

Supplement of

AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities

Fulvio Amato et al.

Correspondence to: Fulvio Amato (fulvio.amato@idaea.csic.es)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

- Supplementary material
- 1 2

4

5

6

7

8

9

10

3 For each AIRUSE station, the following conclusions can be drawn on the chemical speciation:

- Barcelona urban background: PM10 is made up of OM+EC, SIA and mineral dust+sea salt in similar proportions reflecting a mix of high traffic density and regional pollution as main causes of the PM pollution in the city. In PM2.5 the mineral dust + sea salt contribution is reduced to 1/6 of the mass, the OM+EC contribution increases to around 2/3 with the remaining part being made by SIA, slightly reduced with respect to PM10 because 50% of nitrate has a coarse mode of occurrence.
- Athens suburban background: for PM10 the average composition is similar to that 11 • described for BCN, but with slightly higher mineral dust (25%) + sea salt (9%)12 contribution and much higher sulphate load (19%). This differentiation may arise 13 from the higher African dust influence and the higher coal or S-rich heavy oil 14 combustion emissions in this region of the EU or from the influence of 15 Eastern/Southeastern European countries and Turkey. In PM2.5 the influence of 16 ammonium sulphate is very large (sulphate alone is the 26% of the PM2.5 mass) 17 indicating the high influence from coal combustion or other S-bearing fuels. The 18 remaining PM2.5 mass is dominated by OM+EC (another 45%). Levels of SIA are 19 slightly reduced with respect to PM10 because 85% of nitrate has a coarse mode of 20 occurrence. 21
- Florence urban background: PM10 has a predominant OM component (52%), 22 • probably due to a high contribution from biomass burning from the domestic sector, 23 18% of SIA and around 15% of mineral dust (12%) and sea salt (3%). The dominant 24 secondary origin of PM10 (56%) is partially favoured by the high emissions, with a 25 relevant contribution from biomass burning, and the specific stagnant conditions and 26 reduced boundary layer depths. The OM contribution is in even higher in PM2.5 27 (OM+EC, 69%) and the other contributions are relatively reduced with respect to 28 PM10. Again 50% of the PM10 nitrate is not present in PM2.5 due to the occurrence 29 of coarse nitrate. 30
- Milan urban background: PM10 is also dominated by OM (around 40%), but with a 31 very high contribution of ammonium nitrate (22%) and relatively low mineral dust 32 (10%) and sea salt (2%) contributions. The high concentrations of secondary 33 components in PM10 (71%) are partially favoured by the high emissions and the 34 specific stagnant conditions and reduced boundary layer depths induced by the 35 typical meteorology of the Po Valley. The composition of PM2.5 is similar to PM10 36 but with higher loads of OM+EC (45%) and ammonium nitrate (23%), but reduced 37 sea salt and mineral loads (1 and 4%). In this case most of the nitrate in PM10 is 38 present in PM2.5 (94%) pointing to the predominance of fine ammonium nitrate over 39 coarse nitrate as described in the other sites. 40
- Porto traffic site: OM+EC represents 37% of PM10 (14% EC), while SIA and dust are about 12-15% each and sea salt 13%. High proportion of sea salt, EC and OM are higher are due to the Atlantic location of Porto and to the higher influence of fuel (both fossil and biomass) combustion. In PM2.5 the composition is similar but with an increased proportion of OM+EC (29+19%) and reduced of mineral dust and sea

salt (8 and 5%). SIA levels are slightly reduced with respect to PM10 because 40% of nitrate has a coarse mode of occurrence.

5 Table S1: Summary of the number of samples collected for each city and analytical technique in 6 colours.

			BCN-UB	FI-UB	MLN-UB	POR-TR	ATH-SUB			
		Start date	01/01/2013	05/01/2013	15 /01/2013	05/01/2013	02/02/2013			
		End date	31/12/2013	03/01/2014	14/01/2014	31/12/2013	30/01/2014			
		Mass	113	222	370	123	193			
	PM10	Elements	113 ^I	222 ^P	241 ^{P/X}	123 ^{P/I}	193 ^{P/I}			
Daily samples		Ions	113	222	337	123	193			
		EC/OC	113	222	348	123	193			
		CC	113	222	89	123	193			
	PM2.5	Mass	117	239	369	126	239			
		Elements	117 ^I	239 ^P	361 ^x	126 ^{P/I}	239 ^{P/I}			
		Ions	117	239	374	126	239			
		EC/OC	117	239	370	126	239			
		Levoglucosan	117	239	356	126	239			
	$^{\text{P}}$: PIXE, ¹ : ICP, ^X : XRF									

Figure S2. Comparison of results obtained with PIXE and XRF techniques in Milan for Al, Si, Cl
and K. Red fits are constrained to the origin.

Figure S3. Seasonal variation of mean levels (± standard deviation) of PM10 and PM2.5 levels for
the study period at the five AIRUSE cities.

