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Abstract. Vertical profiles of aerosol particle optical proper-

ties were explored in a case study near the San Pietro Capofi-

ume (SPC) ground station during the PEGASOS Po Val-

ley campaign in the summer of 2012. A Zeppelin NT air-

ship was employed to investigate the effect of the dynamics

of the planetary boundary layer at altitudes between ∼ 50

and 800 m above ground. Determined properties included the

aerosol particle size distribution, the hygroscopic growth fac-

tor, the effective index of refraction and the light absorption

coefficient. The first three parameters were used to retrieve

the light scattering coefficient. Simultaneously, direct mea-

surements of both the scattering and absorption coefficient

were carried out at the SPC ground station. Additionally,

a single wavelength polarization diversity elastic lidar sys-

tem provided estimates of aerosol extinction coefficients us-

ing the Klett method to accomplish the inversion of the sig-

nal, for a vertically resolved comparison between in situ and

remote-sensing results. Note, however, that the comparison

was for the most part done in the altitude range where the

overlap function is incomplete and accordingly uncertainties

are larger. First, the airborne results at low altitudes were val-

idated with the ground measurements. Agreement within ap-

proximately±25 and±20 % was found for the dry scattering

and absorption coefficient, respectively. The single scattering

albedo, ranged between 0.83 and 0.95, indicating the impor-

tance of the absorbing particles in the Po Valley region. A

clear layering of the atmosphere was observed during the be-

ginning of the flight (until ∼ 10:00 LT – local time) before

the mixing layer (ML) was fully developed. Highest extinc-

tion coefficients were found at low altitudes, in the new ML,

while values in the residual layer, which could be probed at

the beginning of the flight at elevated altitudes, were lower.

At the end of the flight (after ∼ 12:00 LT) the ML was fully

developed, resulting in constant extinction coefficients at all

altitudes measured on the Zeppelin NT. Lidar estimates cap-

tured these dynamic features well and good agreement was

found for the extinction coefficients compared to the in situ

results, using fixed lidar ratios (LR) between 30 and 70 sr for

the altitudes probed with the Zeppelin. These LR are consis-

tent with values for continental aerosol particles that can be

expected in this region.

1 Introduction

Atmospheric aerosol particles are known to interact directly

with the incident solar radiation by either scattering or ab-

sorbing light. By doing so they influence the Earth’s radia-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4540 B. Rosati et al.: Comparison of vertical aerosol extinction coefficients

tive budget and therefore have an impact on climate (IPCC,

2013). Due to the layering of the atmosphere, a strong ver-

tical gradient of particle concentration is found between the

Earth’s surface and the lowest kilometre of the troposphere.

Most emissions are trapped in this so-called planetary bound-

ary layer (PBL) which is part of the troposphere and the

layer closest to the ground. The PBL is dynamic and strongly

influenced by the solar radiation (Stull, 1988). One major

point of interest is to know whether surface-based measure-

ments can be used to infer aerosol radiative properties at ele-

vated altitudes. For this purpose, remote-sensing techniques

such as light detection and ranging (lidar) instruments are

useful to monitor optical properties such as aerosol extinc-

tion and backscattering coefficient over a large range of al-

titudes. This technique involves a pulsed laser beam to mea-

sure the backscatter by gases and aerosol particles in the at-

mosphere (Klett, 1981). However, certain limitations exist

for this method. One refers to the fact that accurate profiles

can only be recorded above a certain threshold given by the

altitude where the laser beam is completely within the field

of view of the telescope (Sassen and Dodd, 1982). Below

this altitude, additional assumptions have to be made in or-

der to retrieve the optical properties and different correction

schemes have been proposed (see e.g. Biavati et al., 2011).

In situ measurements on aircrafts have been used to validate

remote-sensing data. However, these are often limited to low

RH measurements, while RH typically varies with altitude.

Changes in RH may lead to changes in size, shape, and index

of refraction if the particles are hygroscopic and take up wa-

ter; hence the optical properties would be altered. Only few

studies performed RH-dependent measurements at elevated

altitudes (Morgan et al., 2010; Sheridan et al., 2012) and

even fewer compared these to optical measurements from li-

dars (Zieger et al., 2011; Sheridan et al., 2012). Additionally,

measurements on aircrafts commonly focus on altitudes of

several kilometres above ground therefore usually starting at

the upper part or even above the PBL. Due to the limited

number of measurements focusing on changes in the PBL

over the course of the day, the effects of PBL dynamics on

aerosol properties remain poorly understood.

During the PEGASOS (Pan-European gas–aerosols cli-

mate interaction study) project a Zeppelin NT airship was

employed to study aerosols at altitudes between 50 and

800 m above ground. This offered a unique opportunity to

compare in situ measurements to low altitude lidar estimates,

which is known to be challenging (see e.g. Sheridan et al.,

2012). Data from a flight on 20 June 2012 in the Po Valley

(Italy) will be used. Rosati et al. (2015b) presented results of

hygroscopicity measurements combined with chemical com-

position data for the vertical profiles on the same day. Here,

these same data are used to calculate in situ extinction co-

efficients and compare them to lidar observations. A consis-

tency check for the airborne results is done by comparison to

ground-based data.

Figure 1. Location of the ground station San Pietro Capofi-

ume (SPC) in Italy (adapted from http://www.italyworldclub.com/

emilia/). The region Emilia Romagna is highlighted showing the

main cities in the area. In the lower left corner its position within

Italy is indicated.

2 Experimental

2.1 Site and flight description

During the PEGASOS measurement campaign 2012, ver-

tical profiles were performed near the San Pietro Capofi-

ume (SPC) ground station located in the Po Valley in Italy

(see Fig. 1). The general set-up of the Zeppelin NT plat-

form for aerosol measurements as well as meteorological

data for the flight on 20 June 2012 were presented in Rosati

et al. (2015b). The SPC station is a rural background site

well suited to investigate aerosols which have been trans-

ported over longer distances. Due to its vicinity to cities like

Bologna (∼ 40 km to the south-west), it also offers the possi-

bility to study pollution from regional sources. Several cam-

paigns have already taken place at this site focusing on vari-

ations in chemical composition as well as hygroscopic and

optical properties (e.g. Mazzola et al., 2010; Saarikoski et al.,

2012; Bialek et al., 2014; Decesari et al., 2014). The station is

equipped with instruments comparable to those employed on

the Zeppelin NT airship with the addition of a nephelometer

for a direct measurement of the aerosol scattering coefficient

and a lidar.

In order to get an estimate of the mixing layer height

at a certain time an automated lidar-ceilometer (Jenop-

tik CHM15K “Nimbus”) was operated at SPC. In the present

analysis we employed an operator-driven approach which

avoids the major drawbacks of automated mixing layer

height (MLH) retrievals (e.g. Angelini et al., 2009; Haeffe-

lin et al., 2012; Di Giuseppe et al., 2012). This is performed

by manually evaluating the MLH by a skilled operator’s vi-

sual analysis of three plots obtained by the pre-processing of

the ceilometer signal (the plots are presented in the Supple-

ment): (1) the range corrected signal plot; (2) the signal’s gra-

dients plot, and (3) the signal’s variance plot (e.g. Angelini

et al., 2009). By observing these three plots, the trained op-

Atmos. Chem. Phys., 16, 4539–4554, 2016 www.atmos-chem-phys.net/16/4539/2016/

http://www.italyworldclub.com/emilia/
http://www.italyworldclub.com/emilia/


B. Rosati et al.: Comparison of vertical aerosol extinction coefficients 4541

erator manually marks a number of points on the plots (at

least one per hour) matching the requirements of showing

maximum signal gradients, maximum signal variance, con-

tinuity between sunrise until sunset and separation from the

residual layer’s gradient maxima. A spline curve is then fit-

ted to these points to provide a continuous MLH over time.

