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Abstract. The negative impacts of fine particulate matter

(PM2.5) exposure on human health are a primary motivator

for air quality research. However, estimates of the air pol-

lution health burden vary considerably and strongly depend

on the data sets and methodology. Satellite observations of

aerosol optical depth (AOD) have been widely used to over-

come limited coverage from surface monitoring and to assess

the global population exposure to PM2.5 and the associated

premature mortality. Here we quantify the uncertainty in de-

termining the burden of disease using this approach, discuss

different methods and data sets, and explain sources of dis-

crepancies among values in the literature. For this purpose

we primarily use the MODIS satellite observations in concert

with the GEOS-Chem chemical transport model. We contrast

results in the United States and China for the years 2004–

2011. Using the Burnett et al. (2014) integrated exposure re-

sponse function, we estimate that in the United States, expo-

sure to PM2.5 accounts for approximately 2 % of total deaths

compared to 14 % in China (using satellite-based exposure),

which falls within the range of previous estimates. The differ-

ence in estimated mortality burden based solely on a global

model vs. that derived from satellite is approximately 14 %

for the US and 2 % for China on a nationwide basis, although

regionally the differences can be much greater. This differ-

ence is overshadowed by the uncertainty in the methodology

for deriving PM2.5 burden from satellite observations, which

we quantify to be on the order of 20 % due to uncertainties

in the AOD-to-surface-PM2.5 relationship, 10 % due to the

satellite observational uncertainty, and 30 % or greater un-

certainty associated with the application of concentration re-

sponse functions to estimated exposure.

1 Introduction

By 2030, air pollution will be the leading environmentally

related cause of premature mortality worldwide (OECD,

2012). The World Health Organization (WHO) estimates

that exposure to outdoor air pollution resulted in 3.7 mil-

lion premature deaths in 2012. Many epidemiological studies

have shown that chronic exposure to fine particulate matter

(PM2.5) is associated with an increase in the risk of mortal-

ity from respiratory diseases, lung cancer, and cardiovascular

disease, with the underlying assumption that a causal rela-

tionship exists between PM and health outcomes (Dockery

et al., 1993; Jerrett et al., 2005a; Krewski et al., 2009; Pope

et al., 1995, 2002, 2004, 2006). This has been shown through

single and multi-population time series analyses, long-term

cohort studies, and meta-analyses.

In order to stress the negative impacts of air pollution on

human health and inform policy development (particularly

with regard to developing strategies for intervention and risk

reduction), many studies have calculated the total number

of premature deaths each year attributable to air pollution

exposure or the “burden of disease”, through health impact

assessment methods. One of the main obstacles in attribut-

ing specific health impacts of PM2.5 is determining expo-

sure and linking this to specific health outcomes. Jerrett et

al. (2005a) suggest personal monitors would be the optimal

method because it would be easier to attribute individual

recorded health outcomes to specific particulate levels, but

point out that the financial costs and time-intensiveness limit

widespread use. Many studies have instead relied on fixed-

site monitors within a certain radius to estimate population-
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level exposure. However, these monitoring networks are gen-

erally located in urban regions and provide no information on

concentration gradients between sites. Thus, epidemiologi-

cal studies typically have to quantify the aggregate popula-

tion response to an area-average concentration. Additionally,

health data can be limited and therefore the responses may

be determined from a subset of individuals that may not be

representative of the wider population.

Estimating the burden of disease associated with partic-

ulate air pollution requires robust estimates of PM2.5 expo-

sure. Fixed-site monitoring networks can be costly to oper-

ate and maintain, and the sampling time period for many of

these monitors in the United States is often only every third

or sixth day. Due to the high spatial and temporal variabil-

ity in aerosol concentrations, this makes it difficult to deter-

mine exposure and widespread health impacts. Worldwide,

monitoring networks are even scarcer, with many developing

countries lacking any long-term measurements. “Satellite-

based” concentrations are now used extensively for estimat-

ing mortality burdens and health impacts (e.g. Crouse et al.,

2012; Evans et al., 2013; Fu et al., 2015; Hystad et al., 2012;

Villeneuve et al., 2015). Satellite observations of aerosol

optical depth (AOD) can offer observational constraints for

population-level exposure estimates in regions where surface

air quality monitoring is limited; however they represent the

vertically integrated extinction of radiation due to aerosols,

and thus additional information on the vertical distribution

and the optical properties of particulate matter is required

(often provided by a model) to translate these observations

to surface air quality (van Donkelaar et al., 2006, 2010; Liu

et al., 2004, 2005). Alternatively, some studies have relied on

model-based estimates of PM2.5 exposure. Table 1 shows that

the resulting estimates of premature mortality vary widely.

Here, we discuss these different methods and contrast the

uncertainty in these approaches for estimating exposure for

both the US, where air quality has improved due to regula-

tions and control technology, and China, where air quality is

a contemporary national concern. Our objective is to investi-

gate the factors responsible for uncertainty in chronic expo-

sure to PM2.5 burden of disease estimates, and use these un-

certainties to contextualize the comparison of satellite-based

and model-based estimates of premature mortality with pre-

vious work. As health impact assessment methods are be-

coming more popular in the scientific literature, a greater un-

derstanding of the uncertainties in these methods and the data

sets that are used is important.

2 Methods and tools

2.1 General formulation to calculate the burden

of disease

To estimate the burden of premature mortality due to a spe-

cific factor like PM2.5 exposure, we rely on Eqs. (1) and (2)

(Eqs. 6 and 8 in Ostro, 2004 and as previously used in van

Donkelaar et al., 2011; Evans et al., 2013; Marlier et al.,

2013; Zheng et al., 2015). The attributable fraction (AF) of

mortality due to PM2.5 exposure depends on the relative risk

value (RR), which here is the ratio of the probability of mor-

tality (all-cause or from a specific disease) occurring in an

exposed population to the probability of mortality occurring

in a non-exposed population. The total burden due to PM2.5

exposure (1M) can be estimated by convolving the AF with

the baseline mortality (equal to the baseline mortality rate

Mb× exposed population P ). The relative risk is assumed to

change (1RR) with concentration, so that, in general, expo-

sure to higher concentrations of PM2.5 should pose a greater

risk for premature mortality (Sect. 2.4).

AF= (RR− 1)/(RR)

(or the alternate form of AF=1RR/(1RR+ 1) (1)

1M =Mb×P ×AF (2)

Application of this approach requires information on the

baseline mortality rates and population, along with the RR,

which is determined through a concentration response func-

tion (including a shape and initial relative risk, Sect. 2.4), and

ambient surface PM2.5 concentrations.

2.2 Baseline mortality and population

For population data, we use the Gridded Population of the

World, Version 3 (GPWv3), created by the Center for Inter-

national Earth Science Information Network (CIESIN) and

available from the Socioeconomic Data and Applications

Center (SEDAC). This gridded data set has a native resolu-

tion of 2.5 arcmin (∼ 5 km at the equator) and provides pop-

ulation estimates for 1990, 1995, and 2000, and projections

(made in 2004) for 2005, 2010, and 2015. We linearly in-

terpolate between available years to get population estimates

for years not provided. Population density for China and the

United States for the year 2000 are shown in Fig. 1 along

with the projected change in population density by the year

2015, illustrating continued growth of urbanized areas (at the

expense of rural regions in China). We also compare mor-

tality estimates using only urban area population (similar to

Lelieveld et al., 2013, which estimates premature mortality

in megacities). For this, we rely on the populated places data

set (provided by Natural Earth, which gives values for a point

location rather than a grid and includes all major cities and

towns along with some smaller towns in sparsely inhabited

regions) which is determined from LandScan population es-

timates (Dobson et al., 2000). In the US, approximately 80 %

of the population lives in urban areas. For China, 36 % of the

population lived in urban areas in 2000, but this number rose

to 53 % in 2013 (World Bank, 2015).

To determine baseline mortalities in the US for cardiovas-

cular disease (ischemic heart disease and stroke), lung can-

cer, and respiratory disease, we use mortality rates for each
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Table 1. Premature mortality from PM2.5 exposure by all-cause (All), heart disease (heart), and lung cancer (LC) as estimated in other

studies for the globe, US (or North America), and China (or Asia). Values are for (× 1000 deaths per year). All cause values for this study

are calculated as the sum of heart disease, lung cancer, and respiratory disease deaths (as opposed to calculating this based on an all-cause

CRF). a Study provides several estimates determined using different CRFs. b Study provides several estimates from 14 different atmospheric

models. Table 3 provides additional information on the data sources and concentrations response functions used in these studies.

