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Abstract. Assessing the ability of global and regional mod-

els to describe aerosol optical properties is essential to re-

ducing uncertainty in aerosol direct radiative forcing in the

contemporary climate and to improving confidence in fu-

ture projections. Here we evaluate the performance of high-

resolution simulations conducted using the Weather Re-

search and Forecasting model with coupled with Chem-

istry (WRF-Chem) in capturing spatiotemporal variability

of aerosol optical depth (AOD) and the Ångström exponent

(AE) by comparison with ground- and space-based remotely

sensed observations. WRF-Chem is run over eastern North

America at a resolution of 12 km for a representative year

(2008). A systematic positive bias in simulated AOD relative

to observations is found (annual mean fractional bias (MFB)

is 0.15 and 0.50 relative to MODIS (MODerate resolution

Imaging Spectroradiometer) and AERONET, respectively),

whereas the spatial variability is well captured during most

months. The spatial correlation of observed and simulated

AOD shows a clear seasonal cycle with highest correlation

during summer months (r = 0.5–0.7) when the aerosol load-

ing is large and more observations are available. The model is

biased towards the simulation of coarse-mode aerosols (an-

nual MFB for AE=−0.10 relative to MODIS and −0.59

for AERONET), but the spatial correlation for AE with ob-

servations is 0.3–0.5 during most months, despite the fact

that AE is retrieved with higher uncertainty from the remote-

sensing observations. WRF-Chem also exhibits high skill in

identifying areas of extreme and non-extreme aerosol load-

ing, and its ability to correctly simulate the location and rel-

ative intensity of extreme aerosol events (i.e., AOD> 75th

percentile) varies between 30 and 70 % during winter and

summer months, respectively.

1 Introduction and Objectives

Atmospheric aerosol particles (aerosols) play a major role

in dictating Earth’s climate by both directly interacting with

solar radiation (direct effect) and acting as cloud condensa-

tion nuclei and thus changing cloud properties (indirect ef-

fect) (Boucher et al., 2013). The global mean aerosol direct

effect is estimated to be −0.27 (possible range of −0.77 to

+0.23) Wm−2, while the indirect effect is −0.55 (−1.33 to

−0.06) Wm−2 (Stocker et al., 2013). Therefore, their com-

bined radiative forcing is likely a significant fraction of the

overall net anthropogenic climate forcing since preindus-

trial times (i.e., 1.13–3.33 Wm−2 (Stocker et al., 2013)) and

a substantial source of uncertainty in quantifying anthro-

pogenic radiative forcing.

Accurate quantification of direct aerosol radiative forc-

ing is strongly dependent on aerosol precursor and pri-

mary aerosol emissions. Both have evolved over the past

2 decades in terms of their spatiotemporal distribution and

absolute magnitude. Emissions have generally increased in

emerging economies (Kurokawa et al., 2013), biogenic and
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anthropogenic emissions have altered in response to chang-

ing land use and land cover (Wu et al., 2012), and the

implementation of pollution control strategies particularly

in North America and Europe have resulted in declines in

air pollutant emissions (Xing et al., 2015; Giannouli et al.,

2011). Therefore, there is evidence that aerosol burdens

and thus direct climate forcing has varied markedly in the

past and may change substantially in the future. Further, al-

though best estimates of global anthropogenic radiative forc-

ing from the aerosol direct and indirect effect are −0.27 and

−0.55 Wm−2 (Stocker et al., 2013), respectively, the short

residence time and high spatiotemporal variability of aerosol

populations mean that their impact on regional climates can

be much larger than the global mean but that they are even

more uncertain.

Long-term measurements of aerosol properties are largely

confined to aerosol mass (total, PM10 or PM2.5) in the near-

surface layer which may or may not be representative of ei-

ther the total atmospheric burden (Ford and Heald, 2013;

Alston et al., 2012) or radiation extinction and hence cli-

mate forcing. Further, aerosol composition measurements are

often a 24 h integrated sample taken only on 1 in 3 days

and thus are subject to undersampling. Hence, they provide

an incomplete description of temporal variability and mean

aerosol burdens for model performance evaluation. Colum-

nar remote-sensing measurements of aerosol optical proper-

ties are available from a range of ground-based and satellite-

borne instrumentation but have only a relatively short period

of record, are subject to nonzero measurement uncertainty

(and bias), and undersample the range of atmospheric con-

ditions due to cloud masking and infrequent satellite over-

passes. Therefore, regional and global models are most com-

monly used to quantify historical and contemporary aerosol

direct radiative forcing based on simulated properties such

as the aerosol optical depth (AOD) and Ångström exponent

(AE) (Boucher et al., 2013).

Most global models that include aerosol microphysics

have been run at a fairly coarse resolution (spatial resolution

of the order of 1–2.5◦) (Table 1) usually for periods of a few

years. The resulting fields of AOD (and less frequently AE)

have been evaluated relative to ground-based and satellite-

borne remote-sensing optical properties measurements (Ta-

ble 1). However, aerosol populations (and dynamics) are

known to exhibit higher spatial variability (and scales) than

can be manifest in those models (Kovacs, 2006; Kulmala

et al., 2011; Santese et al., 2007; Schutgens et al., 2013;

Shinozuka and Redemann, 2011). Despite recent improve-

ments in the sophistication of aerosol processes and proper-

ties within global models, there are still substantial regional

and latitudinal discrepancies in both the magnitude of AOD

and other aerosol properties which impact aerosol direct ra-

diative forcing and the degree of model-to-model agreement

(Myhre et al., 2013). Thus, the skill of these models in re-

producing the spatiotemporal variability in the aerosol size

distribution, composition, concentration and radiative prop-

erties is incompletely characterized. Further large model-to-

model variability both in the global mean direct aerosol forc-

ing and in the spatial distribution thereof exists (Kulmala et

al., 2011; Myhre et al., 2013), leading to high uncertainty

in the quantification of aerosol climate forcing. Although a

direct comparison between the studies summarized in Ta-

ble 1 is inherently very difficult due to the different perfor-

mance metrics reported and variations in both the model res-

olution and aerosol descriptions, there is a consistent find-

ing of high spatial variability in model bias, both in sign and

magnitude. Correlation coefficients of monthly and seasonal

mean AOD from model simulations versus satellite-based

measurements are typically in a range of ∼ 0.6–0.8 both in

global (Colarco et al., 2010; Lee et al., 2015) and regional

(Nabat et al., 2015) simulations. However, these correlations

are largely reflective of the ability of the models to capture

the seasonal cycle and columnar aerosol properties from re-

mote sensing and thus ignore substantial variability on the

synoptic scale (Sullivan et al., 2015) and on mesoscales (An-

derson et al., 2003). A wider range of correlation coefficients

is reported when comparisons are made to high-frequency

observations of AOD on the hourly or daily timescale both

in global (Sič et al., 2015) and regional (Rea et al., 2015)

simulations (r ∼ 0.3–0.8). The largest range of correlation

coefficients ([−0.99, 0.9]; Table 1) is reported when simu-

lated AOD is compared with observations from the AErosol

RObotic NETwork (AERONET) and appears to be a func-

tion of temporal averaging, location of AERONET sites and

model resolution. Correlations between time series of sim-

ulated AE versus AERONET observations are reported less

frequently and, when conducted for monthly mean values,

range from ∼ 0.4 (Li et al., 2015) to ∼ 0.8 (Colarco et al.,

2010).