Naturally, the MLH is not retrieved when it descends be-

low the minimum height observed by the ceilometer (about

200 m above ground). We found, if the ML aerosol imprint

is present in the signal (as it is in the ceilometer record ad-

dressed in this paper), the indetermination in the MLH re-

trieval is of the order of 2–3 signal bins (i.e.±30–45 m). Ad-

ditionally, we compared the ceilometer retrieval to the MLH

found by analysing T and RH gradients from a collocated

radio sounding performed at 11:00 UTC (the corresponding

figure can be found in the Supplement). Note that the ra-

dio sounding was carried out only once every 12 h, while

ceilometer retrievals of MLH have a time resolution of min-

utes. The 11:00 UTC MLH retrieved from the radio sound-

ing yielded a value of 753 m, while an altitude of 772 m was

found from the ceilometer data at this time of day. The two

retrievals agree within the ±45 m we commonly use as un-

certainty of our MLH retrievals. Detailed height profiles of

the potential temperature (2), which support the findings of

the ceilometer, can be found in the Supplement.

On 20 June 2012 a set of vertical profiles of aerosol par-

ticle properties were obtained between 50 and 800 m near

the SPC ground station starting from the early morning

(∼ 08:00 LT) and ending in the early afternoon (∼ 14:00 LT)

with a short refuel break in between (∼ 10:00 and 11:00 LT).

The goal of these flights was to study how the dynamics of

the PBL affects the vertical and temporal variability of the

observed and derived aerosol parameters. The day was char-

acterized by low wind speeds of approximately 2–3 m s−1

with mainly westerly wind direction. Therefore, local emis-

sions are expected to have a strong influence.

2.2 Instrumentation

In the following we present only those of all PEGASOS in-

struments used for this analysis.

2.2.1 Aerosol particle size distributions

To obtain dry aerosol particle size distributions, scanning

mobility particle sizers (SMPS; e.g. Wiedensohler et al.,

2012) and a white-light aerosol spectrometer (WELAS; Palas

GmbH, Type 2300; see Heim et al. (2008) or Rosati et al.

(2015a) for more details) were used. The WELAS is an opti-

cal instrument that uses a white-light source (OSRAM XBO-

75 xenon short arc lamp) which minimizes Mie oscillations

for the light scattering and enables mostly unambiguous at-

tribution of particle optical diameters to measured scattering

cross sections for most aerosol types. Nominally, the instru-

ment covers the size range between approximately 200 nm

and 10 µm but its actual range is dependent on the index of

refraction of the measured particles (see below).

At the SPC ground station, an SMPS (custom-built instru-

ment from TROPOS, Leipzig with a butanol–condensation

particle counter) was used to measure the aerosol particle

size distributions for dry particles with diameters between

10 and 800 nm. The SMPS system was set up in the usual

way that particles were first neutralized in a bipolar particle

charger, then classified according to their electrical mobility

in a differential mobility analyzer (DMA) and finally counted

in a condensation particle counter (CPC). The size distribu-

tions were corrected for particles with multiple charges. The

airborne data sets were recorded using an SMPS (TSI Inc.,

DMA Model 3081 and water – CPC Model 3786) and a WE-

LAS resulting in a combined dry aerosol particle size distri-

bution between about 10 nm and 10 µm. The airborne SMPS

only measured particle sizes between 10 and 430 nm. The

WELAS system recorded particle sizes above approximately

500 nm, since observations for smaller particles were dis-

carded, as they were potentially biased by a reduced count-

ing efficiency (Rosati et al., 2015a). The size range of air-

borne SMPS and WELAS thus did not overlap; therefore a

spline interpolation was performed in between using the sur-

face area size distributions measured by the instruments. The

combination of data from both measurements made it possi-

ble to cover the full optically relevant size range. The result-

ing size distributions were estimated to have an uncertainty

of ±12 and ±5 % for the number concentrations and the di-

ameters, respectively.

2.2.2 Hygroscopic properties

The airborne platform was equipped with the white-light hu-

midified optical particle spectrometer (WHOPS) to measure

the hygroscopic growth factor (GF), defined as the ratio of

the particle diameter at an elevated RH (Dwet) to the one at

dry conditions (Ddry):

GF(RH)=
Dwet(RH)

Ddry

. (1)

The GF was recorded for dry particle diameters of 500 nm.

A detailed description of the design and specifications of the

WHOPS and associated data analysis procedures was pro-

vided in Rosati et al. (2015a). Briefly, particles are first dried

before quasi-monodisperse aerosol particles with a well-

defined dry diameter (Ddry) are selected in a DMA. The scat-

tering cross section (“optical size”) of these particles is then

alternately determined at dry conditions and at high RH by

either leading the particles directly into the WELAS or by

first exposing them to typically 95 % RH before measure-

ment in the WELAS. The dry responses from the two differ-

ent techniques can then be compared to infer the index of re-

fraction of the selected dry particles (details on the approach

are presented in Rosati et al., 2015a). Assuming an index

of refraction, the scattering cross section can be calculated
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from the dry diameter using Mie theory. The index of refrac-

tion that brings this theoretical scattering cross section into

agreement with the measured one, is defined as the effective

index of refraction in the context of this work. The term “ef-

fective” reflects the fact that several simplifying assumptions

are made in the Mie calculations. The particles are assumed

to be perfectly spherical and present a homogeneous internal

mixture, and the imaginary part of the index of refraction is

assumed to be zero. The latter approximation is justified by

the fact that scattering coefficients exceed absorption coeffi-

cients by a factor of 8 (see Sect. 2.2.2 and Fig. 4). In this man-

ner, an average effective index of refraction of 1.43± 0.04

(±1σ uncertainty) was determined by Rosati et al. (2015b)

for the particles probed during the flight in this study. The

humidified mode aims at measuring the hygroscopic growth

factors of the selected particles, following the approach in

Rosati et al. (2015a). For this purpose, the measured scatter-

ing cross section of the humidified particles is converted to

an optical diameter representing Dwet, such that the hygro-

scopic growth factor can be inferred with Eq. (1). In order

to obtain meaningful Dwet and GF values, it is crucial to use

the true index of refraction of the solution droplets in the

Mie calculations. The index of refraction is obtained as the

volume-weighted mean of the indices of refraction of the dry

particles and pure water (mH2O= 1.333) according to the re-

spective volume fractions at a certain GF. The relative uncer-

tainty of the inferred hygroscopic growth factors was found

to be approximately±10 % for GF< 3 (Rosati et al., 2015a).

The ground station in SPC was equipped with a hygro-

scopicity tandem differential mobility analyzer (HTDMA;

see e.g. Swietlicki et al., 2008). Here, GF for dry diameters

of 200 nm were used (compare Rosati et al., 2015b). In the

HTDMA two DMAs are operated in series and connected

to a CPC. In the first DMA dry monodisperse aerosol parti-

cles are selected and then exposed to a defined elevated RH.

The second DMA coupled to the CPC is used to measure the

size distribution of the grown particles. The uncertainty for

these HTDMA-GFs is expected to be approximately ±5 %,

if a ±2 % uncertainty is assumed for the RH measurement.

The hygroscopic growth measured with the WHOPS and

the HTDMA were used to convert scattering coefficients ob-

tained from measurements of the dry aerosol to the corre-

sponding value at ambient RH, as detailed in Sect. 2.2.3.