Study US (North America) China Global Year for

(Asia/Western Pacific, East Asia) estimate

All Heart LC All Heart LC All Heart LC

Evans et al. (2013)a (WHO

region)

2640–4220 1123–1669 176–264 2004

Fann et al. (2012)a (US) 130–320 2005

Anenberg et al. (2010)a 141 124 17 2736 2584 152 2077–7714 3499 222 2000

(continents) 1800–4549 39–336

Lelieveld et al. (2013) (US

and China)

55 46 9.1 1006 898 108 2200 2000 186 2005

Cohen et al. (2004)a (WHO

region)

28 3–55 1–12 355 192–504 22–53 799 474–1132 39–105 2000

Lim et al. (2012) (GBD

2010, US and China)

86 58 20 858 563 185 3100 2010

Forouzanfar et al. (2015)

(GBD 2013, US and China)

78 54 17 916 600 201 2900 2013

WHO (2014) (WHO re-

gion)

152 1669 3700 1505 227 2012

Fang et al. (2013) (North

America and East Asia)

38 4.4 661 53 1532 95 2000

Silva et al. (2013)b (conti-

nents)

12.2–77 908–1240 1880–2380 2000

US EPA (2010)a (US) 26–360 2005

US EPA (2009) (US) 144

Punger and West (2013)

(US)

66 61 9.9 2005

Lelieveld et al. (2015) (US

and China)

55 1357 3297 2010

Sun et al. (2015) (US) 103.3 68.3 15.4 2000

Rohde and Muller (2015)

(China)

1600 2014

This Study: Satellite (US

and China) with Burnett et

al. (2014)

50 38 5 1271 9 138 2004–2011

This Study: Model (US

and China) with Burnett et

al. (2014)

43 32 4 1300 931 144 2004–2011

cause of death for all ages from the Center for Disease Con-

trol (cdc.gov) for each year and each state. We multiply the

gridded population by these state-level mortality rates to ob-

tain the baseline mortality in each grid box. Other studies

have also used country-wide (or regional) (e.g. Evans et al.,

2013) or county-level (e.g. Fann et al., 2013) average deaths

rates by cause. Some studies use the mortality rate for all car-

diovascular diseases, which would produce larger estimates

than just using ischemic heart disease and cerebrovascular

disease (stroke). Additionally, some studies also only con-

sider respiratory deaths related to ozone exposure. Mortal-

ity values are not as readily available for China, so we rely

on country-wide values for baseline mortality (WHO age-

standardized mortality rates by cause). Therefore, in China

spatial variations in Mb are only due to variations in popu-

lation and not regional variations in actual death rates (i.e.

we do not account for death-specific mortality rates varying

between provinces). In order to account for some regional

variability in mortality rates, we use a population threshold

to distinguish between urban and rural regions for lung can-

cer mortality rates (Chen et al., 2013a).

2.3 Relative risk

The relative risk (RR) is a ratio of the probability of a health

endpoint (in this case premature mortality) occurring in a

population exposed to a certain level of pollution to the prob-

ability of that endpoint occurring in a population that is not

exposed. Values greater than one suggest an increased risk,

while a value of one would suggest no change in risk. These

values are determined through epidemiological studies which

relate individual health impacts to changes in concentra-

tions, and literature values span a large range (Fig. 2). While

www.atmos-chem-phys.net/16/3499/2016/ Atmos. Chem. Phys., 16, 3499–3523, 2016



3502 B. Ford and C. L. Heald: Uncertainty of premature mortality estimates

 

 25oN

30oN

35oN

40oN

45oN

50oN

 120oW 100oW 80oW  

  

 120oW 100oW 80oW  

 

 

 

20oN

25oN

30oN

35oN

40oN

45oN

50oN

 

 80oE 100oE 120oE  

<       0.1 1.0 10.0 100.0 1000.0 10000.0

  

 80oE 100oE 120oE  

  -1000 -100 -10 -1 0 0 1 10 100 1000

 

(a) (b)

(c) (d)

Figure 1. Population density (per km2) for the year 2000 from the GPWv3 data for (a) the continental US and (c) China. The projection for

increase in population density by the year 2015 for (b) the continental US and (d) China.

these studies attempt to account for differences in popula-

tions, lifestyles, pre-existing conditions, and co-varying pol-

lutants, relative risk ratios determined from each study still

differ. This is likely due to variables not taken into consid-

eration, errors in exposure estimates (“exposure misclassifi-

cation”) (Sheppard et al., 2012), and because, although the

long-term effects of exposure to atmospheric pollutants have

been well-documented, the pathophysiological mechanisms

linking exposure to mortality risk are still unclear (Chen and

Goldberg, 2009; Pope and Dockery, 2013; Sun et al., 2010),

which make it difficult to determine how transferable results

are from the context in which they were generated.

For our initial estimates, we use the integrated risk func-

tion from Burnett et al. (2014) for heart disease, respiratory

disease, and lung cancer premature mortality due to chronic

exposure. We also compare our results to premature mor-

tality estimates using risk ratios determined by Krewski et

al. (2009), which is an extended analysis of the American

Cancer Society study (Pope et al., 1995), and from Laden

et al. (2006) which is an updated and extended analysis of

the Harvard Six Cities study (Pope et al., 2002). The updated

Krewski et al. (2009) risk ratios have been widely used in

similar studies due to the large study population with na-

tional coverage, 18-year time span, and extensive analysis of

confounding variables (ecological covariates, gaseous pollu-

tants, weather, medical history, age, smoking, etc.). However,

the Burnett et al. (2014) function is becoming more widely

used in the literature (e.g. Lelieveld et al., 2015; Lim et al.,

2012; Apte et al., 2015) because it provides the shape of the

mortality function for the global range of exposure concen-

trations. Using these different risk ratios can make our results

more directly comparable to studies in Table 1 which rely on

the risk ratios from these four studies (Burnett et al., 2014;

Krewski et al., 2009; Laden et al., 2006; Pope et al., 2002).

2.4 Concentration response function

In order to determine an attributable fraction, it is necessary

to understand how the response changes with concentration

(i.e. does the relative risk increase, decrease, or level off with

higher concentrations?). The shape of this concentration re-

sponse function is an area of on-going epidemiological re-

search (e.g. Burnett et al., 2014; Pope et al., 2015).

In the simplest form, it might be assumed that the change

in relative risk (RR, given as per 10 µg m−3) linearly depends

on the surface PM2.5 concentration (C, in µg m−3) as given

in Eq. (3).

1RR= (RR− 1)× (C−C0)/10 (3)

In this equation, C0 can be considered the “policy rel-

evant (PRB)/target”, “natural background” or “thresh-

old”/“counterfactual”/“lowest effect level” surface PM2.5

concentration. Studies have shown that there is not a con-

centration level below which there is no adverse health ef-

fect for PM (e.g. Pope et al., 2002; Shi et al., 2015), and

most experts in health impacts of ambient air quality agree

that there is no population-level threshold (although there

may be individual-level thresholds, e.g. Roman et al., 2008).

However, there are few epidemiological studies in regions

with very low annual average concentrations (Crouse et al.,

Atmos. Chem. Phys., 16, 3499–3523, 2016 www.atmos-chem-phys.net/16/3499/2016/
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0.5 1.0 1.5 2.0 2.5 3.0 3.5

Carey et al., 2013 1.130
Cesaroni et al., 2013 1.040

Chen et al., 2008 1.060
Crouse et al., 2012 1.150

Dockery et al., 1993 1.130
Eftim et al., 2008 1.109
Eftim et al., 2008 1.208

Enstrom, 2005 1.010
Enstrom, 2005 1.040

Franklin et al., 2007 1.012
Goss et al., 2004 1.320
Hart et al., 2011 1.150

Hoek et al., 2013 1.060
Jerrett et al., 2005b 1.170

Jerrett et al., 2013 1.060
Krewski et al., 2000 1.140
Krewski et al., 2000 1.070

Laden et al., 2006 1.160
Lepeule et al., 2012 1.140

Lipfert et al., 2006 1.026
Lipsett et al., 2011 1.010

McDonnell et al., 2000 1.085
Pope et al., 1995 1.066
Pope et al., 2002 1.062
Puett et al., 2009 1.260

Shi et al., 2015 1.075
Zeger et al., 2008 1.068

All cause
Heart disease

Respiratory disease
Lung cancer

All cause
Heart disease

Respiratory disease
Lung cancer

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Relative risk

Beelen et al., 2008 1.060
Carey et al., 2013 1.110

Cesaroni et al., 2013 1.050
Chen et al., 2008

Dockery et al., 1993 1.180
Hamra et al., 2014 1.090

Hart et al., 2011 1.180
Jarrett et al., 2005b 1.440

Jerrett et al., 2013 1.120
Katanoda et al., 2011 1.230
Krewski et al., 2009 1.080
Krewski et al., 2009 1.110

Laden et al., 2006 1.270
Lepeule et al., 2012 1.370

Lipsett et al., 2011 0.950
McDonnell et al., 2000 1.390

Pope et al., 1995 1.012
Pope et al., 2002 1.135

Turner et al., 2011 1.190

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Crouse et al., 2012 1.040
Lipsett et al., 2011 1.160

Miller et al., 2007 1.830
Beelen et al., 2008 1.040

Cesaroni et al., 2013 1.100
Chen et al., 2008
Chen et al., 2005 0.900
Chen et al., 2005 1.420

