher at CTR (214.1 ng m−3) than at

BHM (169.7 ng m−3) and LRK (144.4 ng m−3); (2) aver-

age isomeric 3-MeTHF-diol concentrations were lower at

CTR (0.2 ng m−3) than the BHM (15.4 ng m−3) or LRK

(4.4 ng m−3) sites. Except for the 2-methyltetrols, reasons for

the differences observed for the other tracers between sites

remain unclear and warrant future investigations.

4 Conclusions

This study examined isoprene SOA tracers in PM2.5 sam-

ples collected at the BHM ground site during the 2013 SOAS

campaign and revealed the complexity and potential multi-

tude of chemical pathways leading to isoprene SOA forma-

tion. Isoprene SOA contributed up to ∼ 20 % (∼ 7 % on av-

erage) of total OM mass. IEPOX-derived SOA tracers were

responsible for 92.45 % of the total quantified isoprene SOA

tracer mass, with 2-methyltetrols being the major component

(47 %). Differences in the relative contributions of IEPOX-

and MAE/HMML-derived SOA tracers at BHM and the ru-

ral CTR and LRK sites (Budisulistiorini et al., 2015) during

the 2013 SOAS campaign support suggestions that anthro-

pogenic emissions affect isoprene SOA formation. The cor-

relation between 2-methyltetrols and O3 at BHM is in ac-

cordance with work by Riva et al. (2016), demonstrating a

potential role of O3 in generating isoprene-derived SOA in

addition to the currently accepted IEPOX multiphase path-

way.

At BHM, the statistical correlation of particulate SO2−
4

with IEPOX- (r2
= 0.36, n= 117, p<0.05) and MAE-

derived SOA tracers (r2
= 0.33, n= 117, p<0.05) suggests

that SO2−
4 plays a role in isoprene SOA formation. Although

none of the isoprene-derived SOA tracers correlated with

gas-phase NOx and NOy , MAE/HMML-derived SOA trac-

ers correlated with nighttime P[NO3] (r2
= 0.57, n= 40),

indicating that NO3 may affect local MAE/HMML-derived

SOA formation. Nighttime P[NO3] was weakly correlated

(r2
= 0.26, n= 40) with IEPOX-derived SOA tracers, lend-

ing some support to recent work by Schwantes et al. (2015)

showing that isoprene + NO3 yields INHEs that can un-

dergo reactive uptake to yield IEPOX tracers and contribute

to IEPOX-derived SOA tracer loadings. The correlation of

daytime O3 with MAE/HMML-derived SOA and with 2-

methyltetrols offers a new insight into influences on isoprene

SOA formation. Notably, O3 has not been reported to cor-
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Table 5. Summary of isoprene-derived SOA tracers from the three SOAS ground sites: BHM, CTR, and LRK.

SOA tracers Urban Rural

BHM CTR LRK

Mean Average Mean Average Mean Average

(ng m−3) fraction of (ng m−3) fraction of (ng m−3) fraction of

detected detected detected

tracers (%) tracers (%) tracers (%)