2.2.3 Aerosol scattering coefficient

At the SPC ground station the total light scattering coeffi-

cients were measured with an integrating nephelometer (TSI

Inc., Model 3563) at three different wavelengths of λ= 635,

525, and 450 nm behind a PM10 inlet system and after drying

to RH< 40 %. The truncation error correction introduced by

Anderson et al. (1996) was applied. The uncertainty for these

measurements is estimated to be ±5 %. As no direct mea-

surement of the aerosol scattering coefficient was available

aboard the Zeppelin NT airship, it was inferred using the par-

ticle size distributions, the effective index of refraction and

Mie theory assuming spherical particles (Mie, 1908; Bohren

and Huffman, 2007). First, scattering cross sections (σs) as a

function of particle diameter (D) were calculated using the

wavelength of λ= 5 20 nm and the range of indices of re-

fraction (m) measured during the flight. This specific wave-

length was chosen to compare the airborne data to results

from the ground-based and remote-sensing measurements.

The WHOPS retrieval yielded on average m= 1.43± 0.04,

while a comparison to the directly measured scattering coef-

ficients from SPC showed that using m= 1.43± 0.02 for the

Mie calculations is enough to explain the variability of the

nephelometer data. Second, the scattering coefficients (µs)

were obtained by integrating the product of σs and the mea-

sured number size distributions
(

dN
dD

)
over the full diameter

range:

µs,j (λ,m,D)=

Dmax∫
Dmin

σs

(
λ,mj ,Dj

)
·

dN

dDj
dDj . (2)

The index j can be replaced by dry when calculating the

dry scattering coefficients or by wet when the humidified

coefficient is regarded. An uncertainty analysis showed that

changes in the index of refraction caused the biggest errors

in µs,dry. Together with the size distribution uncertainty an

overall uncertainty of approximately ±18 % was obtained

for the dry scattering coefficient. It is possible to directly

compare ground based and airborne measurements with each

other, as both were performed at dry conditions.

For comparison with the lidar remote-sensing data, the

Zeppelin measurements were corrected to ambient RH. The

importance of this correction was previously studied by using

a humidified nephelometer (Wet-Neph; Fierz-Schmidhauser

et al., 2010a, b; Zieger et al., 2010, 2011, 2012, 2013). This

instrument directly measures the scattering enhancement due

to elevated RH, which can be described by a wavelength (λ)

dependent scattering enhancement factor f (RH, λ):

f (RH,λ)=
µs,wet(RH,λ)

µs,dry(λ)
. (3)

As no such instrument was available during the PEGASOS

campaign, the humidity correction was achieved by combin-

ing the GF results at 95 % RH from Rosati et al. (2015b)

with the ambient RH measurements to determine an ambi-

ent light scattering coefficient. This makes it possible to in-

fer the effect of hygroscopic growth on the light scattering

coefficient by considering its effect on the size distribution.

The GF was measured for monodisperse aerosol particles of

500 nm but we assume it to be constant over the full size

range. Small particles (D< 200 nm) could potentially have

a different hygroscopic behaviour since species like sea salt

or mineral dust are predominately found in the larger size

ranges. Nevertheless, this assumption is deemed satisfactory
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since small particles have a minor impact on light scattering

compared to the effect of the larger sizes. In order to obtain

an ambient GF (GF for RHambient) the results at RH= 95 %

were recalculated for RHambient using the semi-empirical κ-

Köhler theory introduced by Petters and Kreidenweis (2007):

κ =

(
GF(RH)3− 1

)
· (1− aw)

aw

, (4)

where aw is the water activity which can be inferred from the

RH and equilibrium droplet diameter (Dwet):

aw =
RH

exp
(

4σs/aMw

RT ρwDwet

) . (5)

Here, σs/a is the surface tension of the solution and/or air in-

terface,Mw the molecular mass of water,R the ideal gas con-

stant, T the absolute temperature and ρw the density of water.

We assume κ to be the same at all RH although this might in-

troduce some bias as former studies found changes of κ with

RH at elevated organic fractions (e.g. Pajunoja et al., 2015).

However, the potential deviation due to this simplification is

small in our case since the GF is small anyway at the moder-

ate RH encountered in this study.

The recalculated GF for RHambient were further used to

retrieve humidified aerosol particle size distributions from

the measured dry size distributions. The water uptake has

also an influence on the index of refraction which is taken

into account for the Mie calculations by applying a volume

weighting mixing rule to determine the index of refraction

of the grown particles. Finally a humid scattering coeffi-

cient (µs,wet) was calculated according to Eq. (2). By prop-

agating the uncertainties of the single parameters in Eq. (2),

a mean uncertainty of approximately ±18 % was found for

µs,wet. The ratio of µs,wet to µs,dry was finally used to calcu-

late f (RH) according to Eq. (3). The uncertainty in f (RH)

amounted on average to ±25 %. Also the ground-based data

set was corrected for changes due to elevated RH by us-

ing hygroscopicity results from the HTDMA (see Sect. 2.2.2

for more details). In this case the size distributions from

the SPC-SMPS were recalculated including adjustments for

the RHambient in SPC. Then the f (RH) was obtained with

Eq. (3) using the dry and humidified size distributions mea-

sured and retrieved in SPC and finally it was applied to the

directly measured scattering coefficients obtained from the

nephelometer to get µs,wet. The uncertainty in f (RH)-SPC

amounted on average to±26 %, while approximately±27 %

is found for µs,wet-SPC.

2.2.4 Aerosol absorption coefficient

A portable aethalometer (AE42, MAGEE Scientific; Berke-

ley, USA) was mounted in the Zeppelin NT for a continu-

ous measurement of the aerosol light absorbing properties

at seven wavelengths. This instrument monitors the atten-

uation of light through a quartz fiber filter. The signal was

then corrected as proposed by Weingartner et al. (2003) for

multiple scattering in the filter matrix (“C value”) and the so

called shadowing effect (“f value”). A C value of 4.75 for

λ= 520 nm was used according to personal communications

with J. P. Putaud who performed a comparison between an

aethalometer (model AE31) and a MAAP in summer 2012

in Ispra, Italy. The f value amounted to 1.06 on average. For

the flights a maximal attenuation of 70 % and a flow rate of

4 L min−1 were chosen. The estimated uncertainty for this

data set is ±20 %.

A multi-angle absorption photometer (MAAP; Thermo

Scientific Carusso; Model 5012; Petzold et al., 2005) was

employed at the SPC ground station. It measures the light

attenuation and scattering by particles deposited on a fil-

ter. The nominal wavelength is 670 nm, however, the actual

wavelength was found to be 637 nm (Müller et al., 2011).

A ±10 % uncertainty is estimated for these results. In order

to combine these measurements with those of the scattering

coefficients, the values were extrapolated to a wavelength of

520 nm using the Ångström exponent (αa) from the multiple

wavelength measurement of the aethalometer. No aethalome-

ter was available in SPC and therefore αa was applied as ob-

tained from the airborne data set. To calculate αa from the

airborne data set Eq. (1b) from Moosmüller et al. (2011) was

applied, choosing the adjoining wavelengths λ1 and λ2:

αa (λ1,λ2)=−
ln(α (λ1))− ln(α (λ2))

ln(λ1)− ln(λ2)
. (6)

During this flight the absorption Ångström exponent αa

amounted on average to 0.93± 0.15 (mean±SD). Then

Eq. (7) was applied to recalculateµa measured by the MAAP

to the wavelength of interest (520 nm):

µa,MAAP(520nm)= µa,MAAP(637nm) ·

(
520nm

637nm

)−αa

. (7)

This introduces an additional uncertainty of 3 %, leading to

a final uncertainty in µa,MAAP (520 nm) of ±13 %. At both

locations µa was assumed not to vary substantially with am-

bient RH. This assumption is justified by several reasons: µa

can potentially be enhanced by a shell around an absorbing

particle (“lensing effect”; Bond et al., 2006), however the

magnitude of this effect is not clear yet due to controver-

sial findings (e.g. Cappa et al., 2012 for ambient aerosol).