Crouse et al., 2012 1.310
Crouse et al., 2012 1.160

Dockery et al., 1993 1.370
Dockery et al., 1993 1.180
Franklin et al., 2007 1.013

Hoek et al., 2013 1.110
Jerrett et al., 2005b 1.120
Jerrett et al., 2005b 1.390

Jerrett et al., 2013 1.122
Jerrett et al., 2013 1.217

Krewski et al., 2009 1.120
Krewski et al., 2009 1.150

¨nzli et al., 2005Kunzli et al., 2005 1.059
Laden et al., 2006 1.280

Lepeule et al., 2012 1.260
Lipsett et al., 2011 1.070
Lipsett et al., 2011 1.200

McDonnell et al., 2000 1.230
Miller et al., 2007 1.760
Ostro et al., 2015 1.190
Pope et al., 1995 1.120
Pope et al., 2002 1.093
Pope et al., 2004 1.120
Pope et al., 2004 1.180
Pope et al., 2015 1.150
Pope et al., 2015 1.180
Puett et al., 2009 2.020

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Relative risk

Abbey et al., 1995 1.090
Abbey et al., 1995 1.140
Abbey et al., 1995 1.080

Beelen et al., 2008 1.070
Carey et al., 2013 1.540

Cesaroni et al., 2013 1.030
Franklin et al., 2007 1.006

Hart et al., 2011 1.180
Hoek et al., 2013 1.030

Jerrett et al., 2013 1.030
Katanoda et al., 2011 1.170
Katanoda et al., 2011 0.890
Katanoda et al., 2011 1.160

Laden et al., 2006 1.080
Lepeule et al., 2012 1.170

Naess et al., 2007
Pope et al., 2004 0.920

Figure 2. Relative risk ratios from select previous studies for mortality due to chronic exposure to PM2.5 (given as per 10 µg m−3 increase)

colored by cause of death. Studies applied in this work are highlighted in bold.

2012, does record a 1.9 µg m−3 annual concentration in rural

Canada) making it difficult to determine the health risks in

relatively clean conditions. How to extrapolate the relation-

ship out of the range of observed measurements is uncertain.

Therefore, rather than assuming that the function is linear

down to zero, studies often set C0 to the value of the lowest

measured level (LML) observed in the epidemiology study

from which the RRs are derived (e.g. Evans et al., 2013, use

5.8 µg m−3 with the RR from Krewski et al., 2009) or use the

“policy relevant” background (PRB, generally 0–2 µg m−3)

concentration. This is the level to which policies might be

able to reduce concentrations and is generally determined

from model simulations in which domestic anthropogenic

emissions have been turned off (e.g. Fann et al., 2012). Simi-

larly, some studies have set this value to preindustrial (1850)

pollution levels (e.g. Fang et al., 2013; Silva et al., 2013).

Linear response functions are generally a good fit to ob-

served responses at lower concentrations (Pope et al., 2002).

However, studies suggest that linear response functions can

greatly overestimate RR at high concentrations (e.g. Pope

et al., 2015), where responses may start to level off. There

is uncertainty at high concentrations because most epidemi-

ology studies of the health effects of air pollution expo-

sure have generally been conducted under lower concentra-

tions (i.e. in the US). In order to determine the shape of

this response at higher concentrations, smoking has been

used as a proxy (Burnett et al., 2014; Pope et al., 2011,

2009), which does show a diminishing response at higher

concentrations. Therefore, both log-linear (Eqs. 4 and 5,

where β = 0.15515/0.23218 for heart disease/lung cancer

from Pope et al. (2002) or β = 0.18878/0.21136 for heart

disease/lung cancer from (Krewski et al., 2009, in Eq. 5

and β = 0.01205/0.01328 for heart disease/lung cancer from

Krewski et al., 2009, in Eq. 4) and power law (Eq. 6, where

I is the inhalation rate of 18 m3 day−1, β = 0.2730/0.3195,

α = 0.2685/0.7433 for heart disease/lung cancer from Pope

et al., 2011, and as used in Marlier et al., 2013) functions

have been also been explored.

www.atmos-chem-phys.net/16/3499/2016/ Atmos. Chem. Phys., 16, 3499–3523, 2016
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1RR= exp[β(C−C0)] − 1 (4)

1RR= [(C+ 1)/(C0+ 1)]β − 1 (5)

1RR= α(I ×C)β (6)

We note that Cohen et al. (2005) and Anenberg et al. (2010)

reference Eq. (4) as a log-linear function, while Ostro (2004),

Evans et al. (2013), and Giannadaki et al. (2014) use this

as their linear function and instead use Eq. (5) as their log-

linear function, we will refer to these equation numbers for

clarity in other sections. Another method to limit the re-

sponse at high concentrations is to simply use a “ceiling”,

“maximum exposure/high-concentration threshold”, or “up-

per truncation” value in which it is assumed that the response

remains the same for any value above it (e.g. Anenberg et al.,

2012; Cohen et al., 2005; Evans et al., 2013). This can be a

somewhat arbitrary value or the highest observed concentra-

tion in the original epidemiological study.

More recently, Burnett et al. (2014) fit an integrated

exposure response (IER) model using RRs from a variety

of epidemiological studies on ambient and household

air pollution, active smoking, and secondhand tobacco

smoke in order to determine RR functions over all global

PM2.5 exposure ranges for ischemic heart disease, cere-

brovascular disease, chronic obstructive pulmonary disease,

and lung cancer (Eq. 7). Monte Carlo simulations were

conducted in order to derive the 1000 sets of coefficients

for the IER function (the coefficients are available at

http://ghdx.healthdata.org/record/global-burden-disease-

study-2010-gbd-2010-ambient-air-pollution-risk-model-

1990-2010):

for C < C0,1RR= 0

for C ≥ C0,1RR= α
{
1− exp[−γ (C−C0)

ρ
}
. (7)

This form is now being widely used (Apte et al., 2015;

Lelieveld et al., 2015; Lim et al., 2012), and we use it here

for our baseline estimates. In the following sections, we will

discuss the uncertainty on the burden of disease associated

with the shape of the concentration response function and

threshold concentration.

2.5 Estimating surface PM2.5

We use both a global model and satellite observations to es-

timate surface PM2.5 concentrations and translate these to

PM2.5 exposure and health burden. In addition, we use sur-

face measurements of PM2.5 to test the accuracy of these es-

timates.

2.5.1 Unconstrained model simulation

We use the global chemical transport model GEOS-Chem

(geos-chem.org) to simulate both surface PM2.5 and AOD.

We use v9.01.03 of the model, driven by GEOS-5 meteo-

rology, in the nested grid configuration over North Amer-

ica and Asia (0.5◦× 0.667◦ horizontal resolution) for 2004–

2011. Using this longer time period gives greater confidence

in our uncertainty results. The GEOS-Chem aerosol simula-

tion includes sulfate, nitrate, ammonium (Park et al., 2004),

primary carbonaceous aerosols (Park et al., 2003), dust (Fair-

lie et al., 2007; Ridley et al., 2012), sea salt (Alexander et

al., 2005), and secondary organic aerosols (SOA) (Henze et

al., 2008). There are several regional anthropogenic emis-

sion inventories used in the model, such as BRAVO over

Mexico (Kuhns et al., 2003), EMEP over Europe (Vestreng

et al., 2007), CAC for Canada (http://www.ec.gc.ca/pdb/cac/

cac_home_e.cfm), the EPA NEI05 inventory (Hudman et al.,

2007, 2008) over the US, and Streets et al. (2006) over Asia.

Any location not covered by one of these regional invento-

ries relies on the GEIA (Benkovitz et al., 1996) and EDGAR

(Olivier and Berdowski, 2001; Vestreng, 2003) inventories.

Biofuel emissions over the US are also from the EPA NEI05

inventory (Hudman et al., 2007, 2008) and anthropogenic

emissions of black and organic carbon over North America

follow Cooke et al. (1999) with the seasonality from Park

et al. (2003). Biogenic VOC emissions are calculated inter-

actively following MEGAN (Guenther et al., 2006), while

year-specific biomass burning is specified according to the

GFED2 inventory (van der Werf et al., 2006). Surface dry

PM2.5 is calculated by combining sulfate, nitrate, ammo-

nium, elemental carbon, organic matter, fine dust, and accu-

mulation mode sea salt concentrations in the lowest model

grid box. In the following discussion, these values are re-

ferred to as the “unconstrained model”. Simulated AOD is

calculated at 550 nm based on aerosol optical and size prop-

erties as described in Ford and Heald (2013).

2.5.2 Satellite-based

We also derive a satellite-based surface PM2.5 using satellite-

observed aerosol optical depth, with additional constraints

from the GEOS-Chem model, in a similar manner to Liu et

al. (2004, 2007) and van Donkelaar et al. (2006, 2010, 2011).