MAE/HMML-derived SOA

MAE/HMML-derived OS 7.2 1.1 10.2 1.3 8.2 1.8

2-Methylglyceric acid 10.4 1.7 5.1 0.7 7.5 1.6

IEPOX-derived SOA

IEPOX-derived OS 164.5 24.3 207.1 26.8 139.2 30.3

IEPOX-derived dimer OS 0.04 0.00 0.7 0.1 1.1 0.2

2-Methylerythritol 266.7 37.9 204.8 26.5 120.7 26.3

2-Methylthreitol 107.3 15.8 73.7 9.5 42.4 9.2

(E)-2-Methylbut-3-ene-1,2,4-

triol

109.0 12.3 137.3 17.8 98.8 21.5

(Z)-2-Methylbut-3-ene-1,2,4-

triol

37.3 4.1 50.7 6.6 29.1 6.1

2-Methylbut-3-ene-1,2,3-triol 23.4 2.5 26.1 3.4 16.5 3.6

trans-3-MeTHF-3,4-diol 8.6 1.0 0.0 0.0 2.7 0.6

cis-3-MeTHF-3,4-diol 6.8 1.0 0.2 0.0 1.7 0.4

relate with isoprene-derived SOA tracers in previous field

studies (Lin et al., 2013b; Budisulistiorini et al., 2015). In

this study, the strong correlation (r2
= 0.72, n= 30) at the

95 % confidence interval of O3 with MAE/HMML-derived

SOA tracers during the regular daytime sampling schedule

indicates that O3 likely oxidizes some isoprene to MACR as

a precursor of 2-MG at BHM. The weak correlation (r2
=

0.16, n= 75) between O3 and 2-methyltetrols early in the

day as well as the better correlation (r2
= 0.34, n= 15) later

in the day (Intensive 3, 16:00–19:00 local time) are con-

sistent with recent laboratory studies demonstrating that 2-

methyltetrols can be formed via isoprene ozonolysis in the

presence of acidified sulfate aerosol (Riva et al., 2016).

Although urban O3 and nighttime P[NO3] may have a

role in local formation of MAE/HMML- and IEPOX-derived

SOA tracers at BHM, this does not appear to explain the ma-

jority of the SOA tracers, since no significant day–night vari-

ation of the entire group of tracers was observed during the

campaign. The majority of IEPOX-derived SOA was likely

formed when isoprene SOA precursors (IEPOX) were gen-

erated upwind and transported to the BHM site. Wind di-

rections during the campaign are consistent with long-range

transport of isoprene SOA precursors from southwest of the

site, which is covered by forested areas. The absence of a cor-

relation of aerosol acidity with MAE/HMML- and IEPOX-

derived SOA tracers indicates that acidity is not the limit-

ing variable that controls the formation of these compounds.

Because the aerosols are acidic (campaign average aerosol

pH of 1.8), the lack of correlation between SOA tracers and

acidity may stem from the nearly invariant aerosol acidity

throughout the campaign. Hence, despite laboratory studies

demonstrating that aerosol acidity can enhance isoprene SOA

formation (Surratt et al., 2007, 2010; Lin et al., 2012), the

effect may not be significant in the southeastern US during

the summer months due to the constant acidity of aerosols.

Future work should examine how well current models can

predict the isoprene SOA levels observed during this study,

especially in the presence of fresh urban emissions. Further-

more, explicit models are now available to predict the iso-

prene SOA tracers measured here (McNeill et al., 2012; Pye

et al., 2013), which will allow the modeling community to

test the current parameterizations that are used to capture

the enhancing effect of anthropogenic pollutants on isoprene-

derived SOA formation. In addition, the significant correla-

tions of isoprene-derived SOA tracers with P[NO3] observed

during this study indicate a need to better understand night-

time chemistry of isoprene. Lastly, although O3 appears to

have an enhancing effect on isoprene-derived SOA tracers,

the intermediates are unknown. Hydroperoxides suggested

by Riva et al. (2016) may be key, but chamber experiments

with authentic precursors are needed to test this hypothesis.

The Supplement related to this article is available online

at doi:10.5194/acp-16-4897-2016-supplement.

Atmos. Chem. Phys., 16, 4897–4914, 2016 www.atmos-chem-phys.net/16/4897/2016/

http://dx.doi.org/10.5194/acp-16-4897-2016-supplement


W. Rattanavaraha et al.: Assessing the impact of anthropogenic pollution 4911

Acknowledgements. This work was funded by the US Environ-

mental Protection Agency (EPA) through grant number 835404.

The contents of this publication are solely the responsibility of the

authors and do not necessarily represent the official views of the

US EPA. Further, the US EPA does not endorse the purchase of

any commercial products or services mentioned in the publication.

The authors would also like to thank the Electric Power Research

Institute (EPRI) for their support. This study was supported in

part by the National Oceanic and Atmospheric Administration

(NOAA) Climate Program Office’s AC4 program, award number

NA13OAR4310064. The authors thank the Camille and Henry

Dreyfus Postdoctoral Fellowship Program in Environmental Chem-

istry for their financial support. The authors thank Louisa Emmons

and Christoph Knote for their assistance with chemical forecasts

made available during the SOAS campaign. We would like to thank

Annmarie Carlton, Joost deGouw, Jose Jimenez, and Allen Gold-

stein for helping to organize the SOAS campaign and coordinating

communication between ground sites. UPLC/ESI-HR-Q-TOFMS

analyses were conducted in the UNC-CH Biomarker Mass Facility

located within the Department of Environmental Sciences and

Engineering, which is a part of the UNC-CH Center for Envi-

ronmental Health and Susceptibility supported by the National

Institute for Environmental Health Sciences (NIEHS), grant

number 5P20-ES10126. WSOC measurements at the University

of Iowa were supported through EPA STAR grant 8354101. The

authors thank Theran Riedel for useful discussions. We also thank

SCG Chemicals Co., Ltd., Siam Cement Group, Thailand, for the

full support for W. Rattanavaraha attending UNC, Chapel Hill.