At least some of the variability in model performance,

as indicated by the mutual variability with observations

described by correlation coefficients, and model-to-model

agreement shown in AeroCom (Aerosol Comparisons be-

tween Observations and Models) Phase II may be attributable

to variations in model resolution, differences in gas and parti-

cle phase parameterizations, and aerosol descriptions. How-

ever, there are also variations in the way in which model

skill is evaluated and divergent opinions regarding prioritiza-

tion of future research directions. The direct effect remains

poorly quantified on the regional scale, due to uncertainty

in aerosol loading, uncertainty and spatiotemporal variabil-

ity in aerosol physical properties (Colarco et al., 2014), and

a relative paucity of rigorous model verification and valida-

tion exercises. Confidence in projections of possible future

aerosol radiative forcing requires detailed assessment of skill

in the current climate and the need for and benefits of re-

gional downscaling and/or the use of high-resolution global

models requires careful quantification.

Regional models represent an opportunity to assess

whether running higher-resolution simulations over specific

regions of interest improves the characterization of aerosol
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optical properties of relevance to direct radiative forcing.

The assessment of value added (or lack thereof) from high-

resolution regional versus global coarse-resolution models

has not been clearly quantified in previous studies (Table 1).

Although high-resolution simulations, comparable to those

presented herein, have been run, they cover a small temporal

and spatial domain (e.g., Tuccella et al., 2015) or lack quanti-

tative assessment of aerosol optical properties (e.g., Tessum

et al., 2014). Thus, the quantification of the skill of high-

resolution modeling of aerosol optical properties is presented

here along with a preliminary analysis of model performance

as a function of spatial aggregation. Forthcoming work will

include a direct comparison to coarser-resolution simulations

to quantify the value added (or lack thereof) from increased

model resolution.

We evaluate the skill of state-of-the-art high-resolution re-

gional model simulations of climate-relevant aerosol proper-

ties using a range of descriptive statistics and investigate pos-

sible sources of discrepancies with observations. The impact

of aerosols on climate and human health are strengthened un-

der conditions of enhanced aerosol concentrations; thus, it is

necessary to study and diagnose causes of “extreme aerosol

events” (Chu, 2004; Gkikas et al., 2012) and to evaluate the

ability of numerical models to simulate their occurrence, in-

tensity, spatial extent and location. Prior analyses of Level-3

(1◦ resolution) MODIS (MODerate resolution Imaging Spec-

troradiometer) AOD over the eastern half of North America

have indicated that extreme AOD values (> local 90th per-

centile) are coherent on regional scales (∼ 150 km) (Sullivan

et al., 2015). Thus, our evaluation exercise also includes an

analysis of the spatiotemporal coherence of extreme events.

We applied the Weather Research and Forecasting model

coupled with Chemistry (WRF-Chem version 3.6.1) at high

resolution (12× 12 km) over eastern North America during

the year 2008, in the context of a pseudo type-2 downscal-

ing exercise in which the high-resolution model is nested

within reanalysis boundary conditions (Castro et al., 2005).

The choice of this spatial resolution is taken in part to match

the resolution of the North American Mesoscale model that is

used for the meteorological lateral boundary conditions and

to ensure we capture some mesoscale variability while keep-

ing it computationally feasible.

Our evaluation is designed to investigate spatiotemporal

variability of aerosol optical properties (i.e., AOD and AE)

in their mean and extreme values. Thus, we conduct our eval-

uation of the simulations using

1. high-frequency, disjunct time series data from point

measurements at AERONET stations;

2. relatively high-resolution spatial data from lower-

frequency (once daily or lower) data from polar-orbiting

satellites (i.e., MODIS and MISR (Multi-angle Imaging

Spectroradiometer)).

We also include intercomparison with daily mean PM2.5

concentrations from 1230 surface stations and near-surface

PM2.5 composition using data from 123 IMPROVE (Intera-

gency Monitoring of Protected Visual Environments) sites.

The PM2.5 concentrations data for 2008 were obtained from

the US Environmental Protection Agency (EPA) AirData

web site and represent all available outdoor near-surface 24 h

mean PM2.5 measurements in the model domain. Most of

these stations report values on a 1 day in 3 schedule. Daily

average PM2.5 chemical compositions are also available for

1 day in 3 and were accessed online through the IMPROVE

data wizard. We further evaluate the WRF-Chem simulations

of a key meteorological parameter – precipitation – relative

to observations from the Delaware gridded data set (Mat-

suura and Willmott, 2009). This data set includes monthly

accumulated precipitation data on a 0.5× 0.5◦ grid which

is estimated by interpolating station observations from the

Global Historical Climatology Network using the spherical

version of Shepard’s distance-weighting method (Shepard,

1968; Willmott et al., 1985).

This paper is structured as follows. We first describe the

settings used in our WRF-Chem simulations and introduce

the remote-sensing and other data used for model evalua-

tion (Sect. 2). A description of statistical metrics used for the

evaluation is also provided. Section 3 presents results of the

evaluation of simulated AOD and AE versus observations,

as well as findings on extreme AOD values. In Sect. 4 we

summarize our findings and draw conclusions.

2 Methods

2.1 WRF-Chem simulations

The WRF-Chem (Grell et al., 2005; Fast et al., 2006) is used

to simulate aerosol processes over eastern North America

during the whole of 2008. The simulation domain comprises

300×300 grid points with a 12 km resolution and is centered

on southern Indiana (86◦W, 39◦ N). The calendar year 2008

was selected because it is representative of average climate

and aerosol conditions in the center of the model domain

(near Indianapolis, IN). In 2008, mean Tmax, Tmin, precipita-

tion and wind speed as measured at the National Weather Ser-

vice Automated Surface Observing Systems (NWS ASOS)

station at Indianapolis International Airport are within±0.25

standard deviations (σ ) of the 2000–2013 seasonal means.

Further, mean seasonal AOD from Level-3 MODIS retrievals

is within ±0.2σ of 2000–2013 mean values. Additionally,

the choice of this year ensures the availability of multiple

sources of ground- and space-based measurements of aerosol

properties for the evaluation of the simulations.

Table 2 provides details of the WRF-Chem simulations.

In brief, we used 32 vertical levels up to 50 hPa with tele-

scoping to allow for a good vertical resolution in the bound-

ary layer (i.e., approximately 10 layers below 1 km for
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Table 2. Physical and chemical schemes adopted in the WRF-Chem

simulations presented herein.