This method relies on the following relationship:

PM2.5,surface = η×AODsatellite, (8)

where the satellite-derived PM2.5 is estimated at the resolu-

tion of the unconstrained model by multiplying the satellite

observed AOD by the value η, which is the ratio of model

simulated surface PM2.5 to simulated AOD at the time of the

satellite overpass. This is then a combined product which

relies on a chemical transport model to simulate the spa-

tially and temporally varying relationship between AOD and

surface PM2.5 by accounting for all the aerosol properties

and varying physical distribution and then constraining these

results by “real” (i.e. satellite) measurements of AOD. Us-

ing the satellite to constrain the model concentrations is ex-

Atmos. Chem. Phys., 16, 3499–3523, 2016 www.atmos-chem-phys.net/16/3499/2016/

http://ghdx.healthdata.org/record/global-burden-disease-study-2010-gbd-2010-ambient-air-pollution-risk-model-1990-2010
http://ghdx.healthdata.org/record/global-burden-disease-study-2010-gbd-2010-ambient-air-pollution-risk-model-1990-2010
http://ghdx.healthdata.org/record/global-burden-disease-study-2010-gbd-2010-ambient-air-pollution-risk-model-1990-2010
http://www.ec.gc.ca/pdb/cac/cac_home_ e.cfm
http://www.ec.gc.ca/pdb/cac/cac_home_ e.cfm


B. Ford and C. L. Heald: Uncertainty of premature mortality estimates 3505

 

 25oN

30oN

35oN

40oN

45oN

50oN   

15oN

20oN

25oN

30oN

35oN

40oN

45oN

50oN

  

 

 25oN

30oN

35oN

40oN

45oN

50oN

<      0 6 12 18 25

  

15oN

20oN

25oN

30oN

35oN

40oN

45oN

50oN

 

<      0 25 50 75 100

 

 

 25oN

30oN

35oN

40oN

45oN

50oN

 120oW 100oW 80oW  

     -20 -10 0 10 20

  

15oN

20oN

25oN

30oN

35oN

40oN

45oN

50oN

 

 80oE 100oE 120oE  

     -30 -15 0 15 30

 
[µg/m3] [µg/m3]

[µg/m3] [µg/m3]

(a) (b)

(c) (d)

(e) (f)

Figure 3. Long-term average (2004–2011) unconstrained model simulation of PM2.5 for the (a) continental US and (b) China, along with

the (MODIS-Aqua Collection 6) satellite-based PM2.5 for the (c) continental US and (d) China, and the difference between the satellite-

constrained and unconstrained model PM2.5 concentrations.

tremely useful in regions where emissions inventories and

model processes are less well known.

For AOD, we use observations from the Moderate Reso-

lution Imaging Spectroradiometer (MODIS) instrument and

from the Multi-angle Imaging SpectroRadiometer (MISR)

instrument. For this work we use MODIS 550 nm Level 2,

Collection 6, Atmosphere Products for Aqua as well as Level

2, Collection 5 for Aqua. We filter these data for cloud frac-

tion (CF< 0.2) and remove observations with high AOD

(> 2.0) as in Ford and Heald (2012), as cloud contamina-

tion causes known biases in AOD (Zhang et al., 2005), al-

though we note that this could remove high pollution ob-

servations, particularly in China. For MISR, we also use the

Level 2 AOD product (F12, version 22, 500 nm). We note that

this is a different wavelength than from the MODIS instru-

ment, but we neglect that difference for these comparisons.

We use both of these observations for comparison as MODIS

has a greater number of observations while MISR is gener-

ally considered to better represent the spatial and temporal

variability of AOD over China (Cheng et al., 2012; Qi et al.,

2013; You et al., 2015). Satellite observations are gridded to

the GEOS-Chem nested grid resolution. We sample GEOS-

Chem to days and grid boxes with valid satellite observations

to calculate the η used to translate the AOD to surface PM2.5.

In Fig. 3, we show the long-term average (2004–2011) of

satellite-based PM2.5 for the US and China using MODIS

Aqua Collection 6 and compare this to model-only estimates.

In the following sections, most of our results will be shown

using Collection 6; but reference and comparisons will be

made to other products as a measure of uncertainty. In gen-

eral the unconstrained model and satellite-based estimates

show similar spatial features and magnitudes, with stronger

local features apparent in the satellite-based PM2.5. The

satellite-based estimate suggests that concentrations should

be higher over much of the western US, particularly over

California, Nevada, and Arizona (comparisons with surface

measurements are discussed in Sect. 2.5.3). In China, the

satellite-derived PM2.5 is higher in Eastern China, around

Beijing and the Heibei province, Tianjin, and Shanghai, but

lower in many of the central provinces. While many previous

www.atmos-chem-phys.net/16/3499/2016/ Atmos. Chem. Phys., 16, 3499–3523, 2016
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studies suggest that MODIS may be biased high (and MISR

biased low) over China (e.g. Cheng et al., 2012; Qi et al.,

2013; You et al., 2015) and the Indo-Gangetic Plain (Bibi

et al., 2015); Wang et al. (2013) note that the GEOS-Chem

model underestimates PM2.5 in the Sichuan basin, suggest-

ing that the MODIS satellite-based estimate could reduce the

bias in this province.

2.5.3 Surface-based observations

We use observations of PM2.5 mass from two networks in

the United States (where long-term values are more readily

available than in China) to evaluate the model and satellite-

derived PM2.5: the Interagency Monitoring of Protected Vi-

sual Environments (IMPROVE) and the EPA Air Quality

System (AQS) database. The IMPROVE network measures

PM2.5 over a 24-h period every third day and these measure-

ments are then analyzed for concentrations of fine, total, and

speciated particle mass (Malm et al., 1994). We use the re-

constructed fine mass (RCFM) values, which are the sum of

ammonium sulfate, ammonium nitrate, soil, sea salt, elemen-

tal carbon and organic matter.

Previous studies have generally shown good agreement be-

tween measurements and GEOS-Chem simulations of PM2.5

(e.g. Ford and Heald, 2013; van Donkelaar et al., 2010). In

Fig. 4, we show the long-term average of PM2.5 at AQS and

IMPROVE sites in the US overlaid on simulated concentra-

tions. In general, GEOS-Chem agrees better with measure-

ments at IMPROVE sites, likely because these are located

in rural regions where simulated values will not be as im-

pacted by the challenge of resolving urban plumes in a coarse

Eulerian model. There are noted discrepancies in California

(Schiferl et al., 2014) and the Appalachia/Ohio River Valley

region where the model is biased low. The model has a low

mean bias of −25 % compared to measurements at the EPA

AQS sites and a bias of −6 % compared to measurements at

IMPROVE sites. Annual mean bias at individual sites ranges

from −100 to 150 %. At these same AQS sites, the satellite-

derived PM2.5 is less biased (−12 % using MODIS C6 or

−8 % using MISR).

To estimate the uncertainty in satellite AOD, we also rely

on surface-based measurements of AOD from the global

AErosol RObotic NETwork (AERONET) of sun photome-

ters. AOD and aerosol properties are recorded at eight wave-

lengths in the visible and near-infrared (0.34–1.64 µm) and

are often used to validate satellite measurements (e.g. Remer

et al., 2005). AERONET AOD has an uncertainty of 0.01–

0.015 (Holben et al., 1998). For this work, we use hourly

Version 2 Level 2 measurements sampled to 2-hour windows

around the times of the satellite overpasses. We also perform

a least-square polynomial fit to interpolate measurements to

550 nm.
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Figure 4. GEOS-Chem simulated average surface PM2.5 mass for

years 2004–2011 overlaid with measurements at IMPROVE (cir-

cles) and AQS sites (diamonds).

3 Estimated health burden associated with exposure

to PM2.5

We compare national exposure estimates for the US and

China using unconstrained and satellite-based (MODIS and

MISR) annual average PM2.5 concentrations in Fig. 5, which

is a cumulative distribution plot that is calculated as the sum

of the population in each grid box which has an annual av-

erage concentration at or above each concentration level. For

the US, satellite-based estimates suggest a slightly greater

fraction of the population is exposed to higher annual average

concentrations, while in China, the satellite-based estimates

suggest that a lower fraction. Using MISR AOD suggests

higher annual average concentrations in the US and much

lower in China, as MISR has a high bias in regions of low

AOD and a low bias in regions of high AOD (Jiang et al.,

2007; Kahn et al., 2010). The large discrepancy between re-

sults from MISR and MODIS could be due to differencing

in sampling, but studies have also shown that MODIS is bi-

ased high in China and MISR is biased low (Cheng et al.,

2012; Qi et al., 2013; You et al., 2015). We further discuss

the uncertainties in these estimates in Sect. 4.