Nessler et al. (2005) presented theoretical calculations to in-

vestigate changes in the absorption coefficient due to hygro-

scopic growth. In order to study RH effects, they compared

the dry and humidified responses and found only small en-

hancement of the absorption coefficients at GF similar to the

ones that were found in our study. Therefore the effect is ex-

pected to be small for this case study.

www.atmos-chem-phys.net/16/4539/2016/ Atmos. Chem. Phys., 16, 4539–4554, 2016
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2.2.5 Aerosol extinction coefficient

The extinction coefficient (µe) can be calculated as the sum

of the absorption and scattering coefficient.

µe(RH)= µa+µs(RH) (8)

For the airborne as well as ground-based measurements the

dry (RH< 30–40 % as recommended by WMO/GAW, 2003)

and wet (ambient RH) extinction coefficients were retrieved.

In this respect, the calculation of the airborne scattering co-

efficient relies on the measured particle size distribution, the

retrieved index of refraction of the dry particles and their

hygroscopic growth. The most crucial parameter is the se-

lection of the index of refraction, which leads to the largest

uncertainties of the scattering coefficient. The absorption co-

efficient, on the other hand, is assumed not to vary substan-

tially with ambient RH and therefore no ambient correction

was applied. However, the ground-based absorption coeffi-

cient had to be recalculated for a different wavelength using

Eq. (7). In order to do so, the Ångström exponent obtained

from the airborne data set was used. The scattering coeffi-

cient is strongly dependent on RH and was therefore cor-

rected by measurements of the particles’ hygroscopic growth

(see Sect. 2.2.3). The propagated measurement uncertainties

for µe,dry and µe,wet amount to∼ 6 and∼ 24 %, respectively,

at the SPC ground site, while an uncertainty of approximately

18 % is found for both on the aircraft. Please note that for the

airborne data set the relatively large uncertainty in f (RH) is

not propagated into the extinction results since the directly

calculated µs,wet are used for Eq. (8). The ambient ground-

based results, however, are influenced by this uncertainty be-

cause f (RH) is applied on the directly measured dry scatter-

ing coefficients from SPC.

In addition to the instrumentation described so far, a sin-

gle wavelength polarization diversity elastic lidar system was

deployed at the SPC ground station. This instrument uses a

532 nm pulsed Nd-YAG laser source, with a pulse duration of

1 ns, energy of 400 µJ and a repetition rate of 1 kHz. The lidar

system collects the radiation elastically backscattered from

the atmosphere (Rayleigh scattering) by separately detecting

its parallel and cross polarization components with respect

to the polarization of the laser. Additional technical details

of the systems are presented in Cairo et al. (2012). The over-

lap of the laser beam within the field of view (FOV) of the

detector begins at a few tens of metres from the system, and

is complete at a few hundred metres (50 and 300 m, respec-

tively, in the simple approximation of a conical laser beam

and telescope FOV). A nitrogen Raman scattering channel

at 608 nm is also present, however these data are available

only for nighttime conditions. This channel, which collects a

signal proportional to the atmospheric molecular density, is

used for the correction of the Rayleigh signal coming from

the region of partial superposition between laser and FOV,

the Partial Overlap Region (POR) where the backscattered

signal is partially lost. This correction is done by comparing

the Raman signal received from the POR with the molecular

density profile obtained by collocated simultaneous pressure

and temperature balloon measurements, and thus retrieving

an overlap correction function, from the ratio of the Raman

signal to the molecular density. Uncertainties in the determi-

nation of the overlap function arise mainly from the pressure

and temperature uncertainties, and from the Raman signal

counting statistics and are reflected in inaccuracies in the re-

constructed signal of around 10 % at 100 m, rapidly decreas-

ing upward. The system provides a profile of backscatter ra-

tio (R) and volume depolarization ratio (DR) every 5 min for

an elevation of up to 15 km, where R and DR are defined as

R =
(βa+βm)

βm

(9)

DR=
(βa+βm)

c

(βa+βm)
p . (10)

Herein βa and βm are the aerosol and molecular backscatter-

ing coefficient, respectively, and the superscripts “p” and “c”

refer to their contribution in the parallel and cross polarized

backscattering.R and DR assume the value of 1 and 1.4 % re-

spectively, in regions supposed to be free of aerosol at a nor-

malization altitude z0, usually above 7 km. This normaliza-

tion procedure introduces an additional possible inaccuracy

in the data produced, as the derived backscatter and extinc-

tion coefficients at any height z below z0, depends not only

on the signal at z, but also on the extinction between z and z0,

on the ratio of the signal at z to the one at z0 and on the as-

sumed values ofR and DR at z0 (Russell et al., 1979). For the

data presented here, we performed a sensitivity test by vary-

ing the normalization height z0 subjectively chosen in the re-

gion we assumed to be free of aerosol. This resulted in a dis-

persion of the extinction data at altitudes below 1000 m in the

order of 15 %. Therefore, the overall uncertainty for the li-

dar profiles is estimated to be approximately 25 %. Increased

values ofR indicate the presence of aerosol, while departures

of DR from its molecular value are indicative of depolariz-

ing (DR> 1.4 %) or not-depolarizing (DR< 1.4 %) aerosol.

The uncertainty associated with the data from the lidar used

in this study is extensively discussed in Cairo et al. (2012).

The minimum relative uncertainty on R for a 60 s measure-

ment is 3 %. This corresponds to a minimum detectable βa

of 0.05× 10−6 m−1 sr−1, at a signal to noise ratio of 100 %.

This threshold level is reached close to the upper edge of

the POR, at approximately 800 m, where the backscattered

signal attains its maximum and decreases upwards because

of increased distance from the lidar, and downwards due to

an increased loss of signal in the progressively incomplete

overlap between the laser beam and the telescope FOV. The

backscattered Rayleigh signal, which is only partially col-

lected from the POR, is multiplied by the overlap correction

function to reconstruct its entirety over that region. This cor-

rection is accepted if the reconstructed signal exceeds the raw

signal by no more than a factor of 20. This corresponds to
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an acceptable reconstruction from approximately 100 m up-

ward. As already stated, this causes a possible inaccuracy in

the order of 10 % of the reconstructed signal. Random errors,

mainly arising from poor signal statistics, add to this uncer-

tainty and only these are reported as error bars in our plots.

The inversion of the lidar signal is accomplished with the

Klett method (Klett, 1981) using piecewise constant extinc-

tion to backscatter ratio (a.k.a. lidar ratio LR) values:

LR=
µe

βa

(11)

and calibrating the profile by finding an atmospheric region

supposed to be free of aerosol particles, usually above 8 km.