Edited by: A. Laskin

References

Birch, M. E. and Cary, R. A.: Elemental carbon-based method for

occupational monitoring of particulate diesel exhaust: methodol-

ogy and exposure issues, Analyst, 121, 1183–1190, 1996.

Blanchard, C. L., Hidy, G. M., Shaw, S., Baumann, K., and Edger-

ton, E. S.: Effects of emission reductions on organic aerosol in

the southeastern United States, Atmos. Chem. Phys., 16, 215–

238, doi:10.5194/acp-16-215-2016, 2016.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G.,

Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., and Lohmann,

U.: Clouds and aerosols, in: Climate change 2013: the physi-

cal science basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate

Change, Cambridge University Press, 571–657, 2013.

Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth,

W. J., Baumann, K., Edgerton, E. S., Shaw, S. L., Knipping, E.

M., Worsnop, D. R., and Jayne, J. T.: Real-time continuous char-

acterization of secondary organic aerosol derived from isoprene

epoxydiols in downtown Atlanta, Georgia, using the Aerodyne

Aerosol Chemical Speciation Monitor, Environ. Sci. Technol.,

47, 5686–5694, 2013.

Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y.,

Liu, Y. J., McKinney, K. A., Martin, S. T., McNeill, V. F., Pye,

H. O. T., Nenes, A., Neff, M. E., Stone, E. A., Mueller, S.,

Knote, C., Shaw, S. L., Zhang, Z., Gold, A., and Surratt, J. D.:

Examining the effects of anthropogenic emissions on isoprene-

derived secondary organic aerosol formation during the 2013

Southern Oxidant and Aerosol Study (SOAS) at the Look Rock,

Tennessee ground site, Atmos. Chem. Phys., 15, 8871–8888,

doi:10.5194/acp-15-8871-2015, 2015.

Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Sec-

ondary Organic Aerosol (SOA) formation from isoprene, At-

mos. Chem. Phys., 9, 4987–5005, doi:10.5194/acp-9-4987-2009,

2009.

Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar,

G., Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model repre-

sentation of secondary organic aerosol in CMAQv4. 7, Environ.

Sci. Technol., 44, 8553–8560, 2010a.

Carlton, A. G., Pinder, R. W., Bhave, P. V., and Pouliot, G. A.:

To what extent can biogenic SOA be controlled?, Environ. Sci.

Technol., 44, 3376–3380, 2010b.

Chan, A. W. H., Chan, M. N., Surratt, J. D., Chhabra, P. S., Loza,

C. L., Crounse, J. D., Yee, L. D., Flagan, R. C., Wennberg, P. O.,

and Seinfeld, J. H.: Role of aldehyde chemistry and NOx concen-

trations in secondary organic aerosol formation, Atmos. Chem.

Phys., 10, 7169–7188, doi:10.5194/acp-10-7169-2010, 2010.

Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashyn-

ska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., and Artaxo, P.:

Formation of secondary organic aerosols through photooxidation

of isoprene, Science, 303, 1173–1176, 2004.

Ding, X., Zheng, M., Yu, L., Zhang, X., Weber, R. J., Yan, B., Rus-

sell, A. G., Edgerton, E. S., and Wang, X.: Spatial and seasonal

trends in biogenic secondary organic aerosol tracers and water-

soluble organic carbon in the southeastern United States, Envi-

ron. Sci. Technol., 42, 5171–5176, 2008.

Edgerton, E. S., Hartsell, B. E., Saylor, R. D., Jansen, J. J., Hansen,

D. A., and Hidy, G. M.: The Southeastern Aerosol Research and

Characterization Study, part 3: Continuous measurements of fine

particulate matter mass and composition, J. Air Waste Manag.

Assoc., 56, 1325–1341, 2006.

Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M.,

Offenberg, J. H., Wang, W., and Claeys, M.: Formation of 2-

methyl tetrols and 2-methylglyceric acid in secondary organic

aerosol from laboratory irradiated isoprene/NOX/SO2/air mix-

tures and their detection in ambient PM2.5 samples collected

in the eastern United States, Atmos. Environ., 39, 5281–5289,

doi:10.1016/j.atmosenv.2005.05.031, 2005.