These exposure estimates are used to calculate an at-

tributable fraction of mortality associated with heart disease,

lung cancer, and respiratory disease attributable to chronic

exposure using both model and satellite-based annual aver-

age concentrations for the US and China (Table 1). In the

US, we estimate that exposure to PM2.5 accounts for approx-

imately 2 % of total deaths (6 % of heart diseases and 5 %

of respiratory diseases) compared to 14 % (33 % of heart and

22 % of respiratory) in China using satellite-based concen-

trations. The Global Burden of Disease estimates for 2010,

that 10 % of total deaths in China and 3 % of total deaths

in the US are attributable to exposure to PM2.5 (Lim et al.,

2012). We present these as an average over the 2004–2011

time period in order to provide more robust results that are

not driven by an outlier year, as there is considerable year-

Atmos. Chem. Phys., 16, 3499–3523, 2016 www.atmos-chem-phys.net/16/3499/2016/
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Figure 5. Percent of the population exposed to different annual PM2.5 concentrations in the US (a) and China (b). Lines denote estimates

using the unconstrained GEOS-Chem simulation (red) or using satellite-based estimates with MODIS (green) and MISR (blue). Shading

represents potential uncertainty associated with the model η (described in Sect. 4.2) and dashed black lines represent national annual air

quality standards.

to-year variability in AOD and surface PM2.5 concentrations

(for example, heavy dust years in China). However, there are

trends in population (Fig. 1) and surface concentrations that

can influence these results. For example, there is a significant

decreasing trend in AOD over the northeastern US simulated

in the model which is also noticeable in the satellite observa-

tions and the surface concentrations (Hand et al., 2012). This

decreasing trend can be attributed to declining SO2 emissions

in the US as noted in Leibensperger et al. (2012). Trends

in China are more difficult to ascertain as emissions have

been variable over this period in general (Lu et al., 2011;

Zhao et al., 2013) with widespread increases from 2004 to

2008 followed by variable trends in different regions through

2011. The difference between mortality burden estimates us-

ing model or satellite concentrations is approximately 20 %

for the US and 2 % for China on a nationwide basis, although

regionally the difference can be much greater. A question

we aim to address here is whether these model and satellite-

based estimates are significantly different.

We compare our results to premature mortality burden es-

timates from other studies in Table 1. In general, our esti-

mates for China are higher than most previous estimates, ex-

cept for Lelieveld et al. (2015) and Rohde and Muller (2015).

However, these studies provide estimates for 2010 and 2014,

respectively, and we did find an increasing trend in our mor-

tality estimates over the study time period. For the US, our

estimates are in the lower range of previous studies. The

spread among these studies can be attributed to the data used

(i.e. MODIS Collection 5 rather than Collection 6 or uncon-

strained model concentrations, choice of baseline mortality

rates, and population), the resolution of the data, the years

studied, as well as the risk ratios and response functions. For

example, Evans et al. (2013) also use satellite-based con-

centrations (using MISR/MODIS Collection 5 and GEOS-

Chem), but use a different concentration response function

and regional baseline mortality rates. In the following sec-

tions, we delineate some of the uncertainty in these results

and reasons for differences compared to previous studies.

4 Uncertainty in satellite-based PM2.5

Uncertainties in the PM2.5 concentrations derived from satel-

lite observations arise from the two pieces of information

which inform this estimate: (1) satellite AOD and (2) model

η. Here we explore some of the limitations and uncertainties

associated with each of these inputs.

4.1 Uncertainty associated with satellite AOD

While satellite observations of aerosols are often used for

model validation (e.g. Ford and Heald, 2012), these are in-

direct measurements with their own limitations and errors.

The uncertainty in satellite AOD can be due to a variety of

issues such as the presence of clouds, the choice of optical

model used in the retrieval algorithm, and surface properties

(Toth et al., 2014; Zhang and Reid, 2006). For validation of

satellite products, studies have often relied on comparisons

against AOD measured with sun photometers at AERONET

ground sites (e.g. Kahn et al., 2005; Levy et al., 2010; Remer

et al., 2005, 2008; Zhang and Reid, 2006). The uncertainty

in AOD over land from MODIS is estimated as 0.05± 15 %

(Remer et al., 2005), while Kahn et al. (2005) suggest that

70 % of MISR AOD data are within 0.05 (or 20 %×AOD)

of AERONET AOD.

There are also discrepancies between AOD measured by

the different instruments due to different observational sce-

narios and instrument design. The Aqua platform has an af-

ternoon overpass while the Terra platform has a morning

overpass. It might be expected that there would be some dif-

ferences in retrieved AOD associated with diurnal variations

in aerosol loading. However, the difference of 0.015 in the

globally averaged AOD between MODIS onboard Terra and

Aqua (Collection 5), although within the uncertainty range of

the retrieval, is primarily attributed to uncertainties and a drift

in the calibration of the Terra instrument, noted in Zhang and

Reid (2010) and Levy et al. (2010). Collection 6 (as will be

discussed further) reduces the AOD divergence between the

two instruments (Levy et al., 2013). MISR employs a differ-

ent multi-angle measurement technique with a smaller swath

www.atmos-chem-phys.net/16/3499/2016/ Atmos. Chem. Phys., 16, 3499–3523, 2016
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Figure 6. (a) Percent difference between annual mean AOD from MODIS Collection 6 and Collection 5 and (b) simulated bias in satellite-

derived annual average surface PM2.5 associated with satellite sampling.

width; as a result the correlation between MISR AOD and

MODIS AOD is only 0.7 over land (0.9 over ocean) (Kahn et

al., 2005).

Not only are there discrepancies in AOD between instru-

ments, there are also differences between product versions

for the same instrument. The MODIS Collection 6 Level 2

AOD is substantially different from Collection 5.1 (Levy et

al., 2013, and Fig. 6). In general, AOD decreases over land

and increases over ocean with Collection 6. These changes

are due to a variety of algorithm updates including better de-

tection of thin cirrus clouds, a wind speed correction, a cloud

mask that now allows heavy smoke retrievals, better assign-

ments of aerosol types, and updates to the Rayleigh optical

depths and gas absorption corrections (Levy et al., 2013).

These differences can also impact the derived PM2.5 (and

can explain some differences between our results and pre-

vious studies). In particular, because Collection 6 suggests

higher AOD over many of the urbanized regions, the de-

rived PM2.5 and resulting exposure estimates (all other vari-

ables constant) are greater. The difference between these two

retrieval products, given the same set of radiance measure-

ments from the same platform, gives a sense of the uncer-

tainty in the satellite AOD product (Fig. 6a).

We estimate the uncertainty in satellite AOD used here

by comparing satellite observations to AERONET and de-

termining the normalized mean bias (NMB) between AOD

from each satellite instrument and AERONET for the US and

China (Fig. 7). Although there is a very limited number of

sites in China, from these comparisons, we find that the satel-

lites generally agree with AERONET better in the eastern US

and northeastern China than in the western US and western

and southeastern China. There are larger biases in the west

near deserts and at coastal regions where it may be challeng-

ing to distinguish land and water in the retrieval algorithm.

NMBs at each AERONET site are generally similar among

the instruments (MISR comparison not shown), with greater

differences at these western sites. While Collection 6 does

reduce the bias at several sites along the East Coast in the

US, it is generally more biased at the Four Corners region of

the US. We use these NMBs to regionally “bias correct” our

AOD values and estimate the associated range of uncertainty

in our premature mortality estimates. Compared to the stan-

dard MODIS AOD retrieval uncertainty, our overall NMB is

less in the eastern US (−1 %) and western China (11 %) and

higher in the western US (40 %) and eastern China (18 %).

There may also be biases associated with the satellite sam-

pling, should concentrations on days with available obser-

vations be skewed. In order to assess the sampling bias, we

use the model and compare the annual mean to the mean of

days with valid observations (Fig. 6b). In general, sampling

leads to an underestimation in AOD (average of 20 % over

the US). This can partly be attributed to the presence of high

aerosol concentrations below or within clouds which can-

not be detected by the satellite, the mistaken identification

of high aerosol loading as cloud in retrieval algorithms, as

well as the removal of anomalously high AOD values (> 2.0)

from the observational record. This suggests that the average

AOD values can also be influenced by the chosen filtering

and data quality standards. Analysis of the impact of satellite

data quality on the AOD to PM2.5 relationship is discussed in

Toth et al. (2014). They find that using higher quality obser-

vations does tend to improve correlations between observed

AOD and surface PM2.5 across the US though in general cor-

relations are low (< 0.55).

4.2 Uncertainty associated with model η

In general, the model simulates PM2.5 well (Fig. 4) and rep-

resents important processes; but, satellite AOD can help to

constrain these estimates to better represent measured con-

centrations (van Donkelaar et al., 2006). However, in spe-

cific regions or periods of time, errors in η could lead to dis-

crepancies between satellite-derived and actual surface mass.

Snider et al. (2015) does show some regional biases in the

GEOS-Chem model η compared to η determined from col-

located surface measurements of AOD and PM2.5. In or-

der to assess the potential uncertainty in model-based η,

we perform multiple sensitivity tests to determine the im-

pact that different aerosol properties, grid-size resolution and

timescales will have on η and, ultimately, on the resulting

satellite-based PM2.5 (listed in Table 2). These sensitivity

Atmos. Chem. Phys., 16, 3499–3523, 2016 www.atmos-chem-phys.net/16/3499/2016/
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Figure 7. Normalized mean bias in AOD between MODIS-Aqua Collection 6 and AERONET sites for (a) the US and (b) China.