Figure S4. Ion balance of anionic (ions-: Cl⁻, NO₃⁻ and SO₄²⁻) and cationic (ions+: NH₄⁺. Na⁺, K⁺, Ca²⁺, Mg²⁺) species in daily samples of PM10 and PM2.5 from the five AIRUSE cities.

07/12/2012 26/01/2013 17/03/2013 06/05/2013 25/06/2013 14/08/2013 03/10/2013 22/11/2013 11/01/2014 02/03/2014 21/04/2014

07/12/2012 26/01/2013 17/03/2013 06/05/2013 25/06/2013 14/08/2013 03/10/2013 22/11/2013 11/01/2014 02/03/2014 21/04/2014

Figure S5. Daily source contributions to PM10 or PM2.5 levels for the study period at the five AIRUSE cities.

BCN-	Heavy oil	Vehicle non-	Mine	Indust	Aged sea	Vehicle	Secondary	Secondary sulphate
UB	combustion	exhaust	ral	rial	salt	exhaust	nitrate	and organics
EC	5	3	0	0	0	58	3	26
OC	0	3	5	5	0	42	8	33
$\mathrm{NH_4}^+$	0	0	0	0	0	0	34	44
Cl	0	2	1	10	70	4	2	0
NO ₃ ⁻	0	0	10	0	18	0	68	0
Al	0	29	62	0	0	0	0	7
Ca	0	36	51	2	3	0	3	0
Fe	2	32	23	9	5	14	4	4
Κ	0	11	25	7	8	22	13	10
Mg	0	14	35	1	35	5	0	7
Na	1	1	12	0	65	5	1	8
S	13	1	0	1	4	8	0	70
Li	3	20	46	7	4	4	3	11
Ti	1	33	48	3	0	0	0	14
V	69	0	10	0	0	0	4	17
Cr	9	18	8	22	6	23	7	5
Mn	5	12	20	36	3	11	4	1
Ni	58	5	3	7	3	2	7	10
Cu	5	33	4	22	8	16	6	1
Zn	13	4	7	71	1	0	3	0
Ga	8	17	35	22	0	1	0	14
As	9	4	5	29	2	17	8	22
Se	13	4	7	1	14	19	5	19
Rb	0	23	41	5	0	7	5	18
Sr	3	22	43	3	16	0	1	9
Cd	3	1	0	57	1	7	6	19
Sn	22	24	1	11	6	17	9	0
Sb	3	30	0	14	8	17	11	5
Ва	11	22	15	14	6	19	13	0
La	10	16	35	4	1	13	0	18
Ce	3	17	32	5	2	21	0	17
Pb	6	5	1	67	1	2	4	12

Table S2: Explained variation (%) of species in PM10 and PM2.5 (BCN-UB)

	Heavy oil	Vehicle						Secondary		
	combust	non-	Min	Fresh	Aged	Vehicle	Secondar	sulphate and	Sahara	Biomass
FI-UB	10n	exhaust	eral	sea salt	sea salt	exhaust	y nitrate	organics	n dust	burning
EC	8	15	0	0	0	36	3	0	0	30
OC	1	5	3	0	2	26	7	15	0	36
Levo	0	0	1	1	0	0	0	0	1	84
Na	1	3	1	29	56	2	0	5	2	0
Mg	0	7	22	14	28	0	0	6	20	0
Al	1	7	35	0	0	1	0	6	44	1
Si	3	9	45	1	0	0	0	8	34	1
S	2	3	3	0	5	0	0	76	2	6
Cl	0	1	0	89	0	0	5	0	0	4
Κ	2	1	8	1	2	13	9	11	7	38
Ca	2	10	69	2	2	0	0	7	6	0
Ti	4	10	41	1	0	1	2	6	33	0
Mn	0	28	33	0	3	9	4	13	7	1
Fe	3	52	19	0	6	0	4	3	12	0
Ni	40	6	8	1	3	8	4	11	1	12
Cu	5	65	10	0	6	1	6	0	3	0
Zn	0	25	7	0	4	15	12	17	0	12
As	0	7	7	0	3	19	4	21	1	11
Se	26	0	7	0	6	17	7	26	0	3
Br	9	0	0	3	12	33	1	16	0	19
Rb	0	31	18	0	3	0	5	7	12	13
Sr	0	0	35	5	4	13	0	12	11	2
$\mathrm{NH_4}^+$	0	0	0	0	0	0	24	72	0	0
NO ₃ -	0	0	6	0	22	0	66	0	0	2
V	97	0	0	0	0	0	0	0	3	0
Ва	5	45	10	0	4	7	1	1	6	3
Pb	11	0	0	0	2	19	7	10	0	20
Cr	3	36	9	0	7	14	0	9	3	8
Cd	4	3	5	0	4	8	18	13	0	16