Simulation settings Values

Domain size 300× 300 cells

Horizontal resolution 12 km

Vertical resolution 32 levels up to 50 hPa

Time step for physics 72 s

Time step for chemistry 5 s

Physics option Adopted scheme

Microphysics WRF Single-Moment

5-class

Longwave radiation Rapid radiative transfer

model (RRTM)

Shortwave radiation Goddard

Surface layer Monin–Obhukov similarity

Land surface Noah land surface model

Planetary boundary layer Mellor–Yamada–Janjić

Cumulus parameterizations Grell 3

Chemistry option Adopted scheme

Photolysis Fast J

Gas phase chemistry RADM2

Aerosols MADE/SORGAM

Anthropogenic emissions NEI (2005)

Biogenic emissions Guenther, from USGS land

use classification

Figure 1. Location of the AERONET stations (colored dots) used

in this study and mean daily PM2.5 emissions (mgm−2 day−1) dur-

ing 2008 (gray shading). Colors indicate the AERONET site clas-

sification based on Kinne et al., 2013: polluted (magenta), land

(green), coastal (blue), unclassified (yellow). The numbers are mean

fractional bias (MFB) for WRF-Chem vs. AERONET stations (red

numbers indicate that WRF-Chem vs. AERONET has a larger MFB

than WRF-Chem vs. MODIS, whereas black numbers indicate a

lower bias in the comparison with AERONET).

non-mountainous regions). Meteorological lateral boundary

conditions are provided every 6 h from the North American

Mesoscale (NAM) model applied at a 12 km resolution. The

initial and boundary chemical conditions are based on output

from the offline global chemical transport model MOZART-4

(Model for OZone And Related chemical Tracers, version 4),

driven by meteorology from NCEP–NCAR reanalysis (Pfis-

ter et al., 2011; Emmons et al., 2010). Anthropogenic emis-

sions are from the POET (Precursors of Ozone and their

Effects in the Troposphere) and the EDGAR (Emissions

Database for Global Atmospheric Research) databases. The

land cover is specified based on the USGS 24-category data

at 3.7 km resolution (Anderson et al., 1976). Anthropogenic

point and area emissions at 4 km resolution are input hourly

from the US National Emissions Inventory (NEI-05) (US-

EPA, 2009) and specified for 19 vertical levels (see Fig. 1

for an overview of the primary aerosol emissions). Biogenic

emissions of isoprene, monoterpenes, other biogenic volatile

organic compounds (VOCs), oxygenated VOCs (OVOCs),

and nitrogen gas emissions from the soil are described as a

function of simulated temperature and photosynthetic active

radiation (for isoprene) using the model of Guenther (Guen-

ther et al., 1993, 1994; Simpson et al., 1995). Aerosol and

gas phase chemistry are described using the second gener-

ation Regional Acid Deposition Model (RADM2) chemical

mechanism (Stockwell et al., 1990) and the Modal Aerosol

Dynamics model for Europe (MADE) which incorporates the

Secondary Organic Aerosol Model (SORGAM) (Ackermann

et al., 1998; Schell et al., 2001). The correct characterization

of aerosol optical properties is dependent on model skill in

describing particle composition and mixing state (Li et al.,

2015; Curci et al., 2014). With this in mind, it is worthy of

note that aerosol components are assumed to be internally

mixed within each mode (although the composition differs

by mode). The standard deviation on the lognormal Aitken

and accumulation modes are fixed at 1.6 and 2, respectively.

The choice of a modal representation of aerosol size distri-

bution is dictated by the high computational demand of more

sophisticated approaches (e.g., sectional description of the

aerosol size distribution) for long-term simulations. With the

current settings, the 1-year run was completed without restart

in 9.5 days (230 h) on the Cray XE6/XK7 supercomputer

(Big Red II) owned by Indiana University using 256 proces-

sors distributed on eight nodes, thus indicating the feasibility

of this configuration for climate-scale simulations. Aerosol

and gas phase concentrations and meteorological properties

are saved once hourly. AE from the WRF-Chem simulations

is computed using

AE=
ln

AOD400nm

AOD600nm

ln 600 nm
400 nm

. (1)

AOD at wavelengths (λ) of 500 and 550 nm for comparison

with MODIS and MISR, respectively, are derived using the
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Ångström power law:

AODλ = AOD300×
λ

300

(−AE)

. (2)

We investigated the wavelength dependence on the AE cal-

culation using λ at 300 and 1000 nm as proposed in Kumar

et al. (2014) and found that, although AOD estimates are in-

dependent of the wavelength range selected, AE400−600nm is

systematically lower than AE300−1000nm. Analyses of AE re-

ported in this study are obtained using λ= 400 and 600 nm

since they are closer to those used in AE satellite retrievals.

2.2 Remotely sensed data

Consistent with previous research (Sect. 1 and Table 1),

we evaluate the WRF-Chem simulations using four primary

remote-sensing products – three are drawn from instruments

on the Aqua and Terra satellites, while the fourth is from

ground-based radiometers operated as part of the AERONET

network. The data sets are as follows:

1. The MODIS instruments aboard the polar-orbiting Terra

(∼ 10:30 overpass local solar time (LST)) and Aqua

(∼ 13:30 LST) satellites. They have measured atmo-

spheric aerosol optical properties since 2000 and 2002,

respectively, with near-global daily coverage (Remer et

al., 2005). Herein we use the Level 2 (L2; 10 km resolu-

tion) “dark-target” products of AOD at 550 nm and AE

at 470 and 660 nm (Collection 5.1; Levy et al., 2010).

The L2 AOD uncertainty is ±0.05± 0.15×AOD over

land relative to global sun photometer measurements

from AERONET; even when no spatiotemporal averag-

ing is used in the comparison (i.e., all combinations of

MODIS retrievals within 30 km of an AERONET site

and all AERONET retrievals within 30 min of the satel-

lite overpass), 71 % of MODIS retrievals fall within a

±0.05±0.2×AOD envelope relative to AERONET over

East CONtiguous US (E. CONUS) (Hyer et al., 2011).

AE is retrieved with higher uncertainty, and tends to

exhibit a bimodality in retrieved values (Levy et al.,

2010; Remer et al., 2005) (see Fig. S1 in the Supple-

ment). For this reason, where we compare WRF-Chem-

simulated AE with values from MODIS, we treat AE

as a binary variable, wherein AE< 1 is taken as rep-

resenting coarse-mode-dominated aerosol populations

and AE> 1 indicates fine-mode-dominated populations

(Pereira et al., 2011; Valenzuela et al., 2014).

2. The MISR instrument is also aboard the Terra satel-

lite and measures radiances at four wavelengths from

446 to 886 nm at nine viewing angles from nadir to

70.5◦. MISR (L2, 17.6 km resolution) retrieves AOD

with lower uncertainty than MODIS (±0.05×AOD rel-

ative to AERONET) but with lower temporal resolution

(global coverage in∼ 1 week) (Kahn et al., 2010, 2005).

Herein, we use the 0.5◦×0.5◦ gridded Level 3 (Ver. 31)

AOD (at 555 nm) and AE (calculated from AOD at 443

and 670 nm).

3. Ground-based sun photometer measurements from 22

AERONET (Holben et al., 1998) stations are also used

in this study (Fig. 1). This network is highly spa-

tially inhomogeneous, but under cloud-free conditions

the observations are available at multiple times dur-

ing daylight hours. AOD is measured directly by the

AERONET sun photometers at seven wavelengths (340,

380, 440, 500, 670, 870 and 1020 nm) with high accu-

racy (i.e., AOD uncertainty of < 0.01 for λ > 440 nm

(Holben et al., 2001)). The AE is calculated for all avail-

able wavelengths within the AOD range. The AE 870–

440 nm includes the 870, 670, 500 and 440 nm AOD

data. Level-2 aerosol products from AERONET (i.e.,

cloud screened and quality assured) have been used ex-

tensively in satellite and model validation studies (in-

cluding many of those summarized in Table 1) and are

used herein.