Table 2. List of model sensitivity tests and descriptions with results shown in Fig. 8.

Sensitivity test Description

AvgAOD AOD is held constant through season while η varies daily.

AvgEta AOD varies daily, while η is held constant through season.

AvgProf Column mass varies daily, but shape of vertical profile is held constant for season. AOD and η vary daily but are

re-calculated for redistributed mass.

AvgRH AOD and η vary daily but are re-calculated assuming relative humidity remains constant throughout season.

2× 2.5 η values are calculated for simulation run at coarser (2◦× 2.5◦) resolution and then regrid to nested resolution

(0.5◦× 0.666◦).

SO4 Assume all mass in column is sulfate and recalculate η.

BC Assume all mass in column is black carbon and recalculate η.

No NO3 Calculate AOD and η without the contribution of nitrate.

tests are performed solely with model output, which can pro-

vide a complete spatial and temporal record, and results from

the modified simulations are compared to the standard model

simulation. We note that these are “errors” only with respect

to our baseline simulation; we do not characterize how each

sensitivity simulation may be “better” or “worse” compared

to true concentrations of surface PM2.5, but rather how dif-

ferent they are from the baseline, thus characterizing the un-

certainty in derived PM2.5 resulting from the model estimates

of η. We make these comparisons for both the US and China

and show results in Fig. 8. Because mass concentrations in

China are generally much higher, the absolute value of po-

tential errors can also be much greater.

The timescale of the estimated PM2.5 influences the er-

ror metric we choose for this analysis. We use the NMB for

estimating error associated with annual PM2.5 exposure (the

metric of interest for chronic exposure). This allows for the

possibility that day-to-day errors may compensate, resulting

in a more generally unbiased annual mean value. The error

on any given day of satellite-estimated PM2.5 is likely larger,

and not characterized by the NMB used here.

Our first sensitivity tests relate specifically to the method-

ology. To derive a satellite-based PM2.5 with this method re-

quires model output for every day and that there are valid

satellite observations. Running a model can be labor inten-

sive, at the same time there are specific regions and time

periods with poor satellite coverage. Therefore, it might be

beneficial to be able to use a climatological η or a climato-

logical satellite AOD. To test the importance of daily vari-

ability in AOD, we compute daily η values and then solve

for daily surface PM2.5 values using a seasonally averaged

model simulated AOD (AvgAOD). This mimics the error in-

troduced by using seasonally averaged satellite observations,

an attractive proposition to overcome limitations in coverage.

This approximation often produces the greatest error (∼ 20 %

in the US and 0–50 % in China) especially in regions where

AOD varies more dramatically and specifically where trans-

ported layers aloft can significantly increase AOD (Fig. 8).

For the seasonally averaged η test (AvgEta), we estimate

daily PM2.5 values (which are averaged into the annual con-

centration) from the seasonally averaged η and daily AOD

values. As regional η relationships can be more consistent

over time than PM2.5 or AOD, this test evaluates the neces-

sity of using daily model output to define the η relationship.

The error in the annual average of daily PM2.5 values deter-

mined using a seasonally averaged η creates results that are

very similar to the error found calculating an annual average

of daily PM2.5 values calculated using a seasonally averaged

AOD.

The model η also inherently prescribes a vertical distri-

bution of aerosol, which may be inaccurately represented by

the model and introduce errors in the satellite-derived PM2.5.

www.atmos-chem-phys.net/16/3499/2016/ Atmos. Chem. Phys., 16, 3499–3523, 2016
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Figure 8. Distribution of normalized mean biases in annual average PM2.5 for grid boxes in different regions of the US (top row) and China

(bottom row) determined from sensitivity tests to investigate the uncertainty in η. Sensitivity tests are described (and abbreviations defined)

in Table 3.

Previous studies have shown that an accurate vertical distri-

bution is essential for using AOD to predict surface PM2.5.

(e.g. Li et al., 2015; van Donkelaar et al., 2010). We test the

importance of the variability of the vertical distribution in the

η relationship for predicting surface PM2.5 concentrations by

comparing values from the standard simulation against using

an η from a seasonally averaged vertical distribution (Avg-

Prof). For this comparison, we allow the column mass load-

ing to vary day-to-day, but we assume that the profile shape

does not change (i.e. we re-distribute the simulated mass to

the same seasonally averaged vertical profile). We note that

this is not the same as assuming a constant η, as relative hu-

midity and aerosol composition are allowed to vary. Addi-

tionally, this differs from other studies (van Donkelaar et al.,

2010; Ford and Heald, 2013) in that we are not testing the

representativeness of the seasonal average profile, but test-

ing the importance of representing the daily variability in the

vertical profile. From Fig. 7, we see that using a seasonally

averaged vertical distribution (AvgProf) can lead to large er-

rors in surface concentrations. Information on how the pollu-

tants are distributed is extremely important because changes

in column AOD can be driven by changes in surface mass

loading, but also by layers of lofted aerosols that result from

production aloft or transport (and changes in the depth of

the boundary layer). This is important in areas that are occa-

sionally impacted by transported elevated biomass burning

plumes or dust. Large errors often occur in China, especially

during the spring when these regions are influenced by trans-

ported dust from the Taklamakan and Gobi Deserts (Wang et

al., 2008). Southeastern China has the largest NMB due to

not only transport from interior China, but also from other

countries in Southeast Asia. There is a positive bias in most

regions, because on average, most of the aerosol mass is lo-

cated at the surface; therefore, using an average profile will

over predict the surface concentrations. Similar to the aver-

age AOD and η (AvgAOD and AvgEta), average vertical dis-

tributions generally over predict PM2.5 due to the presence

of outliers. This stresses the importance of not only getting

the mean profile correct, but the necessity of also simulating

the variability in the profile on shorter timescales.

We also test the sensitivity of derived PM2.5 to aerosol

water uptake. This is done by recalculating η using a sea-

sonally averaged relative humidity (RH) profile (AvgRH).

This generally reduces the seasonally averaged AOD (less

water uptake) in every season (because hygroscopic growth

of aerosols is non-linear with RH). This leads to an overes-

timate of η when applied to the AOD values from the stan-

dard simulation and generally overestimates surface PM2.5

in regions with potentially higher RH and more hygroscopic

aerosols (eastern US and eastern China). This is because, for

the same AOD, a higher η value would suggest more mass

at the surface in order to compensate for optically smaller

particles aloft. Western China (and some of central China)

has a negative bias, suggesting that using a mean relative hu-

midity actually underestimates PM2.5. However, this is be-

cause the RH is generally low but can have large variabil-

ity, and concentrations (outside of the desert regions) are

also low so that the NMB may be large although the abso-

lute error is not. A higher resolution model, although more

computationally expensive, will likely better represent small-

scale variability and is better suited for estimating surface

air quality. Punger and West (2013) find that coarse resolu-
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tion models often drastically underestimate exposure in ur-

ban areas. We therefore investigate the grid-size dependence

of our simulated η. For this, we determine the η values from

a simulation running at 2◦× 2.5◦ grid resolution (with the

same emission inputs and time period), re-grid these val-

ues to the nested grid resolution (0.5◦× 0.666◦) and solve

for the derived PM2.5 concentrations using the AOD val-

ues from the nested simulation (noted as 2× 2.5 in Fig. 8).

From Fig. 8, we see larger discrepancies in regions which

are dominated by more spatially variable emissions (North-

eastern US and China) rather than areas with broad regional

sources (Southeastern US). This is in line with Punger and

West (2013) who show smaller differences due to resolution

in estimated premature mortality due to PM2.5 exposure in

rural areas than in urban areas. Compared to the other sensi-

tivity tests, using the coarser grid leads to mean errors of only

10–15 % in the US and in China, which suggests that spa-

tially averaged η are potentially more useful than temporally

averaged η for constraining surface PM2.5. Thompson and

Selin (2012) and Thompson et al. (2014) show that coarse

grids can over predict pollutant concentrations and conse-

quently health impacts, but using very fine grids does not

significantly decrease the error in simulated concentrations

compared to observations. This effect is more pronounced

with ozone. Additionally, their coarsest grid resolution is

36 km which they compare to results at 2, 4, and 12 km.

Punger and West (2013) compare health impacts at a variety

of resolutions out to several 400 km and show that coarser

resolutions underestimate health impacts because concentra-

tions are diluted over larger areas instead of allowing high

concentrations to be co-located with large urban populations.

The GEOS-Chem simulation of surface nitrate aerosol

over the US is biased high (Heald et al., 2012). This can be

an issue in regions where nitrate has a drastically different

vertical profile (or η) from other species. To test how this

nitrate bias could impact η and the derived PM2.5, we com-

pute η without nitrate aerosol, and then derive PM2.5 using

the standard AOD (No NO3). This is not a large source of

potential error (< 15 %), with only slightly larger errors in

winter and in regions where nitrate has a significant high bias

(central US). Furthermore, these errors are less than the bias

between the model and surface observations of nitrate in the

US (1–2 µg m−3 compared to 2–7 µg m−3), suggesting that

even though there is a known bias in the model, using satel-

lite observations may largely correct for this by constraining

the total AOD when estimating satellite-derived PM2.5. We

also did this comparison for China. Measured nitrate con-

centrations are not widely available for evaluation, but Wang

et al. (2014) suggests that model nitrate is also too high in

eastern China. The NMB is even less in regions in China

(< 10 %), with negative values in eastern China (where ni-

trate concentrations are high) and positive values in western

and central China (where nitrate concentrations are lower and

have less bias compared to observations).