The value of LR determines the aerosol extinction coeffi-

cient, once the aerosol backscatter, βa, has been retrieved

from the lidar measurements. The values of LR to be used

in the inversion are iteratively defined during the inversion

procedure itself, by inspecting at each step of the signal ex-

tinction correction, the tentative values of R and DR. In re-

gions of different aerosol occurrence, desert dust is charac-

terized by LR∼ 50 sr (Müller et al., 2007) and DR greater

than 10 % while biomass burning aerosol commonly has a

LR of around 60–70 sr and a DR often lower than 10 % (Mu-

rayama et al., 1999; Ferrare et al., 2001; Fiebig et al., 2002;

Dahlkötter et al., 2014). Table 1 shows a list of LR used in

our inversion, classified according toR, DR and altitude. The

Po Valley aerosol is predominantly of continental origin and

therefore LR values between 30 and 70 sr seem to fit best as

found using the CALIPSO model by Omar et al. (2009) for

clean and polluted continental aerosol particles, respectively,

both at λ= 532 nm. These values agree well with model re-

sults for continental aerosol presented by Barnaba and Gobbi

(2004) who found LR values of 60 sr. Measurements per-

formed in Southern Italy found LR values of approximately

50 sr below 2 km at a wavelength of 351 nm (Pisani, 2006;

De Tomasi et al., 2006). Discrepancies in LR may arise from

the selected method to retrieve it and from the exact loca-

tion. For instance, Müller et al. (2007) showed that compar-

ing elastic lidar against AERONET sun photometers gener-

ally yields higher LR compared to LR directly from Raman

lidars. In order to evaluate the LR assumption from litera-

ture data, we performed Mie calculations for the backscat-

ter coefficients using the airborne in situ data. By applying

Eq. (11) the LR was calculated and yielded values between

51 and 67 sr, with a mean value of 58± 4 sr. These results

strongly support our LR selection from the literature. How-

ever, it is important to note that these in situ derived LRs

solely serve as plausibility check and were not used for any

further calculations or retrievals. We also compared aerosol

optical depth (AOD) obtained from the column-integrated

lidar extinction (at 532 nm) to the AOD from a sun sun-

photometer (at 500 nm) at the same site (Campanelli et al.,

2007) within the framework of the SKYrad NETwork (http:

//atmos2.cr.chiba-u.jp/skynet/). The comparison of the AOD

variability during the time frame of the PEGASOS campaign

Table 1. List of lidar ratios (LR) selected as a function of backscat-

ter ratio (R) and depolarization ratio (DR). For polluted continental

air masses, different values were tentatively employed for a sensi-

tivity study.

LR [sr] R DR [%] Aerosol type

70 (30–50) > 1.05; < 10 < 15
polluted continental

(clean continental)

50 > 1.05; < 10 > 10 Saharan dust

60–70 > 1.05; < 10 < 15 biomass burning

showed good agreement between the two data sets. For this

period lidar derived AOD, using a LR equal to 70 sr, yielded

on average 7 % higher values than those from the sun pho-

tometer. A sensitivity study changing the value of LR to

50 and 30 sr resulted in underestimations of 5 and 25 %, re-

spectively. Thus, in this range of LR values, lidar agrees with

the sun-photometer in a column-integrated sense, within the

reported limit. The Supplement provides an in-depth discus-

sion of lidar data treatment.

3 Results and discussion

Figure 2 presents a basic overview of the flight on

20 June 2012: two altitudes were probed at approximately

100 and 700 m above ground. Results for the estimated mix-

ing layer height are shown as the violet thick line. The typ-

ical imprecision due to the operator’s choice amounts to

three pixels, i.e. ±45 m. Additionally, Fig. 2 denotes the dif-

ferent layers probed inside the PBL and the profiles are la-

belled as P 1 through P 6. Rosati et al. (2015b) presented the

evolution of the potential temperature and RH for this spe-

cific day, together with the estimated mixing layer height.

All these quantities indicate that until ∼ 11:30 LT at lower

altitudes the new mixing layer (ML) was measured while at

∼ 700 m above ground the residual layer (RL) was probed.

The aerosol properties in these two layers could potentially

be significantly different since the RL is mainly dependent on

the PBL from the day before, while the new ML is affected

by direct emissions from the same day. Then the strong in-

crease in estimated mixing layer height points towards a

fully developed ML throughout the probed altitudes after

∼ 12:00 LT. Aerosol particles are expected to be homoge-

neously distributed in this layer and therefore their properties

should be comparable at all altitudes. One possible exception

is the RH which may be dependent on altitude and could thus

induce height-dependent humidity related effects.

3.1 Aerosol particle size distributions

Figure 3 illustrates the dry surface area size distributions at

different altitudes and times. This kind of distribution was

chosen since the optical properties are directly dependent on

www.atmos-chem-phys.net/16/4539/2016/ Atmos. Chem. Phys., 16, 4539–4554, 2016
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Figure 2. Overview of the flight on 20 June 2012 near San Pietro

Capofiume (SPC). The black dashed line depicts the flight altitude

of the Zeppelin NT airship, while the violet thick line illustrates

the estimated mixing layer height. Additionally, the different lay-

ers which were probed are labelled and coloured differently. Also,

profiles P 1 to P 6 are marked.

the surface area of the particles. The coloured lines indicate

the Zeppelin NT results, where each line represents the dis-

tribution in a different layer. Since two separate instruments

were combined, the contributions by each instrument as well

as the region in between are marked by different symbols. At

the beginning of the flight, the new ML was probed close to

the ground (∼ 100 m above ground) with the mode of the dis-

tribution at a diameter of ∼ 290 nm. In addition, during the

first part of the flight, the RL was measured at∼ 700 m above

ground. The blue line depicts the surface area size distribu-

tion in the RL with a mode at∼ 270 nm and only a small con-

tribution by particles with diameters larger than∼ 500 nm. In

addition, the green and pink lines show two distributions at

altitudes below 200 and above 500 m above ground, respec-

tively, for the fully developed ML which is present after ap-

proximately 12:00 LT. The results in the fully developed ML

are very similar to the ones from the RL with the mode of the

distribution at ∼ 260 nm. The comparison between surface

area distributions in different layers indicates that no major

changes occurred throughout the flight except for a slightly

larger contribution of particles above approximately 300 nm

in the new ML compared to the other layers. Moreover, the

surface area size distributions from the SMPS at the SPC

ground station before 10:00 LT (morning; black, dashed line)

and after 12:00 LT (afternoon; gray, dashed line) are shown

representing the new ML and the fully developed ML, re-

spectively. A clear shift to a smaller mode diameter is seen in

the afternoon compared to the morning. Ground-based and

airborne results agree well, finding similar distributions for

the same layers.
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Figure 3. Dry surface area size distributions for different times and

layers were probed during 20 June 2012. The coloured lines denote

the results measured on board the Zeppelin showing the contribu-

tion by the SMPS (straight line), WELAS (stars) and the interpo-

lation in between (dotted line). During the early morning hours the

new mixing layer (red line) and just above the residual layer (blue

line) could be probed. Later during the day the results are represen-

tative for the fully mixed layer (green and pink lines for different

altitudes). The dashed lines were recorded at the SPC ground sta-

tions, where the black line shows the results for the morning hours

(new mixing layer) and the gray line for the early afternoon (fully

developed mixed layer).
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Figure 4. Time evolution of the dry scattering (a) and absorption (b)

coefficients from the airborne and ground-based platforms. The

colour scale represents the magnitude of the coefficients. The un-

certainty of the dry scattering coefficients is estimated to be±18 %,

while ±20 % is estimated for the absorption coefficients. Addition-

ally, the shading in (a) and (b) denotes the estimated mixing layer

height (compare to the violet line in Fig. 2) and each height profile

(P 1–P 6) is marked.
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Figure 5. Comparison of dry scattering (a) and absorption (b) coefficients for ground-based and airborne measurements. The Zeppelin results

were restricted to altitudes below 150 m in order to eliminate differences due to potential changes in atmospheric layers. The colours of the

symbols reflect the time of the day according to the colour bar in (b). Additionally, the regression curves and equations are shown. (a) For

the ground-based data an uncertainty of 5 % is estimated while ∼ 18 % was found for the airborne calculations. (b) The uncertainty of the

airborne absorption coefficients is estimated to be ±20 %, while ±13 % is estimated for the ground-based results.