To avoid the discontinuity in the MODIS retrieval algorithm

due to different assumed aerosol types (Levy et al., 2007),

we confine our analyses of model skill to longitudes east

of 98◦W. Only WRF grid cells with cloud fraction equal-

ing 0 during the satellite over pass of each grid cell are

used in comparison to MODIS and MISR observations, and

only grid cells with at least five valid observations (both

from MODIS and MISR and cloud-screened WRF) during

a given month are included in the analyses presented herein.

It is worth noting that setting a threshold of 10 observations

does not significantly affect the results. For a uniform as-

sessment, L2 MODIS and L3 MISR data have been inter-

polated from their native grids (and resolutions of 10 km and

0.5◦×0.5◦, respectively) to the WRF-Chem 12 km resolution

grid by computing the mean of pixels with valid data within

0.1◦ and 0.3◦ for MODIS and MISR, respectively, from the

model centroids. The choice of averaging over a slightly

larger area than model resolution is dictated by the sparsity of

valid satellite retrievals. For AERONET vs. MODIS compar-

ison, we only use the nearest MODIS data (after regridding

to WRF) to each site. Where hourly WRF-Chem output is

compared with data from AERONET sites, a station is only

included if there are at least 20 simultaneous estimates avail-

able, and each AERONET measurement is compared to the

nearest WRF-Chem time step and to the grid cell containing

the station.

2.3 Statistical methods used in the model evaluation

The primary error metric of overall model performance used

herein is the mean fractional bias (MFB) (Boylan and Rus-

sell, 2006):

MFB=
1

N

N∑
1

Cm−C0

Cm+C0

2

. (3)
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Table 3. Spatial mean fractional bias (MFB) over the entire year.

Recall MFB= 1
N

∑N
1
Cm−C0
Cm+C0

2

, whereCm is the monthly mean AOD

or AE simulated by WRF-Chem at a specific location and C0

refers to the same quantity from MODIS, MISR and AERONET.

Thus, a negative value indicates that the model is negatively bi-

ased relative to the observations. The total sample sizeN is 358 048

and 359 633 when comparing WRF-Chem with MODIS onboard

Terra and Aqua, respectively. The comparison between MODIS and

AERONET is affected by a few outlier sites, so the MFB when the

three most biased sites are removed is given in parentheses. The

mean domain-averaged AOD and AE from WRF-Chem (after ap-

plying the cloud screen and selecting only MODIS overpass hours)

are 0.222 and 1.089, respectively.

Comparisons MFB AOD MFB AE

WRF-MODIS (Terra) 0.15 −0.09

WRF-MODIS (Aqua) 0.14 −0.11

WRF-MISR (Terra) 0.16 −0.11

WRF-AERONET 0.50 −0.59

MODIS (Terra)-AERONET −1.23 (−0.91) −0.13 (−0.11)

Table 4. Contingency table used to compare the fraction of grid

cells classified as fine, F (AE> 1), and coarse, C (AE< 1), by

MODIS and WRF-Chem (indicated in the table by M and W, re-

spectively).

MODIS

Fine Coarse

WRF-Chem Fine WF/MF WF/MC

Coarse WC/MF WC/MC

MFB is a useful model performance indicator since it

weights positive and negative biases equally. It varies be-

tween +2 and −2 and has a value of 0 for an ideal model.

Where MFB is reported for WRF-Chem versus MODIS,

MISR and AERONET, Cm is the monthly mean AOD or AE

simulated by WRF-Chem at a specific location, C0 refers to

the same quantify from remote-sensing data (Table 3) and N

is the sample size.

The evaluation of WRF-Chem simulations of AOD and

AE relative to satellite retrievals (MODIS and MISR) is also

summarized using Taylor diagrams (Taylor, 2001) produced

from the monthly means for the grid cells with simultaneous

data availability. Taylor diagrams synthesize three aspects of

model skill focused on evaluations of the spatial fields of the

parameter of interest: the correlation coefficient of the mod-

eled vs. observed field which is expressed by the azimuthal

position; the root mean squared difference which is propor-

tional to the distance between a point and the reference point

on the x axis (at 1, 0); and the ratio of simulated and observed

spatial standard deviation which is proportional to the radial

distance from the origin.

To investigate model performance at given locations

through time, empirical quantile–quantile (EQQ) plots are

constructed using high-frequency realizations of AOD and

AE at individual locations (AERONET sites) relative to

WRF-Chem values simulated in the grid cell containing the

measurement site. EQQ plots are thus generated for each of

the AERONET stations using all hours when there are si-

multaneous estimates available from the direct observations

and from the numerical simulations. The advantage of EQQ

plots is that they make no assumptions regarding the under-

lying form of the data and can be readily used to determine

which parts of the modeled distribution deviate from the ob-

servations (and thus fall away from a 1 : 1 line).

The validity of AE estimates is a function of both the

absolute magnitude of AOD and the uncertainty in the

wavelength-dependent AOD. AE provides information re-

garding the relative abundance of fine to coarse particles.

Thus, here we quantify the model skill in reproducing spa-

tial patterns of fine- and coarse-mode particles observed by

MODIS (Terra) by comparing the frequency distribution of

AE lower and higher than 1 to distinguish populations dom-

inated by coarse and fine aerosols, respectively, in WRF-

Chem and MODIS (Valenzuela et al., 2014; Pereira et al.,

2011). The choice of this threshold reflects the AE distri-

bution. AE simulated by WRF-Chem generally conforms to

a single normal distribution centered on 1 during January–

April and on 1.3 from May–June to December; AERONET

time series also tend to conform to a single mode, while

MODIS estimates typically are bimodally distributed (see

Fig. S1). We therefore consider the data in the form of a

contingency table (Table 4) and compute a χ2 test to assess

whether the frequency distribution of fine and coarse parti-

cles is the same between MODIS and WRF-Chem. The χ2

statistic is applied with 1 degree of freedom and a 99 % con-

fidence limit.

As described above, the impact of aerosols on climate and

human health is strengthened under conditions of enhanced

aerosol concentrations; thus, two analyses were undertaken

to evaluate the ability of the WRF-Chem simulations to rep-

resent extreme AOD values:

1. Evaluation of the spatial patterns of extreme events. Us-

ing daily estimates of AOD in each grid cell and month,

we identified the 75th percentile value across space (i.e.,

p75) as a threshold for extreme AOD for WRF-Chem

and MODIS separately. Grid cells with AOD exceed-

ing that threshold were classified as exhibiting extreme

values. The consistency in the spatial distribution of ex-

treme values as simulated by WRF-Chem relative to

MODIS is quantified using three skill statistics: the ac-

curacy, hit rate (HR) and threat score (TS) defined in

Eqs. (4)–(6). In these equations, WE, ME, WN and MN

correspond to the frequency of extreme conditions in

WRF-Chem (WE) or MODIS (ME) or neither (WN or
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Figure 2. Mean (a) AOD and (b) AE simulated by WRF-Chem during the year 2008. The mean values are computed after applying a cloud

mask and are for the Terra overpass time. Mean fractional bias (MFB) for (c) AOD and (d) AE for WRF-Chem relative to MODIS (Terra)

(similar results are found for Aqua). The inner black frame indicates the entire model domain, while as stated in the text, model evaluation is

only undertaken for longitudes east of 98◦W.