To further explore the role of aerosol composition (and

possible mischaracterization in the model), we take the sim-

ulated mass concentrations and compute the AOD assuming

that the entire aerosol mass is sulfate (SO4 in Fig. 8) or, al-

ternatively, hydrophobic black carbon (BC in Fig. 8). Black

carbon has a high mass extinction efficiency, which is con-

stant with RH given its hydrophobic nature; while sulfate is

very hygroscopic, resulting in much higher extinction effi-

ciencies at higher relative humidity values. Overall, assum-

ing that all the mass is sulfate leads to low biases on the order

of 15–20 % as the AOD in many regions in the US is dom-

inated by inorganics. Errors are largest in regions and sea-

sons with larger contributions of less hygroscopic aerosols

(organic carbon and dust) and/or high relative humidity. As-

suming the entire aerosol mass is black carbon can lead to

greater errors than sulfate because BC has a larger mass ex-

tinction at lower relative humidity values and hydrophobic

black carbon generally makes up a small fraction of the mass

loading in all regions in the US and China. When RH is low,

this assumption increases the AOD, which leads to an under

prediction in the derived PM2.5. When RH is high, this de-

creases the AOD and leads to an over prediction in derived

PM2.5. The largest percentage changes occur in the south-

western US and western China (∼−30 %) due to the low

relative humidity, low mass concentrations, and large contri-

bution of dust.

We also compare these sensitivity tests on daily

timescales. We do not show the results here because we rely

on chronic exposure (annual average concentrations) for cal-

culating mortality burdens. The normalized mean biases in

annual average concentrations (Fig. 8) are generally much

less (range of±20 % in US and±50 % in China) than poten-

tial random errors in daily values as many of these daily er-

rors cancel out in longer term means. This is the case for our

sensitivity tests regarding the vertical profile and relative hu-

midity, which have much larger errors on shorter timescales.

However, because our method to test the sensitivity to aerosol

type assumes that all aerosol mass is black carbon or sulfate,

we introduce a systematic bias that is not significantly re-

duced in the annual NMB. This highlights the differing po-

tential impacts due to systematic and random errors, which

is an important distinction for determining the usefulness

of this method. Systematic errors may not be as obvious

on short timescales compared to random errors (related to

meteorology and/or representation of plumes) that can lead

to large biases in daily concentrations. However, these ran-

dom errors have less impact when we examine annual aver-

age concentrations and mortality burdens. Systematic errors,

potentially related to sources or processes, may be harder

to counteract even on longer timescales and even when the

model is constrained by satellite observations. However, we

also show that random daily errors can bias the long-term

mean, stressing the importance of not only correcting re-

gional biases, but also in accurately simulating daily vari-

ability.
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Figure 9. Premature mortality estimates for (a) the US and (b) China determined using different RR, CRFs, and threshold/ceiling values, as

described in Table 3. Colors represent cause of death estimated using PM2.5 concentrations from unconstrained model simulations (solid)

and satellite-based estimates (hatched).

We translate this potential uncertainty in η to poten-

tial uncertainty in mortality estimates determined from the

satellite-based PM2.5. We use the normalized mean bias in

annual PM2.5 determined from the sensitivity tests for RH,

the vertical profile, grid resolution, and aerosol composition

for each grid box and then use these values to “bias cor-

rect” our satellite-based annual PM2.5 concentrations and re-

calculate exposure (shown in Fig. 5) and mortality (discussed

in Sect. 6). From Fig. 5, we see that the uncertainty in η,

when translated to an annual exposure level, is larger than

the differences in exposure levels estimated from model and

satellite-based PM2.5, suggesting that satellite-based prod-

ucts which rely strongly on the model or which do not ac-

count for the variability in the aforementioned variables, does

not necessarily provide a definitively better estimate of ex-

posure. Secondly, these uncertainties in many regions are

greater than the difference between both the model and sur-

face PM2.5 and the satellite-based and surface observations.

While these comparisons are limited spatially and tempo-

rally, this highlights that constraining the model with the

satellite observations can improve estimates of PM2.5 but

there remains a large amount of uncertainty in these esti-

mates.

4.3 Selection of concentration response function and

relative risk

The choice of the shape of the concentration response func-

tion (CRF) and relative risk ratio value explains much of

the difference in burden estimated in different studies listed

in Table 1. In general, it is difficult to determine risks at

the population level and studies have found that using am-

bient concentrations tends to under predict health effects

(e.g. Hubbell et al., 2009). However, personal monitoring is

costly and time-intensive, and therefore, epidemiology stud-

ies generally rely on determining population-level concen-

tration response functions rather than personal-level expo-

sure responses. However, populations also respond differ-

ently; and therefore the shape and magnitude of this response

varies among studies. The uncertainty associated with the RR

determined in the original epidemiology study will impact

results in any health impact assessment.

For an initial metric of the uncertainty in the risk ratios,

studies often include estimates generated using the 95 % con-

fidence intervals of the RR determined in the original study

(as shown in Fig. 2). A confidence interval shows the sta-

tistical range within which the true PM coefficient for the

study population is likely to lie, which could be a single

city, region, or population group. The Krewski et al. (2009)

study, which is a reanalysis of the American Cancer Soci-

ety (ACS) Cancer Prevention Study II (CPS-II), included

1.2 million people in the Los Angeles and New York City

regions, whereas the Laden et al. (2006) study, an extended

analysis of the Harvard Six Cities Studies, included 8096

white participants. Using just these confidence intervals as

a measure of uncertainty suggests that there exists a large

range of uncertainty in population-level health responses to

exposure and caution should be exercised when attempting to

transfer these values beyond the population from which they
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Table 3. Input for premature mortality burden estimate sensitivity tests and the resulting percent change in mortality due to chronic exposure

determined from satellite-based concentrations. Parentheses are for values determined from model simulated concentrations.

RR source Threshold CRF shape % Change USA % Change China Study using method In Fig. 8

Burnett et al. (2014) fitted IER (Eq. 7) base base Lim et al. (2012);

Lelieveld et al. (2015)

B-IER

Burnett et al. (2014) fitted IER (Eq. 7) 167 (167) 65 (64) maximum value deter-

mined from set of coef-

ficients

B-IERmax

Krewski et al. (2009) Lowest measured level

(5.8 µg m−3)

Eq. (4) 18 (15) 18 (21) Evans et al. (2013);

Lelieveld et al. (2013)

K-L5.8

Krewski et al. (2009) Lowest measured level

(5.8 µg m−3), ceiling

(30 µg m−3)

Eq. (4) 18 (15) −24 (−26) Anenberg et al. (2010) K-Lc30

Krewski et al. (2009) Lowest measured level

(5.8 µg m−3), ceiling

(50 µg m−3)

Eq. (4) 90 (93) 6 (4) Cohen et al. (2004) K-Lc50

Krewski et al. (2009) Lowest measured level

(5.8 µg m−3)

Eq. (5) 143 (167) −6 (−7) Evans et al. (2013) K-LL5.8

Krewski et al. (2009) Policy Relevant Back-

ground

Eq. (4) 134 (158) US EPA (2010) K-LPR

Krewski et al. (2009) No threshold Eq. (4) 169 (200) 29 (31) Silva et al. (2013) K-L0

Pope et al. (2002) Lowest measured level

(5.8 µg m−3), ceiling

(30 µg m−3)

Power Law (Eq. 6) 134 (158) −26 (−28) Marlier et al. (2013) P-PL5.8c30

Pope et al. (2002) Lowest measured level

(7.5 µg m−3)

Power Law (Eq. 6) 102 (105) −15 (−15) Pope et al. (2002) P-PL7.5

Laden et al. (2006) Lowest measured level

(10 µg m−3)

Eq. (4) −58 (−68) 126 (130) Anenburg et al. (2010);

US EPA (2010)

L-L10

Laden et al. (2006) Lowest measured level

(10 µg m−3)

Eq. (4) 239 (275) US EPA (2010) L-LPR

Laden et al. (2006) Lowest measured level

(10 µg m−3); ceiling

(30 µg m−3)

Eq. (4) 38 (33) Anenburg et al. (2010) L-Lc30

Pope et al. (2002) Lowest measured level

(7.5 µg m−3)

Eq. (4) −55 (−58) −25 (−27) P-L7.5

Pope et al. (2002) Lowest measured level

(7.5 mug m−3)

Eq. (5) −29 (−28) 1 (1) P-LL7.5

were determined in order to estimate national-level mortal-

ity burdens based on ambient concentrations. The IER co-

efficients from Burnett et al. (2014) are generated using the

risk ratios, threshold values, and confidence intervals from

previous studies and therefore also provide a large range in

premature mortality estimates. To depict this range, we also

include the 5th and 95th percentile estimates in addition to

the mean estimate. We also show the maximum value in our

sensitivity tests.