El-Zanan, H. S., Zielinska, B., Mazzoleni, L. R., and Hansen, D. A.:

Analytical determination of the aerosol organic mass-to-organic

carbon ratio, J. Air Waste Manag. Assoc., 59, 58–69, 2009.

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister,

G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D.,

Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,

Baughcum, S. L., and Kloster, S.: Description and evaluation of

the Model for Ozone and Related chemical Tracers, version 4

(MOZART-4), Geosci. Model Dev., 3, 43–67, doi:10.5194/gmd-

3-43-2010, 2010.

Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J.

E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam,

R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J.

O.: Incremental testing of the Community Multiscale Air Quality

(CMAQ) modeling system version 4.7, Geosci. Model Dev., 3,

205–226, doi:10.5194/gmd-3-205-2010, 2010.

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computa-

tionally efficient thermodynamic equilibrium model for K+-

www.atmos-chem-phys.net/16/4897/2016/ Atmos. Chem. Phys., 16, 4897–4914, 2016

http://dx.doi.org/10.5194/acp-16-215-2016
http://dx.doi.org/10.5194/acp-15-8871-2015
http://dx.doi.org/10.5194/acp-9-4987-2009
http://dx.doi.org/10.5194/acp-10-7169-2010
http://dx.doi.org/10.1016/j.atmosenv.2005.05.031
http://dx.doi.org/10.5194/gmd-3-43-2010
http://dx.doi.org/10.5194/gmd-3-43-2010
http://dx.doi.org/10.5194/gmd-3-205-2010


4912 W. Rattanavaraha et al.: Assessing the impact of anthropogenic pollution

Ca2+-Mg2+-NH+
4

-Na+-SO2−
4

-NO−
3

-Cl−-H2O aerosols, At-

mos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007,

2007.

Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Van Reken,

T., Fischer, M., Matías, E., Moya, M., Farmer, D., and Cohen,

R. C.: Thermodynamic characterization of Mexico City aerosol

during MILAGRO 2006, Atmos. Chem. Phys., 9, 2141–2156,

doi:10.5194/acp-9-2141-2009, 2009.

Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D.,

Flagan, R. C., Seinfeld, J. H., and Keutsch, F. N.: Glyoxal up-

take on ammonium sulphate seed aerosol: reaction products and

reversibility of uptake under dark and irradiated conditions, At-

mos. Chem. Phys., 9, 3331–3345, doi:10.5194/acp-9-3331-2009,

2009.

Gómez-González, Y., Surratt, J. D., Cuyckens, F., Szmigielski, R.,

Vermeylen, R., Jaoui, M., Lewandowski, M., Offenberg, J. H.,

Kleindienst, T. E., Edney, E. O., Blockhuys, F., Van Alsenoy, C.,

Maenhaut, W., and Claeys, M.: Characterization of organosul-

fates from the photooxidation of isoprene and unsaturated fatty

acids in ambient aerosol using liquid chromatography/(-) electro-

sprayionization massspectrometry, J. Mass Spectrom.,43, 371–

382, 2008.

Graham, R. A. and Johnston, H. S.: The photochemistry of the ni-

trate radical and the kinetics of the nitrogen pentoxide-ozone sys-

tem, J. Phys. Chem., 82, 254–268, 1978.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T.,

Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions

of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an

extended and updated framework for modeling biogenic emis-

sions, Geosci. Model Dev., 5, 1471–1492, doi:10.5194/gmd-5-

1471-2012, 2012.

Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A.

L.: Laboratory investigation of photochemical oxidation of or-

ganic aerosol from wood fires 1: measurement and simulation of

organic aerosol evolution, Atmos. Chem. Phys., 9, 1263–1277,

doi:10.5194/acp-9-1263-2009, 2009.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simp-

son, D., Claeys, M., Dommen, J., Donahue, N. M., George,

C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoff-

mann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L.,

Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th.

F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,

Szmigielski, R., and Wildt, J.: The formation, properties and im-

pact of secondary organic aerosol: current and emerging issues,

Atmos. Chem. Phys., 9, 5155–5236, doi:10.5194/acp-9-5155-

2009, 2009.

Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kan-

dasamy, N., Hidy, G. M., and Blanchard, C. L.: The Southeastern

aerosol research and characterization study: part 1 – overview, J.