MN):

Accuracy=
WE/ME+WN/MN

WE/ME+WE/MN+WN/ME+WN/MN
,

(4)

HR=
WE/ME

WE/ME+WN/ME
, (5)

TS=
WE/ME

WE/ME+WE/MN+WN/ME
. (6)

The Accuracy describes the fraction of grid cells co-

identified as exceeding p75 or not in MODIS and WRF-

Chem and thus weights event and non-event conditions

equally. Since the accuracy quantifies model skill in cor-

rectly identifying both extreme and non-extreme aerosol

loadings, it is thus indicative of model performance in

capturing the overall AOD spatial variability. In this ap-

plication, where extreme is identified as the 75th per-

centile, a value of 0.5 would indicate that none of the

grid cells experiencing extreme events were reproduced

by the model, while 1 would indicate perfect identifi-

cation of events and non-events. The HR and TS met-

rics give “credit” only those grid cells identified as “ex-

treme”. For these metrics, a value of 0 indicates no

correct identification of grid cells with extreme values,

while a perfect model would exhibit a value of 1.

2. Evaluation of the scales of coherence of extreme AOD.

For each day during the overpass time and hours of

clear-sky conditions, we determine whether AOD simu-

lated at our reference location (i.e., the center of the do-

main, in southern Indiana) is equal to or larger than the

local p75 for that grid cell and season and then identify

all grid cells in the domain that also satisfy the condition

of AOD≥ local p75. The reference location represents

the center of gravity of the domain and was previously

used by Sullivan et al. (2015) for assessing scales of

coherence. In that work they also found that the spa-

tial scales of coherence are not sensitive to the precise

choice of reference location. For each season, we thus

compute the probability of extreme AOD co-occurrence

at our reference site and any other grid cell as the fre-

quency of co-occurrence divided by the number of ex-

treme occurrences at the reference location. The spatial
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scales of extreme AOD are then estimated by binning

the radial distance of each grid cell centroid from the

domain center into 100 km distance classes. An analo-

gous procedure is applied to L2 MODIS data to com-

pare them with simulations.

3 Results

3.1 Evaluation of AOD

Overall WRF-Chem is positively biased relative to remotely

sensed AOD. The spatial MFB is 0.15 (0.14) when computed

using all available MODIS measurements from Terra (Aqua)

and 0.50 relative to data from the AERONET stations (Ta-

ble 3). The sign of this bias is consistent across the entire

simulation domain (Fig. 2). These results agree with findings

from previous regional studies that have also shown an over-

estimation of AOD by WRF-Chem over eastern North Amer-

ica and Europe (i.e., regions dominated by sulfate aerosols)

and an underestimation in the western USA and most of the

rest of the globe (Zhang et al., 2012; Colarco et al., 2010;

Curci et al., 2014) (Table 1). Higher biases of WRF-Chem-

simulated annual mean AOD are found in the southern por-

tion of the domain (Fig. 2) where the model also exhibits a

positive bias in daily mean near-surface PM2.5 relative to ob-

servations from 1230 US EPA sites (see Figs. 3 and S2). We

further investigated the bias in PM2.5 by comparing WRF-

Chem simulations with ground-based measurements of parti-

cle composition at 123 IMPROVE sites over our domain. We

computed the MFB on a seasonal basis between sulfate and

nitrate concentrations in fine-mode particles (i.e., Aitken and

accumulation mode) versus observations (Fig. 4) and found

sulfate concentrations are underestimated almost over the en-

tire domain during winter, whereas a positive bias is present

in the other seasons. Conversely, nitrates tend to be overes-

timated during winter and fall at most sites, whereas they

are underestimated during summer. Thus, the positive bias

in AOD and PM2.5 mass particularly during the summer ap-

pears to be associated with excess sulfate concentrations.

The MFB of WRF-Chem relative to MODIS estimates

of AOD is lower than the MFB relative to most of the

AERONET stations except for a few sites located along the

coast, one polluted site in the northeast and at a few land

sites in the north or northwest (Figs. 1 and 5a). This is possi-

bly a result of an inability of the model to capture variations

in aerosol optical properties occurring on a local scale (be-

low the resolution of 12 km). However, the evaluation statis-

tics for WRF-Chem relative to AERONET did not vary con-

sistently with the classification of AERONET stations. In-

deed, the mean MFB for AOD at coastal, polluted and land

sites varies between 0.26 (coastal) and 0.67 (land), whereas

for AE it varies between −0.72 (coastal) and −0.50 (land).

When MODIS is compared to the 22 AERONET stations

the MFB is −1.23 suggesting an underestimation of AOD

from AERONET relative to MODIS. The large bias can be

explained noting that the number of co-samples in MODIS is

quite small and that MFB is strongly impacted by a few out-

liers. When we remove the three most biased sites (one land

site in the north and two sites along the east coast), the MFB

decreases to −0.91.

Using very limited data, prior research indicated

mesoscale variability (horizontal scales of 40–400 km and

temporal scales of 2–48 h) is a common and perhaps uni-

versal feature of lower-tropospheric aerosol light extinction

(Anderson et al., 2003). However, we are not aware of prior

systematic attempts to quantify and test the universality of

AOD scales of coherence over the contiguous USA. To test

the sensitivity of the MFB in simulated AOD to spatial ag-

gregation, we excluded the first 12 cells to the left and to

the top of the simulated domain and averaged the remain-

ing 12× 12 km grid cells over the following scales: 24× 24,

36× 36, 48× 48, 72× 72, 96× 96, 144× 144, 192× 192,

216×216, 288×288, 384×384, 432×432, 576×576, 864×

864, 1152× 1152, 1728× 1728, 3456× 3456 km. The last

spatial average corresponds to a single grid cell encompass-

ing the entire domain (excluding the outer 12 cells located

to the west and north of the simulation domain). Each spa-

tial average at a coarser resolution is computed as the mean

of all valid 12× 12 km grid cells within the averaging area.

We then computed the MFB for the regridded WRF-Chem

and MODIS data pair and found that, on a yearly basis, MFB

is highest at 12 km (0.14 for Aqua and 0.15 for Terra) and

reaches a first minimum at 72 km for Aqua (MFB= 0.13)

and 384 km for Terra (MFB= 0.13) (see Fig. 6). However,

the MFB, and hence systematic error in AOD relative to

MODIS, exhibits only a weak dependence on the level of

spatial aggregation. Spatial patterns of monthly mean AOD

show the largest differences relative to MODIS during win-

ter months in the southern states and near the coastlines,

which show MFB up to 0.7, and lower spatial correlation

(see Fig. 7a). This may be due to the larger uncertainty in

MODIS retrievals near the coast (Anderson et al., 2013), the

smaller sample size in the observations (particularly at high

latitudes) during December to March or the lower overall

AOD. Conversely, the spatial correlation is maximized dur-

ing the summer (r = 0.5–0.7) for MODIS and August for

MISR, when most data are available. The spatial variabil-

ity of monthly mean AOD fields is also well simulated by

WRF-Chem during the warm season (months May–August),

as indicated by the ratio of the spatial standard deviation

which is close to 1. However, σ (AOD) is usually higher in

MODIS and/or MISR than in WRF-Chem. The root mean

squared difference (RMSD) is largest and the spatial correla-

tion is lowest during September and October, when MFB is

also > 0.4 in part because WRF-Chem simulates high AOD

and aerosol nitrate and sulfate concentrations over large re-

gions in eastern North America (Figs. S3 and 4). The high

positive bias in these months is also reflected in the near-

surface PM2.5 concentrations and its composition (Figs. S2
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Figure 3. Mean daily PM2.5 concentrations (µgm−3) during 2008 as (a) simulated by WRF-Chem in the layer closest to the surface and

(b) observed at 1230 EPA sites (note the different color bar). Panel (c) shows the probability density of daily mean PM2.5 concentrations

observed (black line) and simulated (red line) at the measurement stations.