3.2 Vertical profiles of aerosol scattering and

absorption coefficients

Dry airborne scattering coefficients were calculated using the

Zeppelin size distributions illustrated in Fig. 3 and Eq. (2)

and compared to the ground-based scattering coefficients di-

rectly measured by the nephelometer at dry conditions. Fig-

ure 4a presents the time series of dry scattering coefficients

for both the airborne (circles) and ground-based (squares)

data set. Moreover, the estimated mixing layer height (gray

area) is shown. Highest scattering coefficients were found

early in the morning at low altitudes (in the new ML), which

is seen both in the ground and Zeppelin NT data. A clear de-

crease was found above ∼ 500 m, while flying in the RL. Af-

ter approximately 12:00 LT the fully developed ML is probed

and similar results are found at all altitudes, as expected.

The absorption coefficients were measured directly at both

locations but by different instrumentation (aethalometer in

the Zeppelin, MAAP on the ground). Figure 4b illustrates

the time series of dry absorption coefficients. The squares at

0 m above ground represent the SPC data set while the cir-

cles display the airborne results. A very similar picture as

for the scattering is seen with highest values early in the

morning at low altitudes (new ML) and much lower values

just above (RL). Also, the absorption coefficients in the new

ML are well comparable at all altitudes including the ground

measurements in SPC.

The temporal variations of the scattering as well as absorp-

tion coefficients can be explained as follows: the local emis-

sions are trapped in the shallow new ML in the early morning

and therefore concentrations are highest there, but there are

also changes in chemical composition. The chemical compo-

sition data during this day (from aerosol mass spectrometer

measurements) were presented in Rosati et al. (2015b). Max-

imum nitrate mass fractions around 20 % were found during

the first flight hours at low altitudes on board the Zeppelin

NT airship and at the SPC ground station. Later in the day

the nitrate mass fraction decreased to ∼ 2 %. The enhanced

nitrate fraction in the morning caused increased hygroscop-

icity as well as larger scattering coefficients. The low nitrate

fraction found in the RL as well as the fully developed ML

resulted in a decrease of the dry particle size and thus a de-

crease of the scattering coefficient. Once the temperature and

thus the ML height increased, the aerosol concentration was

diluted and nitrate evaporated, which can be seen by the de-

creasing scattering and absorption coefficients over time.

A quantitative comparison between the ground-based and

airborne measurements of the scattering and absorption coef-

ficients is presented in Fig. 5. Only data from the lowermost

flight level (below 150 m above ground) were included, as

this is expected to be in the same layer as the ground station

during daytime. The error bars reflect the uncertainties de-

scribed in Sects. 2.2.3 and 2.2.4. The scattering coefficients

(Fig. 5a) compare well most of the time except for the very
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early morning hours (before 09:00 LT) when discrepancies

up to ∼ 35 % are visible. Reasons for the differences could

be local emissions, which could not be captured by both mea-

surements due to slightly shifted locations. By using a linear

fit, a regression equation of y= 1.11 · x was found, where

y denotes the dry scattering coefficient in SPC and x the dry

scattering coefficient from the Zeppelin. Figure 5b illustrates

the dry absorption coefficients. In this case, the linear regres-

sion yields the equation: y= 0.89 · x, where y represents the

dry absorption coefficient in SPC and x the dry absorption

coefficient from the Zeppelin. Overall, we can conclude that

the airborne measurements from the lowest flight level com-

pare well with the ground-based results. Thus, the airborne

data set is suitable for a comparison with the extinction coef-

ficient profiles from the lidar (Sect. 3.5).

3.3 Light scattering enhancement at ambient RH

Until now only the dry aerosol particle properties were dis-

cussed, while elevated RH can alter the optical properties.

Therefore, the ambient RH has to be considered in order to

retrieve the scattering enhancement factors and ambient scat-

tering coefficients. For this purpose GF measurements along

with ambient RH measurements were used for the calcula-

tions described in Sect. 2.2.3. Figure 6 displays the ambi-

ent RH (blue line) present at different altitudes during the

flight with the Zeppelin NT. The ambient temperature dur-

ing the flight ranged between 24 and 33 ◦C. Clear differences

with altitude were observed when flying in the fully devel-

oped ML while comparable temperatures were found in the

new ML and the RL at the beginning of the flight. In addi-

tion, also the airborne GF values, recalculated for the ambi-

ent RH (see Sect. 2.2.3), are shown in Fig. 6 as well as the

scattering enhancement factor f (RH). During the first flight

hours the ambient RH was highest reaching values of approx-

imately 60 % at low altitudes, resulting in f (RH) values up

to ∼ 1.7 in the new ML. These high f (RH) values are not

only a function of RH but also of the chemical composition

and especially of the fraction of inorganic species present in

the particles. As described already in the previous section

(Sect. 3.2) an enhanced fraction of nitrates was found in the

new ML, which explains the enhanced hygroscopic growth at

elevated RH. At the same time but higher altitude (∼ 700 m;

RL), RH was below∼ 40 % with f (RH) between 1.1 and 1.2.

The RL was characterized by lower RH as well as a smaller

fraction of inorganics compared to the new ML and the com-

bination of both led to smaller f (RH) values. The second part

of the flight (after∼ 11:00 LT) was dominated by a low RH in

the range of 25–50 % together with a low inorganic fraction,

which is reflected in low f (RH) values of 1.1 to 1.2.

The ground data recorded in SPC were also corrected for

scattering enhancement effects by utilizing the GF values

from the HTDMA and the size distribution measurements re-

ported in Fig. 3 (see Sect. 2.2.3). The ambient RH in SPC var-

ied from a maximum of ∼ 50 % at the beginning of the flight
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Figure 6. Time series of hygroscopic properties and ambient RH.

The blue line illustrates the ambient RH during the flight (right

y axis). The green diamonds show the growth factor (GF) for the

ambient RH calculated from GF(RH= 95 %) measurements for

500 nm particles with the WHOPS. The red line shows the scatter-

ing enhancement factor (f (RH)) during the flight as derived from

the ambient RH and the GF measurements. The uncertainty of the

airborne f (RH) amounts to approximately 30 %, while the GF val-

ues are expected to have uncertainties< 10 %.

to ∼ 25 % at the end. The f (RH) ranged between approxi-

mately 1.3 and 1.1 during the whole flight and were applied

to correct the dry scattering coefficients.

Zieger et al. (2013) previously published values from Eu-

ropean sites with continental and background influence. At a

low RH of ≈ 40 %, f (RH) values between 1 and ∼ 1.2 were

recorded while at ≈ 60 % f (RH) between 1 and ∼ 1.8 were

found. A comparison to our findings shows good agreement.

3.4 Vertical profiles of the single scattering albedo

The magnitude of the scattering coefficient exceeded the ab-

sorption coefficient on average by a factor of 7 when consid-

ering the dry values presented in Fig. 4. If also RH effects

are taken into account (presented in Sect. 3.3 and Fig. 6)

the ratio for the ambient coefficients reaches values of ap-

proximately 8. The relationship of the two coefficients is rel-

evant for the sign of net aerosol radiation interactions and

it is commonly described using the single scattering albedo

(SSA; ω0):

ω0 =
µs

µs+µa

. (12)

Figure 7 illustrates the temporal evolution of both the dry

and ambient SSA for the airborne as well as ground data.