Air Waste Manag.Assoc., 53, 1460–1471, 2003.

Henze, D. K., Seinfeld, J. H., and Shindell, D. T.: Inverse model-

ing and mapping US air quality influences of inorganic PM2.5

precursor emissions using the adjoint of GEOS-Chem, At-

mos. Chem. Phys., 9, 5877–5903, doi:10.5194/acp-9-5877-2009,

2009.

Herron, J. T. and Huie, R. E.: Rate constants for the reactions of

ozone with ethene and propene, from 235.0 to 362.0. deg. K, J.

Phys. Chem., 78, 2085–2088, 1974.

Hu, W. W., Campuzano-Jost, P., Palm, B. B., Day, D. A., Ortega,

A. M., Hayes, P. L., Krechmer, J. E., Chen, Q., Kuwata, M.,

Liu, Y. J., de Sá, S. S., McKinney, K., Martin, S. T., Hu, M.,

Budisulistiorini, S. H., Riva, M., Surratt, J. D., St. Clair, J. M.,

Isaacman-Van Wertz, G., Yee, L. D., Goldstein, A. H., Carbone,

S., Brito, J., Artaxo, P., de Gouw, J. A., Koss, A., Wisthaler, A.,

Mikoviny, T., Karl, T., Kaser, L., Jud, W., Hansel, A., Docherty,

K. S., Alexander, M. L., Robinson, N. H., Coe, H., Allan, J. D.,

Canagaratna, M. R., Paulot, F., and Jimenez, J. L.: Characteri-

zation of a real-time tracer for isoprene epoxydiols-derived sec-

ondary organic aerosol (IEPOX-SOA) from aerosol mass spec-

trometer measurements, Atmos. Chem. Phys., 15, 11807–11833,

doi:10.5194/acp-15-11807-2015, 2015.

Inomata, S., Sato, K., Hirokawa, J., Sakamoto, Y., Tanimoto, H.,

Okumura, M., Tohno, S., and Imamura, T.: Analysis of secondary

organic aerosols from ozonolysis of isoprene by proton trans-

fer reaction mass spectrometry, Atmos. Environ., 97, 397–405,

2014.

Kamens, R., Gery, M., Jeffries, H., Jackson, M., and Cole, E.:

Ozone-isoprene reactions: product formation and aerosol poten-

tial, Int. J. Chem. Kinet., 14, 955–975, 1982.

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener,

F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A.,

Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi,

S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E.

L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson,

J.: Organic aerosol and global climate modelling: a review, At-

mos. Chem. Phys., 5, 1053–1123, doi:10.5194/acp-5-1053-2005,

2005.

Karambelas, A., Pye, H. O., Budisulistiorini, S. H., Surratt, J. D.,

and Pinder, R. W.: Contribution of isoprene epoxydiol to urban

organic aerosol: evidence from modeling and measurements, En-

viron. Sci. Technol. Lett., 1, 278–283, 2014.

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld,

J. H.: Secondary organic aerosol formation from isoprene pho-

tooxidation under high-NOx conditions, Geophys. Res. Lett., 32,

doi:10.1029/2005GL023637, 2005.

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Se-

infeld, J. H.: Secondary Organic Aerosol Formation from Iso-

prene Photooxidation, Environ. Sci. Technol., 40, 1869–1877,

doi:10.1021/es0524301, 2006.

Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G.,

Wennberg, P. O., St Clair, J. M., Crounse, J. D., Wisthaler, A.,

and Mikoviny, T.: Airborne measurements of organosulfates over

the continental US, J. Geophys. Res. A., 120, 2990–3005, 2015.

Lin, Y.-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini,

S. H., Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton,

E. S., and Kleindienst, T. E.: Isoprene epoxydiols as precursors

to secondary organic aerosol formation: acid-catalyzed reactive

uptake studies with authentic compounds, Environ. Sci. Technol.,

46, 250–258, 2012.