Figure 4. Mean fraction bias (MFB) of near-surface daily mean sulfate (first line) and nitrate (second line) concentrations in fine aerosol

particles as simulated by WRF-Chem and observed in PM2.5 measurements at 123 IMPROVE sites in different seasons. A positive MFB

indicates that WRF-Chem overestimates the observations. Note that the scales differ between the frames shown for sulfate and nitrate MFB

and dots and diamonds refer to positive and negative MFB, respectively.

and 4). A possible explanation for the relatively poor model

performance during September and October may derive from

the simulation of precipitation. During the majority of calen-

dar months, domain-averaged precipitation as simulated by

WRF-Chem is slightly positively biased relative to the grid-

ded observational data. However, during September and Oc-

tober, the model exhibits a negative bias (of 8–10 % relative

to observations) and a substantial underestimation of precip-

itation in regions of typically high AOD such as the Ohio

River valley and along the east coast (Fig. S4). We also ex-

amined the impact of spatial aggregation (at 12, 24, 36, 48,

72 and 96 km resolution) on the seasonality of model per-

formance. For AOD the spatial correlations are largest for

most months when data are aggregated to a resolution of

24×24 km, and the ratio of spatial standard deviation is also

closer to 1 when AOD are spatially aggregated, possibly in-

dicating that the spatial patterns simulated by WRF-Chem

on a fine scale do not always match those observed by

MODIS (Fig. 8). For AE both spatial correlations and the

ratio of standard deviations do not vary significantly when

data are aggregated to a coarser resolution (Fig. S5). Em-

pirical quantile–quantile plots of AOD at AERONET sta-

tions computed for both simultaneous MODIS observations

and WRF-Chem with AERONET observations indicate that

the positive bias in WRF-Chem-simulated values of AOD is

evident across much of the probability distribution (5th to

95th percentile values) at most AERONET stations. How-

ever, it is worthy of note that WRF-Chem comparisons with
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Figure 5. Summary statistics of comparisons of WRF-Chem simulations of (a) AOD and (b) AE relative to simultaneous observations at

the AERONET sites. For a location to be included in this analysis at least 20 coincident observations and simulations must be available. The

symbols at each AERONET station report MFB (outer square), root mean squared difference (RMSD, inner circle) and correlation coefficient

(r , inner *). Note the different color bar for MFB and RMSD between the two frames. The correlation coefficient is displayed with different

colors according with three classes: r <−0.1 (black), |r|< 0.1 (red) and r > 0.1 (white).

Figure 6. Mean fractional bias (MFB) on AOD from WRF-Chem as

a function of spatial aggregation relative to observations from Terra

(red line) and Aqua (blue line).

AERONET observations occupy much of the same observa-

tional range as simultaneous MODIS and AERONET obser-

vations at those sites (Fig. 9a), although the EQQ plot does

not necessarily compare the same MODIS–AERONET and

WRF-Chem–AERONET data pairs (i.e., the sample used to

compare AERONET and MODIS may differ from that used

to compare WRF-Chem and AERONET due to the cloud

screening procedure). Thus, model simulations reproduce the

range and probability of low-uncertainty AERONET mea-

sured AOD nearly as well as MODIS.

3.2 Evaluation of AE

Despite the low confidence in AE retrievals from MODIS,

the comparison of WRF-Chem with the remote-sensing es-

timates indicates some degree of agreement. The overall

Table 5. Contingency table showing the fraction of grid cells si-

multaneously identified as fine(WF/MF)- or coarse(WC/MC)-mode

particles by WRF-Chem and MODIS, as well as cells with differ-

ent classification (columns 4 and 5). Recall a threshold of AE= 1 is

used to define fine (AE> 1) and coarse-mode (AE< 1) dominance.

Months in bold indicate that the distribution of observed and sim-

ulated fine- or coarse-mode fractions are significantly different (p

value< 0.01) according to the χ2 test described in Sect. 2.3.

Month WF/MF WC/MC WF/MC WC/MF

1 0.025 0.176 0.007 0.792

2 0.030 0.241 0.004 0.725

3 0.005 0.297 0.001 0.697

4 0.013 0.230 0.004 0.753

5 0.141 0.204 0.028 0.628

6 0.541 0.122 0.055 0.283

7 0.623 0.094 0.030 0.252

8 0.520 0.061 0.017 0.402

9 0.561 0.118 0.032 0.288

10 0.486 0.145 0.088 0.281

11 0.321 0.179 0.058 0.442

12 0.164 0.248 0.015 0.573

Mean 0.286 0.176 0.028 0.510

MFB of WRF-Chem vs. MODIS Terra is −0.09 (−0.11

vs. Aqua), and the correlation between WRF-Chem and

MODIS monthly mean AE seems to be independent of sea-

son and lies between 0.20 and 0.54 for all months except

April, May and November when it is lower, whereas r is

always < 0.14 when compared to MISR (Fig. 7b). The AE

RMSD relative to MODIS or MISR does not exhibit a clear

seasonal pattern and the ratio of spatial standard deviations

in the AE fields is always lower than 1, indicating more
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Figure 7. Taylor diagrams comparing the spatial fields of monthly mean (a) AOD and (b) AE from WRF-Chem vs. MODIS-Terra (color

dots) or MISR (black squares). The numbers shown in the frames denote the month (e.g., 1= January). The numbers shown in the legend

indicate that the sample size of WRF-Chem data used for computing the monthly mean, and the scale of the dots is proportional to the

sample size. Note the change in scale for the ratio of standard deviations between the frames. The red dashed lines define the sector with a

Pearson correlation coefficient between (a) 0.12 and 0.70 for AOD and (b) 0.20 and 0.54 for AE, which comprise at least two thirds of the

months. Each dot or square summarizes the statistics (i.e., RMSD, ratio of standard deviations and correlation coefficient) of the WRF-Chem

vs. MODIS or WRF-Chem vs. MISR for a single month.

Figure 8. Taylor diagrams for AOD when MODIS observations and

WRF-Chem simulations at 12 km are spatially aggregated to 24, 36,

48, 72 and 96 km. Numbers next to the colored dots and diamonds

indicate different months (e.g., 1= January).

spatial variability in the satellite retrievals than in WRF-

Chem. The degree to which these results are symptomatic of

the difficulties in retrieving AE from the remote-sensing ob-

servations is unclear. When the AE values are treated as bi-

nary samples (AE< 1 indicating that coarse-mode aerosols

dominate, while AE> 1 indicating a dominance of the fine

mode) and presented as a contingency table, WRF-Chem

and MODIS simultaneously identify coarse-mode domi-

nance (i.e., AE< 1) in 18 % of grid cells (Table 5). WRF-

Chem simulates 31 % of grid cells as exhibiting annual mean

AE> 1, while MODIS indicates a larger fraction of grid

cells with AE> 1 (80 %, Table 5). Both WRF-Chem and

MODIS indicate the highest prevalence of fine-mode parti-

cles during the warm months, with the highest agreement

for co-identification (above 50 %) during June–September.