Focusing first on the dry SSA (Fig. 7a), the airborne results

at ∼ 700 m above ground reveal a constant SSA throughout

the flight. This is in agreement with expectations, as gener-

ally similar aerosol properties were observed at this altitude

in the RL (morning) and fully developed ML (afternoon) in
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terms of size distributions (Fig. 3), composition (Rosati et al.,

2015b) and optical properties (Fig. 4). Surprisingly, the dry

SSA observed in the new ML before ∼ 10:00 LT at 100 m

above ground as well as at the ground site are similar to

those in the RL above. Generally, SSA is rather expected

to increase with air mass age due to the formation of non-

absorbing secondary aerosol components. However, the un-

expected similarity of the dry SSA in the new ML and RL

above can be explained with peculiar differences in chemical

composition (Sect. 3.2 and Rosati et al., 2015b): the aerosol

in the new ML has a strongly increased nitrate mass frac-

tion (non-absorbing) and also a slightly increased BC mass

fraction (light absorbing), compared to the aerosol in the RL.

This has compensating effects on the SSA. After 10:00 LT

the nitrate mass fraction decreases faster than the BC mass

fraction in the evolving mixing layer, likely due to temper-

ature and dilution related partitioning effects. This results in

decreased dry SSA values at the ground site and 100 m above

ground. In the afternoon, when the ML is fully developed, the

dry SSA become again similar at all altitudes. A small ver-

tical gradient is seen with lower values of the SSA at 100 m

above ground as well as the ground station, which are likely

related to the influence of local emissions. The dry SSA val-

ues observed in the three layers probed by the Zeppelin are

0.87± 0.01 (mean± 1 SD), 0.89± 0.01 and 0.87± 0.02 for

the new ML, the RL and the fully developed ML, respec-

tively. In this respect, the uncertainty of the dry single scatter-

ing albedo is estimated to be ±7 and ±26 % for SPC and the

Zeppelin, respectively. The uncertainty of the ambient single

scattering albedo is estimated to be ±36 and ±26 % for SPC

and the airborne data, respectively.

Figure 7b displays the ambient SSA where results from

Fig. 6 are taken into account. The hygroscopic growth in-

creases the SSA as it mostly affects the scattering coef-

ficient. The ambient RH and thus the light scattering en-

hancement factor is highest in the new ML. Therefore, the

largest increase of the ambient SSA compared to the dry

SSA is observed at low altitude in the morning. The ambi-

ent SSA values observed in the three layers probed by the

Zeppelin amount to 0.92± 0.01 (mean± 1 SD), 0.90± 0.01

and 0.88± 0.02 for the new ML, the RL and the fully de-

veloped ML, respectively. The comparison of the SSA at dry

and ambient conditions reveals that hygroscopic growth has

a significant effect on the SSA even in cases with relatively

low ambient RH such as this case study. Accounting for this

effect is important to obtain the correct magnitude and sign

of radiative forcing aerosol radiation interactions by anthro-

pogenic aerosols.

Our results are in good agreement with previous studies

performed with sun-photometers during the summer months

in Ispra, located in the northern Po Valley, which found an

average ambient SSA of 0.9 (Takemura et al., 2002). On the

other hand, the study by Putaud et al. (2014) (also centred in

Ispra) presented a long-term analysis of SSA measured with

in situ instrumentation comparable to the one employed in

Figure 7. Time evolution of the dry (a) and ambient (b) single scat-

tering albedo from the airborne and ground based platforms. The

colour scale represents the magnitude of the coefficients. The uncer-

tainty of the dry single scattering albedo is estimated to be ±7 and

±26 % for SPC and the Zeppelin, respectively. The uncertainty of

the ambient single scattering albedo is estimated to be ±36 and

±26 % for SPC and the airborne data, respectively. Additionally,

the shaded area in (a) and (b) denotes the estimated mixing layer

height and each height profile (P 1–P 6) is marked.

our case. Their mean SSA, valid for dry conditions (< 40 %),

ranged between approximately 0.80 and 0.85 for the summer

months with little variation between the years 2004–2011.

These values appear smaller than those from our study for the

fully developed ML when RH had only a small effect on the

SSA. A possible reason for this difference might be the av-

eraging over a whole month compared to our case study per-

formed at one specific day but also variations due to slightly

different locations.

3.5 Vertically resolved aerosol extinction coefficients

The data set of this study makes it possible to compare verti-

cal profiles of the extinction coefficients from lidar retrievals

to in situ measurements from the airborne platform and the

ground station. As presented in Sect. 2.2.5, the in situ extinc-

tion coefficients were calculated using the retrieved scatter-

ing and measured absorption coefficients. At the same time,

vertically resolved extinction coefficients were retrieved with

the remote-sensing lidar system, which provides directly

results for aerosols at ambient RH (for more detail see

Sect. 2.2.5). As discussed in Sect. 2.2.5 the lidar applied in

this study cannot directly measure the extinction coefficients,

therefore a LR had to be assumed. Results were calculated

for three separate fixed LR of 30, 50 and 70 sr, where the

value of 50 sr is assumed to be the best-guess solution for

the measurement location and the prevailing aerosol type.

More discussion on the selection of the LR can be found in

Sect. 2.2.5. Figure 8 presents a comparison of in situ and

www.atmos-chem-phys.net/16/4539/2016/ Atmos. Chem. Phys., 16, 4539–4554, 2016
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(a)

(f)(e)

(c)(b)

(d)

P1: 08:35−09:22 LT P2: 09:26−10:08 LT P3: 11:25−11:56 LT

P4: 12:01−12:32 LT P5: 12:37−13:18 LT P6: 13:19−13:59 LT

Lidar µe,ambient LR=30sr

Lidar µe,ambient LR=50sr

Lidar µe,ambient LR=70sr

Zeppelin µe,dry
Zeppelin µe,ambient
SPC µe,dry
SPC µe,ambient

Figure 8. Extinction coefficients for profiles P 1–P 6 at different times of day. The lines reflect lidar results for assumed LRs of 30, 50 and

70 sr in orange, red and dark red, respectively. The dots describe in situ results. In light and dark blue, dry and ambient airborne extinction

coefficients are shown while the light and dark green dots represent the dry and ambient ground-based results, respectively.

remote-sensing results for the extinction coefficient. While

the lidar data represent extinction at ambient RH, the in situ

measurements are shown for both dry conditions and recal-

culated for ambient RH. Each height profile performed by

the Zeppelin is shown in a separate panel along with the li-

dar profiles averaged over the corresponding interval. This

sequence clearly shows the effects of the evolving mixing

layer on the vertical distribution of aerosol loadings. Sepa-

rated aerosol layers were observed during the flight profiles

P 1 and P 2 in the morning (Fig. 8a and b). The aerosol ex-

tinction coefficient in the new ML (< 500 m above ground),

which is influenced by emissions at the ground, is distinctly

higher than the results in the RL above. The aerosol loadings

in the new ML decrease as the ML increases (P 3; Fig. 8c),

due to stronger dilution of emissions from the ground, while

the extinction coefficient in the RL above remains constant.

The upper edge of the new ML reached the highest flight al-

titude of the Zeppelin during P4 (Fig. 8d; see also Fig. 4).