Lin, Y.-H., Zhang, H., Pye, H. O., Zhang, Z., Marth, W. J., Park, S.,

Arashiro, M., Cui, T., Budisulistiorini, S. H., and Sexton, K. G.:

Epoxide as a precursor to secondary organic aerosol formation

from isoprene photooxidation in the presence of nitrogen oxides,

P. Natl. Acad. Sci., 110, 6718–6723, 2013a.

Lin, Y.-H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Sur-

ratt, J. D.: Investigating the influences of SO2 and NH3 levels on

isoprene-derived secondary organic aerosol formation using con-

Atmos. Chem. Phys., 16, 4897–4914, 2016 www.atmos-chem-phys.net/16/4897/2016/

http://dx.doi.org/10.5194/acp-7-4639-2007
http://dx.doi.org/10.5194/acp-9-2141-2009
http://dx.doi.org/10.5194/acp-9-3331-2009
http://dx.doi.org/10.5194/gmd-5-1471-2012
http://dx.doi.org/10.5194/gmd-5-1471-2012
http://dx.doi.org/10.5194/acp-9-1263-2009
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-9-5155-2009
http://dx.doi.org/10.5194/acp-9-5877-2009
http://dx.doi.org/10.5194/acp-15-11807-2015
http://dx.doi.org/10.5194/acp-5-1053-2005
http://dx.doi.org/10.1029/2005GL023637
http://dx.doi.org/10.1021/es0524301


W. Rattanavaraha et al.: Assessing the impact of anthropogenic pollution 4913

ditional sampling approaches, Atmos. Chem. Phys., 13, 8457–

8470, doi:10.5194/acp-13-8457-2013, 2013b.

Lin, Y.-H., Budisulistiorini, S. H., Chu, K., Siejack, R. A., Zhang,

H., Riva, M., Zhang, Z., Gold, A., Kautzman, K. E., and Surratt,

J. D.: Light-absorbing oligomer formation in secondary organic

aerosol from reactive uptake of isoprene epoxydiols, Environ.

Sci. Technol., 48, 12012–12021, 2014.

Lopez-Hilfiker, F. D., Mohr, C., D’Ambro, E. L., Lutz, A., Riedel,

T. P., Gaston, C. J., Iyer, S., Zhang, Z., Gold, A., Surratt, J. D.,

and Lee, B. H.: Molecular Composition and Volatility of Organic

Aerosol in the Southeastern US: Implications for IEPOX Derived

SOA, Environ. Sci. Technol., 50, 2200–2209, 2016.

McNeill, V. F.: Aqueous organic chemistry in the atmosphere:

Sources and chemical processing of organic aerosols, Environ.

Sci. Technol., 49, 1237–1244, 2015.

McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell,

N. J., Sumner, A. J., and Barakat, J. M.: Aqueous-phase sec-

ondary organic aerosol and organosulfate formation in atmo-

spheric aerosols: a modeling study, Environ. Sci. Technol., 46,

8075–8081, 2012.

Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new ther-

modynamic equilibrium model for multiphase multicomponent

inorganic aerosols, Aqua. Geo., 4, 123–152, 1998.

Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P.

S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P.

O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol

(SOA) formation from reaction of isoprene with nitrate radicals

(NO3), Atmos. Chem. Phys., 8, 4117–4140, doi:10.5194/acp-8-

4117-2008, 2008.

Nguyen, T. B., Bateman, A. P., Bones, D. L., Nizkorodov, S. A.,

Laskin, J., and Laskin, A.: High-resolution mass spectrometry

analysis of secondary organic aerosol generated by ozonolysis of

isoprene, Atmos. Environ., 44, 1032–1042, 2010.

Nguyen, T. B., Coggon, M. M., Bates, K. H., Zhang, X., Schwantes,

R. H., Schilling, K. A., Loza, C. L., Flagan, R. C., Wennberg,

P. O., and Seinfeld, J. H.: Organic aerosol formation from

the reactive uptake of isoprene epoxydiols (IEPOX) onto non-

acidified inorganic seeds, Atmos. Chem. Phys., 14, 3497–3510,

doi:10.5194/acp-14-3497-2014, 2014.

Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H.,

Zhang, X., Kjaergaard, H. G., Surratt, J. D., Lin, P., Laskin, A.,

and Seinfeld, J. H.: Mechanism of the hydroxyl radical oxidation

of methacryloyl peroxynitrate (MPAN) and its pathway toward

secondary organic aerosol formation in the atmosphere, Phys.

Chem. Chem. Phys., 17, 17914–17926, 2015.

Noziére, B., Kalberer, M., Claeys, M., Allan, J., D’Anna, B., Dece-

sari, S., Finessi, E., Glasius, M., Grgić, I., and Hamilton, J. F.:
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