ATH-	Heavy oil	Secondary sulphate	Vehicle non-	Biomass	Vehicle	Mine	Secondary	Sea
SUB	combustion	and organics	exhaust	burning	exhaust	ral	Nitrate	salt
EC	22	0	13	15	27	0	11	0
OC	8	27	0	5	55	2	0	0
Na	0	6	0	0	0	0	52	35
Mg	0	1	2	0	0	44	24	19
Al	0	0	0	1	0	85	2	0
Si	0	1	1	1	0	86	1	0
Cl	0	0	1	0	0	0	0	87
К	2	17	3	12	7	31	15	3
Ca	0	0	20	0	4	53	4	4
Ti	2	5	0	1	3	77	0	1
Mn	0	7	18	5	4	53	3	0
Fe	2	1	25	1	2	53	3	0
Ni	27	10	36	1	0	6	2	1
Cu	8	1	58	0	8	3	10	0
Zn	0	16	40	26	0	4	0	0
Br	7	31	0	12	6	0	24	12
$\mathrm{NH_4}^+$	4	79	10	4	0	0	0	0
NO ₃ ⁻	0	0	3	0	0	6	76	1
SO4 ²⁻	2	70	9	0	0	5	5	2
V	85	4	0	0	0	12	0	0
As	19	0	0	69	0	4	3	0
Sr	27	0	0	12	0	38	0	6
Cd	12	9	8	50	8	0	5	0
Sb	22	8	34	13	7	1	0	1
Pb	22	0	5	67	2	1	0	0

Table S4: Explained variation (%) of species in PM10 and PM2.5 (ATH-SUB)

POR-	Biomass	Secondary	Heavy oil and Secondary	Mine	Sea	Industr	Vehicle non-	Vehicle
TR	burning	nitrate	sulphate	ral	salt	ial	exhaust	exhaust
EC	13	0	0	0	0	11	12	60
OC	29	4	9	4	0	8	0	38
levo	84	0	0	0	0	2	0	6
Na	0	5	3	4	78	3	3	3
Mg	0	8	3	19	59	0	3	0
Al	1	12	2	68	0	0	7	3
Si	1	14	2	70	0	1	9	2
S	3	4	58	5	9	4	0	13
Cl	9	0	2	0	82	0	0	0
Κ	17	6	5	31	7	3	3	24
Ca	0	15	0	50	13	2	15	1
Ti	1	12	3	64	0	2	12	2
V	2	8	56	4	9	2	0	7
Cr	1	13	0	23	3	9	45	1
Mn	0	8	0	32	1	19	21	5
Fe	0	16	0	32	3	4	41	0
Ni	5	3	42	4	6	10	0	11
Cu	1	14	0	12	4	6	47	7
Zn	0	6	0	7	2	70	14	0
Br	11	6	13	4	25	5	0	24
$\mathrm{NH_4}^+$	13	16	50	0	0	0	1	0
NO ₃ -	14	58	3	0	4	0	16	1
Li	1	0	7	62	5	3	7	16
As	11	0	6	9	2	9	16	41
Rb	14	0	5	51	1	3	7	17
Cd	12	0	8	0	0	37	28	14
Sn	8	0	4	0	1	2	63	0
Sb	6	2	3	5	2	3	53	0
Ва	0	4	2	28	2	0	61	0
La	0	1	10	54	10	3	9	16
Ce	1	3	4	48	3	3	13	20
Pb	11	0	7	0	0	34	23	3

Table S5: Explained variation (%) of species in PM10 and PM2.5 (POR-TR)

MLN-	Vehicle	Vehicle non	Secondary	Heavy oil &	Mineral	Indust	Aged sea	Biomass
UB	exhaust	exhaust	nitrate	secondary sulphate	dust	rial	salt	burning
EC	18	12	12	7	0	21	0	24
OC	5	17	11	9	5	14	4	13
Levo	0	7	0	0	0	0	0	88
Al	0	12	2	4	49	4	0	1
Si	1	27	0	6	60	0	0	0
S	0	0	3	67	0	24	0	0
Cl	0	0	0	0	0	20	67	0
К	1	0	7	1	23	9	0	44
Ca	1	23	3	0	44	4	2	0
Ti	2	25	3	3	53	3	1	2
V	0	0	0	79	1	32	0	0
Cr	11	31	0	11	2	15	0	5
Mn	14	24	7	2	17	3	4	4
Fe	3	50	2	2	8	4	1	4
Ni	8	21	0	23	4	23	0	3
Cu	5	42	7	0	4	21	0	0
Zn	46	12	8	3	4	0	5	2
Br	21	0	11	16	0	16	18	5
Rb	0	7	3	4	31	12	0	31
Ва	2	16	0	8	14	25	4	9
Pb	22	9	8	0	4	13	17	11
Sn	4	5	2	19	15	32	8	17
Na ⁺	0	12	19	0	0	0	35	0
$\mathrm{NH_4}^+$	0	0	50	23	1	0	5	3
Mg^+	2	22	3	0	19	2	0	2
NO ₃ ⁻	2	1	60	1	1	0	5	7

Table S6: Explained variation (%) of species in PM10 and PM2.5 (MLN-UB)