Co-identification of coarse-mode particles is highest in the

winter and spring months (above 20 % during February–May

and December, Table 5). However, when a χ2 test is ap-

plied to the frequency of fine and coarse particles identified

by WRF-Chem and MODIS, for all months except January

and April, the p value is < 0.01; thus, we reject the null hy-

pothesis of equal distribution of fine- and coarse-mode parti-

cles identified by MODIS and WRF-Chem. The two data sets

agree on 29 % of the cases when trying to identify fine-mode

particles and approximately 53 % of the cells are misclas-

sified, with MODIS usually identifying a higher prevalence

of fine aerosols than WRF-Chem. AE from WRF-Chem is

also negatively biased relative to AERONET observations,

with MFB=−0.59 indicating a greater prevalence of coarse-

mode aerosols in the simulations (Table 3, Fig. 2).

EQQ plots for all sites show good accord between WRF-

Chem and AERONET observations, as indicated by the rel-

atively consistent fractional error across the entire range of

simulated and observed AE (Fig. 9b). Simulations from pre-

vious studies have also shown a systematic negative bias

of simulated AE versus MODIS observations. AE is very

difficult to derive from the MODIS measurements, and the

uncertainty in AE scales with AOD (AE is very uncertain

at AOD< 0.2). Further, AE is derived from wavelength-

dependent AOD; thus, the uncertainties in the measurements

are certainly correlated. As indicated in Fig. 5, for some

AERONET sites there is evidence that positive bias in AOD

is associated with a high negative bias in AE, but this does
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Figure 9. Empirical quantile–quantile (EQQ) plots of (a) AOD and (b) AE of the 5th to 95th percentile as simulated by WRF-Chem relative

to 22 AERONET stations (their longitude (E) and latitude (N) is reported in the legend). The yellow shading shows the data envelope for

EQQ plots of AERONET and MODIS. For inclusion in the analysis, a location must have at least 20 coincident observations and simulations

in the grid cell containing the AERONET station. Note that MODIS uncertainty in the retrievals (±0.05) in near-zero AOD conditions may

lead to negative AOD values which are considered valid. The parameter space for MODIS–AERONET comparisons of AE is not shown

because AE from the MODIS L2 data product are strongly bimodal (see examples given in Fig. S1 in the Supplement).

not uniformly occur over eastern North America (e.g., for the

site at 77.8◦W, 55.3◦ N, WRF-Chem exhibits a positive bias

in AOD across the entire probability density function (pdf)

while the simulated AE is negatively biased, but the site at

84.28◦W, 35.95◦ N exhibits relatively good accord for AOD

but is negatively biased in AE almost to the same amount

as the northern station). Highest biases have been noted in

regions dominated by dust aerosols or when the model over-

estimates the dust loading, since aerosol population mean di-

ameter is inversely proportional to AE (Colarco et al., 2014;

Balzarini et al., 2014). Sources of the biases in our study in-

clude the simplified treatment of the size distribution, weak-

nesses in the emission inventory or uncertainties in meteoro-

logical variables affecting particle growth (e.g., temperature

and relative humidity). Future work will focus on examining

these sensitivities.

3.3 AOD extremes

Averaged across the entire simulation period, WRF-Chem

correctly identifies 70 % of locations with extreme and

non-extreme AOD in the MODIS observations (i.e., Accu-

racy= 70 %, Table 6). The overall TS and HR also indicate

that the geographic location of extreme AOD is similar be-

tween the model and satellite retrievals. The annual mean

HR, which is defined as the proportion of grid cells with ex-

treme AOD co-identified by WRF-Chem and MODIS rel-

ative to MODIS extremes, is 41 %. The annual mean TS,

which also takes into account false alarms, is 27 % (Table 6).

For each month, the HR is significantly higher than

the probability of co-identification of extremes by random

chance (i.e., p0 = 0.252
= 0.0625), since the test statistic

HR−p2
0√

p0×(1−p0)
N

is always larger than the critical value at 1 % (i.e.,

2.575). HR and TS vary seasonally, with highest skill dur-

ing summer months (HR up to 70 % and TS up to 54 %)

and lowest skill during winter and early spring (minimum

HR= 29 % and minimum TS= 17 %) (Table 6 and Fig. 10).

The relatively low skill in identifying the spatial occurrence

of high AOD during winter and spring may reflect the rela-

tively low AOD and low spatial variability during this season,

which means “extreme” AOD may differ only marginally

from the “non-extreme” areas (see Fig. S6 for monthly com-

parisons of extreme area identification).

The spatial distribution of extreme AOD also displays

some seasonality, with areas of AOD> p75 concentrated

over coastal regions and the southern states during summer

months and smaller areas during winter and early spring

(Fig. 10). Despite the relatively low simultaneous identifi-

cation of extremes during cold seasons, the location of ex-

tremes moves from the coast to the Great Lakes region and

Midwest states in both the model and MODIS (see Fig. S6).

During winter and spring months, WRF-Chem simulates

more areas with extreme AOD over coastal regions, whereas

MODIS shows more spatial variability and predicts higher

AOD in the Great Lakes area and in the states west of Illi-

nois. Conversely, WRF-Chem underestimates areas of ex-

treme AOD relative to MODIS in the northern regions of

the domain, possibly due to the underestimation of sulfate

aerosol. These two observations may be explained by noting

that the mass fraction of aerosol nitrate in the accumula-

tion and coarse mode predicted by WRF-Chem during most

of the fall and winter months dominates the sulfate frac-

tion over virtually all of the domain (see Fig. S3), whereas

point observations indicate that aerosol nitrate mass fraction
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Table 6. Synthesis of the skill with which WRF-Chem identifies the spatial distribution and location of extreme AOD values. Cells with

extreme AOD are identified as exceeding the 75th percentile computed on a monthly basis across space from monthly averaged daily means.

The second column reports the Accuracy, which indicates the spatial coherence of extremes and non-extremes between WRF-Chem and

MODIS. The Accuracy metric is computed as the sum of cells co-identified as exceeding the 75th percentile and not exceeding that threshold

by WRF-Chem and MODIS (Terra) relative to the total number of cells with valid data (fifth column, N ). The third column reports the

Threat Score (TS), which indicates the probability of correctly forecasting extreme AOD conditional upon either forecasting or observing

extremes. The fourth column shows the hit rate (HR) (i.e., probability of correct forecast), which is the proportion of cells correctly identified

as extremes by WRF-Chem relative to MODIS extremes. Values in parentheses refer to the same metrics when comparing WRF-Chem and

MODIS onboard the Aqua satellite.