To test the impact of methodological choices associated

with the burden calculation, we compare results using dif-

ferent concentration response functions and relative risk ra-

tios that previous studies have used. Table 3 lists the differ-

ent choices that we explore regarding the CRF and relative

risk, the study that used these values, and the resulting per-

cent change in burden compared to our initial estimates using

the IER from Burnett et al. (2014). In particular we compare

our results using risk ratio values from Krewski et al. (2009),

Pope et al. (2002) and Laden et al. (2006), and log-linear and

power law relationships. Figure 9 shows that the largest dif-

ference in burden is associated with using the higher risk ra-

tios from Laden et al. (2006) vs. using Krewski et al. (2009)

or the mean estimates determined using the IER coefficients

from Burnett et al. (2014), the former suggest a much greater

mortality response to PM2.5 exposure.

Our estimates of Sect. 3 also use the same relative risk

values for every location. However, studies have found that

different populations have varied responses to exposure (po-

tential for “effect modification”) (Dominici et al., 2003). One

of the main uncertainties in these methods is relying on risk

ratios that are primarily determined from epidemiology stud-

ies conducted in the US, which may not represent the ac-

tual risks for populations in China. Long-term epidemiol-

ogy studies examining exposure to PM2.5 across broad re-

gions of China are scarce, but studies using acute exposure

to PM2.5 or chronic exposure to PM10 or total suspended par-

ticles have suggested lower exposure-response coefficients

than determined by studies conducted in the US and Eu-

rope (Aunan and Pan, 2004; Chen et al., 2013b; Shang et

al., 2013), indicating that assessments which use CRFs from

www.atmos-chem-phys.net/16/3499/2016/ Atmos. Chem. Phys., 16, 3499–3523, 2016
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Figure 10. Burden of mortality due to outdoor exposure to fine particulate matter as determined in previous studies (Table 1, gray bars with

values from individual studies designated by black lines), calculated using model (GEOS-Chem, solid) and satellite-based (hatched) annual

concentrations (colored by disease, whiskers denote 5th and 95th percentile estimates generated using the Burnett et al., 2014, coefficients).

The uncertainty range on the MODIS-based estimates due to satellite AOD (taupe), model η (coral), and CRF (blue) are shown on the right.

studies conducted in the US might overestimate the health

effects in China.

We also explore using different “threshold” values.

The IER function uses threshold values between 5.8 and

8.8 µg m−3. In the US, higher threshold values can signifi-

cantly reduce burden estimates. When we compare sensitiv-

ity tests that use the same CRF (Krewski et al., 2009) but with

a regional PRB concentration instead of the lowest measured

level (5.8 µg m−3), the premature mortality estimates are sig-

nificantly reduced, suggesting that the choice of this value

is very important in the US where annual mean concentra-

tions are relatively low. However, in China these threshold

values have less impact on our results because annual mean

concentrations are high enough that subtracting a threshold

makes little difference. Conversely, using a ceiling value of

30 or 50 µg m−3 produces no difference in the US (0 % of the

population experiences annual concentration values greater

than 30 µg m−3), while strongly reducing burden estimates

in China.

We also see that the shape of the CRF produces different

results between the US and China. Using a power law or log-

linear (Eq. 6) function increases relative risks at low concen-

trations and decreases risk ratios at high concentrations such

that total disease burden estimates increase in the US and de-

crease in China. In the US, a log-linear CRF is almost equiv-

alent to a linear response because of the low concentrations.

In general, the shape of the concentration response function

is more important at low or very high concentrations.

4.4 Comparison of uncertainty

Figure 10 provides a summary of the different sources of un-

certainty discussed here. We show the mortality burdens for

respiratory disease, lung cancer and heart disease associated

with chronic exposure to ambient PM2.5 and calculated us-

ing annual average model-based and “satellite-based” values

(from MISR and MODIS) for both the US and China. We

show here that the satellite-based estimates suggest slightly

higher national burdens in the US and slightly lower in

China. However, our values using these different annual av-

erage concentrations fall within the range of values found in

the literature (Table 1).

We further contrast these estimates to the range in un-

certainty associated with our observations and methodology.

The difference between the burden calculated using strictly

the model or the satellite-based approach is greater than the

uncertainty range in the satellite AOD, suggesting that this

difference is outside of the scope of measurement limitations

and errors. However, the potential uncertainty in the satellite-

based estimate due to the conversion from AOD to surface

PM2.5 (represented by the model η) is substantially larger,

larger even than the difference between model-derived and

satellite-derived estimates. Therefore, while constraining the

model estimate of PM2.5 by actual observations should im-

prove our health effect estimates, the uncertainty in the re-

quired model information may limit the accuracy of this ap-

proach. Again, we stress that these are “potential” model un-

certainties which may overestimate the true uncertainty in

regions where the model accurately represents the composi-

tion and distribution of aerosols. We also acknowledge that

we have investigated a limited set of factors; additional bi-

ases may exacerbate these uncertainties. However, adding

additional observational data and model estimates can also

help to better constrain these satellite-based PM2.5 estimates

(Brauer et al., 2012, 2016; van Donkelaar et al., 2015a, b).

Figure 10 also conveys the range in mortality estimates for

the US and China that can result from varying choices for the

risk ratio or shape of the concentration response. While epi-

demiology studies attempt to statistically account for differ-

ences in populations and confounding variables, there is still

a large spread in determined risk ratios. Just as important, or

perhaps more so than determining ambient concentrations,

applying response functions is a determining factor in quan-

tifying the burden of mortality due to outdoor air quality.

Differences in exposure estimates can be overshadowed by

these different approaches. As an added example, we calcu-

lated the mortality burden using only populated places, simi-

lar to Lelieveld et al. (2013) and Cohen et al. (2004) and find

that for the US this decreased the burden by 13 %, (satellite-

based, 18 % for model). For China, this reduces the burden

estimate by 72 %. Differences in our estimates here and those

Atmos. Chem. Phys., 16, 3499–3523, 2016 www.atmos-chem-phys.net/16/3499/2016/
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found in the literature can be partly attributed to differences

in application of the CRF function, along with differences in

baseline mortalities and population estimates. Disease bur-

dens estimated in various studies can therefore only be truly

compared when the methodology is harmonized.

5 Conclusions

Calculating health burdens is an extremely important en-

deavor for informing air pollution policy, but literature esti-

mates cover a large range due to differences in methodology

regarding both the measurement of ambient concentrations

and the health impact assessment. Satellite observations have

proved useful in estimating exposure and the resulting health

impacts (van Donkelaar et al., 2015b; Yao et al., 2013). How-

ever, there remain large uncertainties associated with these

satellite measurements and the methods for translating them

into surface air quality that needs to be further investigated.

Our goal with this work is to explore how mortality burden

estimates are made and how choices within this methodol-

ogy can explain some of these discrepancies. We also aim to

provide a context for interpreting the quantification of PM2.5

chronic exposure health burdens.

While we have discussed several potential sources for un-

certainty in calculating health burdens with satellite-based

PM2.5, there are still a significant number of other sources of

uncertainty that we did not explore. There are processes that

could impact the AOD to PM2.5 relationship in the model,

such as different emissions and removal processes. Addi-

tionally, our sensitivity test results are likely partly tied to

the spatial resolution of the model and the satellite AOD,

and their ability to capture finer spatial variations in pollu-

tion in regions with high populations. However, Thompson

et al. (2014) suggest that uncertainty in the CRF will likely

still have a larger impact than uncertainties in population-

weighted concentrations due to model resolution.

Satellite measurements have provided great advancements

in monitoring global air quality, providing information in re-

gions with previously few measurements. However, further

progress still needs to be made in determining how to charac-

terize exposure to ambient PM2.5 using these satellite obser-

vations, especially as they are becoming more widely used

in epidemiological studies and health impact assessments.

Reducing uncertainty, even at the lower concentrations ob-

served in the US, is important if these methods and data

sets are to be used for policy assessment or air quality stan-

dards. However, as air pollution is a leading environmentally-

related cause of premature mortality, the difficulties in ap-

plying these data should not negate the importance of this

endeavor. Overcoming sampling limitations in satellite ob-

servations and better accounting for regional biases could

help to reduce the uncertainty in satellite-retrieved AOD and

adding additional observational data and model estimates

can help to better constrain satellite-based PM2.5 estimates

(Brauer et al., 2012, 2016; van Donkelaar et al., 2015a, b).

Future geostationary satellites will also be critical to advance

this methodology and will provide extremely valuable infor-

mation for daily monitoring and tracking of air quality. Fur-

thermore, these geostationary observations, in concert with

greater surface monitoring, will offer new constraints for epi-

demiological studies to develop health risk assessments and

lessen the uncertainty in applying concentration-response

functions and determining health burdens.
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