After that, the ML was fully developed, such that all flight

levels were within the ML. This results in rather constant ex-

tinction coefficients from ground up to 600 m above ground

during P5 and P 6 (Fig. 8e and f). The extinction coefficient

in the fully developed ML is equal to results in the RL dur-

ing the first three height profiles. This indicates that the back-

ground aerosol gives the dominant contribution to the aerosol

loading in the fully developed ML.

The Zeppelin NT and ground-based results also illustrate

the importance of hygroscopic water uptake in the new ML

probed in P 1 and P2 where the highest RH values were mea-

sured (see Fig. 6). At the same time in the RL, dry and hu-

midified airborne data were about the same due to the low RH

present at this elevation. The effects of hygroscopic growth

were also small within the fully developed ML in the after-

noon at all altitudes, when RH values were relatively low.

The increased extinction coefficients retrieved by the lidar at

approximately 300 m above ground during P1 and P 2 could

indicate an aerosol layer and/or an increased RH. Unfortu-

nately, we do not have airborne data at this altitude to sup-

port either of the two hypotheses, as the Zeppelin did not

fully probe this altitude level.

When comparing the results from the in situ and remote-

sensing measurements, clear similarities are found. In pro-

files P 1 and P 2, an altitude dependence is visible by both

techniques, with maximum values in the new ML and low-

est ones in the RL. In addition, a distinct variation in µe

between the two flight levels just above and below 400 m

above ground in P 1 is detected by the in situ measurements

(Fig. 8a), which does not coincide with remote-sensing re-

sults. This is a consequence of aerosol variation during the

time difference between the two “nearby” airborne mea-

surements. It is more clearly seen in Fig. 4a, which illus-

trates lower µs values at∼ 09:00 LT (∼ 390 m above ground)
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compared to the measurements at 09:20 LT (∼ 450 m above

ground). At this time period the ML height was approxi-

mately at the altitude of 400 m above ground and therefore

the variations can be explained by particles measured once in

the RL or the entrainment zone between new ML and RL and

the second time in the new ML, even though both measure-

ments took place at comparable altitudes. For profiles P3–

P 6 both techniques observed small variability of the extinc-

tion coefficient across the full altitude range. This confirms

the assumption of a homogeneously mixed PBL with similar

aerosol properties throughout the ML. The extinction coeffi-

cients in the fully developed ML (P 3–P6) are close to those

in the RL (high altitudes in P 1 and P 2) and lower than those

in the new ML (low altitudes in P 1 and P 2).

When comparing absolute extinction coefficient values

of the in situ and remote-sensing results for the best-guess

LR= 50 sr, the latter tends to overestimate µe at the higher

elevations (> 250 m) in general, while agreement is better at

lower altitudes (< 250 m). In order to investigate the role of

the selected LR on the agreement between in situ and remote-

sensing data, a sensitivity study on the dependence of the

lidar results on LR was carried out. In addition to the best-

guess scenario LR= 50 sr, LR values of 30 (orange line) and

70 sr (dark red line) were used, thereby covering the poten-

tial range of LR for continental aerosol reported in the lit-

erature (see Table 1). Largest discrepancies of up to 50 %

between lidar retrievals and in situ measurements are found

for LRs of 50 and 70 sr above 600 m above ground. Choos-

ing LR= 30 sr instead results in agreement within 5–20 %

for these altitudes, depending on the actual flight profile. At

low altitudes (< 300 m) the opposite is seen finding agree-

ment within 15 % between in situ and remote-sensing data

for a LR of 50–70 sr. This altitude dependence of the best-

fit LR may on the one hand be related to true differences

in aerosol properties at different altitudes, particularly in the

morning, but on the other hand potential systematic biases in

the overlap correction for low altitudes may also play a role.

One has to note that the uncertainty of the lidar ratio is

the single most important source of inaccuracies in elastic

lidar retrievals. A review of issues related to the assump-

tions of LR is presented in Kovalev and Eichinger (2004). An

overestimation of LR throughout the lidar range leads to an

excessive correction of the raw data for particle attenuation,

and this causes an overestimation of the retrieved aerosol ex-

tinction coefficient, the more severe the further down from

the calibration altitude (Cavalieri et al., 2011). Moreover,

even if the assumptions of LR are valid on average, LR is

not necessarily constant over the full profile. The retrieval

of the backscatter coefficient may be approximately correct,

but the extinction is definitely wrong, as, at a given altitude,

the local relationship between the two is simply linear in LR.

One should bear in mind that a change of the assumptions

on LR may have two counteracting effects on the extinction

retrieval: (i) a “global” one on the backscattering coefficient,

as an increase of LR decreases the value of the backscatter-

ing coefficient the more the further down from the normal-

ization altitude and in proportion with the optical depth from

the normalization altitude downwards. It should be noted that

this effect is not simply linear in LR throughout the profile

and depends on the particular vertical distribution of aerosol.

(ii) A “local” one, as deriving the extinction coefficient by

multiplying the retrieved backscattering coefficient by the

LR obviously the extinction scales linearly with LR. Which

one of these two competing effects is prevailing at a given

altitude, will depend on the particular aerosol vertical distri-

bution.

4 Conclusions

A case study of aerosol particle optical properties at differ-

ent altitudes in a dynamic planetary boundary layer (PBL)

was performed within the PEGASOS project in the Po Val-

ley (Italy) in 2012 using an instrumented Zeppelin NT air-

ship. The aim of this field experiment was to investigate the

effects of PBL dynamics on aerosol layering and to com-

bine in situ ground and airborne data of the aerosol extinc-

tion coefficients in order to compare them to remote-sensing

results. Additionally, changes due to the hygroscopic nature

of particles were considered by monitoring the hygroscopic

growth factor on board of the aircraft. The temporal vari-

ability of aerosol particle optical properties due to the de-

velopment of the PBL is most pronounced at altitudes below

1000 m above ground. This is a very challenging range for

remote-sensing techniques as the incomplete overlap of the

laser beam with the field of view results in increased uncer-

tainty. In this study, we present in situ results for vertical pro-

files on 20 June 2012 near the San Pietro Capofiume ground

station to validate remote-sensing data in particular at low

altitudes. Since the scattering coefficient was not measured

directly on board the Zeppelin NT, it was retrieved from size

distributions and index of refraction measurements. Valida-

tion of the indirect airborne data against direct scattering co-

efficient measurements at the ground station revealed agree-

ment within approximately ±20 %. The airborne in situ re-

sults identified the scattering coefficient as the predominant

optical property at all times and altitudes being on average

a factor of 8 higher than the absorption coefficient, and the

mean single scattering albedo found for this case study was

of 0.89± 0.02 (1 SD). During the early morning hours a clear

layering of the PBL was observed. Increased extinction co-

efficients were recorded at altitudes of approximately 100 m

above ground in the new mixed layer by both the airborne

and remote-sensing measurements, while lower values were

found in the residual layer just above. This difference can

be attributed to differences in the particle number concen-

tration, size distribution and chemical composition between

the distinct layers. Besides, both techniques suggest that dur-

ing the second part of the flight (early afternoon) the PBL

was fully mixed due to the fact that comparable results were
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found at all altitudes. On the whole, the in situ measure-

ments of the aerosol extinction coefficient are in good agree-

ment with remote-sensing data across the whole joint altitude

range from 100 to 800 m above ground for an assumed lidar

ratio (LR) between 30 and 70 sr, as previously found for con-

tinental aerosol particles in similar regions.

The Supplement related to this article is available online

at doi:10.5194/acp-16-4539-2016-supplement.
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