Month Accuracy TS HR N

January 0.664 (0.651) 0.196 (0.178) 0.328 (0.302) 14 899 (15 051)

February 0.654 (0.583) 0.182 (0.091) 0.308 (0.167) 13 721 (13 643)

March 0.656 (0.647) 0.185 (0.173) 0.312 (0.295) 16 641 (16 541)

April 0.645 (0.680) 0.169 (0.219) 0.289 (0.360) 25 265 (24 974)

May 0.664 (0.699) 0.196 (0.248) 0.327 (0.397) 32 770 (31 239)

June 0.796 (0.800) 0.420 (0.428) 0.592 (0.600) 36 148 (34 654)

July 0.850 (0.823) 0.538 (0.477) 0.700 (0.646) 36 055 (35 480)

August 0.834 (0.832) 0.500 (0.496) 0.667 (0.663) 39 173 (39 130)

September 0.667 (0.665) 0.200 (0.197) 0.333 (0.329) 35 883 (35 081)

October 0.656 (0.665) 0.185 (0.198) 0.311 (0.330) 29 662 (26 456)

November 0.703 (0.696) 0.254 (0.245) 0.405 (0.393) 21 630 (19 538)

December 0.648 (0.653) 0.173 (0.181) 0.295 (0.306) 14 914 (14 527)

Mean 0.703 (0.699) 0.266 (0.261) 0.406 (0.399) 26 397 (25 526)

Figure 10. Spatial coherence in extreme AOD (i.e., the occurrence of AOD above the 75th percentile value) from WRF-Chem and MODIS

Terra during (a) March 2008 and (b) July 2008. Green areas denote grid cells defined as experiencing extreme AOD only in the WRF-Chem

simulations, blue pixels indicate extreme values as diagnosed using MODIS, while red pixels indicate areas where the occurrence of extreme

values is indicated by both the WRF-Chem simulations and the MODIS observations.

is dominant only over the Central Great Plains (Hand et al.,

2012). This may be related to an overestimation of aerosol

nitrate in winter and fall (Fig. 4) as a result of the impact

of air temperature and relative humidity on aerosol ammo-

nium nitrate (NH4NO3) stability (Aksoyoglu et al., 2011),

as well as an underestimation of aerosol sulfate, mostly dur-

ing winter (Fig. 4) and likely due to an underestimation of

the rate of SO2 gaseous and aqueous (missing) oxidation or

an underestimation of the nighttime boundary layer height

which impacts sulfate formation near the surface (Tuccella

et al., 2012). Localized negative biases in the model over

the coast may be associated with the higher uncertainties in

MODIS retrievals at coastlines (Anderson et al., 2013).

Extreme AOD exhibits relatively large spatial scales of co-

herence in both the WRF-Chem simulations and MODIS L2

observations (Fig. 11). Consistent with prior analyses of L3

MODIS data (Sullivan et al., 2015), the largest scales of co-

herence are found in fall. In all seasons except winter, the

probability of the co-occurrence of extremes at the domain

center and any other grid cell in the simulation domain is

> 0.5 up to a distance of 300 km. The simulated mean sea-

sonal scales of extreme coherence are comparable to L2

MODIS AOD (Fig. 11), despite the larger variability in the
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Figure 11. Mean and error bars (±1 standard deviation from the

mean) of the probability of co-occurrence of extreme AOD (i.e.,

AOD> 75th percentile) at the reference location (i.e., domain cen-

ter) and any other simulated grid cell during different seasons. The

distance between the reference point and each grid cell centroid was

binned using 100 km distance classes. Solid lines indicate mean sea-

sonal spatial scales simulated by WRF-Chem, whereas dashed lines

are observed means from L2 MODIS data (only the mean of the

coherence ratios is plotted for the MODIS data).

MODIS data due to the limited retrievals with simultaneous

extreme AOD at the reference location and at each other grid

cell. Thus, consistent with prior research, this analysis indi-

cates that extreme AOD occurs on large spatial scales and

therefore may significantly impact regional climate.

4 Discussion and concluding remarks

Aerosol direct and indirect radiative forcing on the climate

system are highly uncertain. A systematic assessment of the

ability of global and regional models to reproduce aerosol

optical properties in the contemporary climate is essential to

increasing confidence in future projections. We contribute to

this growing literature by presenting high-resolution (12 km)

simulations from WRF-Chem conducted over eastern North

America during a year representative of average meteorolog-

ical and aerosol conditions. We evaluate the simulations rela-

tive to daily MODIS and MISR observations, high-frequency

AERONET measurements of AOD, and AE and near-surface

PM2.5 mass and composition measurements. Results from

this study show the following:

– After grid cells with any cloud presence are removed

and considering only overpass hours, the domain-

averaged simulated mean AOD is 0.22. Simulated

AOD is positively biased relative to observations, with

MFB= 0.14 when compared to MODIS-Aqua and

MFB= 0.50 relative to AERONET (Figs. 1 and 2). A

clear north–south gradient in AOD bias vs. MODIS is

also observed. This positive bias is consistent across the

entire probability distribution at most AERONET sta-

tions (Fig. 9) and is also evident in the comparison of

modeled near-surface PM2.5 mass relative to daily mean

observations distributed at 1230 stations across the do-

main (Fig. 3).

– Model skill in reproducing the spatial fields of monthly

mean AOD as measured by the spatial correlation and

ratio of the spatial variability with MODIS is max-

imized during the summer months (r ∼ 0.5–0.7, and

ratio of σ ∼ 0.8 to 1.2). During this season observed

AOD is higher and more observations are available

(Fig. 7). Lowest model–observation agreement is found

in September and October and is at least partially at-

tributable to a dry bias in precipitation from WRF-Chem

(Fig. S4).

– In part because of the difficulties in retrieving robust

estimates of AE, few previous studies have evaluated

model-simulated AE values. We show that AE as simu-

lated by WRF-Chem over eastern North America is neg-

atively biased relative to MODIS (MFB=−0.10) and

AERONET (MFB=−0.59). This bias indicates that

WRF-Chem simulates a larger fraction of coarse-mode

particles than is evident in the remote-sensing observa-

tions (see Tables 3 and 5). While some of the bias rel-

ative to MODIS may reflect high observational uncer-

tainty, the large bias relative to AERONET is consistent

with prior research (Table 1) and is symptomatic of sub-

stantial systematic error in the aerosol size distribution.

– Causes of the model error may include insufficiently de-

tailed treatment of size distribution or inaccurate repre-

sentation of aerosol composition and mixing state which

affect the simulated size distribution and thus AE (Li

et al., 2015; Curci et al., 2014). Further, weaknesses in

the emission inventory (e.g., size resolution of primary

emissions), as suggested by the systematic bias in simu-

lated PM2.5 concentrations relative to ground-based ob-

servations, and/or biases in the representation of mete-

orological conditions critical to determining aerosol ni-

trate concentrations may also affect model performance.

Currently it is not possible to fully attribute the relative

importance of these error sources.

– The majority of prior model evaluation exercises have

tended to focus on mean AOD values. However, the cli-

mate and health impacts of aerosols are greater under

high aerosol loadings. We demonstrate that WRF-Chem

exhibits some skill in capturing the spatial patterns

of extreme aerosol loading, especially during summer

months. During this season, the hit rate for AOD> p75

reaches 70 %. Largest biases are found during win-

ter months and near the coastlines where AOD from

MODIS also exhibits largest retrieval uncertainty.

Despite the encouraging performance of WRF-Chem both

in terms of simulation efficiency and in reproducing AOD

(mean and extreme values) and the partial skill in reproduc-

ing AE over eastern North America, further investigations
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are needed to properly quantify the value added by running

high-resolution simulations by direct comparison with anal-

ogous runs at a coarser resolution. Future simulations will

also involve the assessment of accuracy of different aerosol

schemes (i.e., sectional vs. modal approaches) to represent

the size distribution. The inclusion of a direct description

of new particle formation processes within WRF-Chem may

also improve estimates of ultrafine-particle concentrations

and thus of simulated aerosol optical properties.

The Supplement related to this article is available online

at doi:10.5194/acp-16-397-2016-supplement.
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