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Abstract. Elevated tropospheric ozone concentrations are

considered a toxic threat to plants, responsible for global crop

losses with associated economic costs of several billion dol-

lars per year. Plant injuries have been linked to the uptake of

ozone through stomatal pores and oxidative damage of the

internal leaf tissue. But a striking question remains: can sur-

face reactions limit the stomatal uptake of ozone and there-

fore reduce its detrimental effects to plants?

In this laboratory study we could show that semi-volatile

organic compounds exuded by the glandular trichomes of

different Nicotiana tabacum varieties are an efficient ozone

sink at the plant surface. In our experiments, different diter-

penoid compounds were responsible for a strongly variety-

dependent ozone uptake of plants under dark conditions,

when stomatal pores are almost closed. Surface reactions

of ozone were accompanied by a prompt release of oxy-

genated volatile organic compounds, which could be linked

to the corresponding precursor compounds: ozonolysis of

cis-abienol (C20H34O) – a diterpenoid with two exocyclic

double bonds – caused emissions of formaldehyde (HCHO)

and methyl vinyl ketone (C4H6O). The ring-structured

cembratrien-diols (C20H34O2) with three endocyclic double

bonds need at least two ozonolysis steps to form volatile car-

bonyls such as 4-oxopentanal (C5H8O2), which we could ob-

serve in the gas phase, too.

Fluid dynamic calculations were used to model ozone dis-

tribution in the diffusion-limited leaf boundary layer under

daylight conditions. In the case of an ozone-reactive leaf sur-

face, ozone gradients in the vicinity of stomatal pores are

changed in such a way that the ozone flux through the open

stomata is strongly reduced.

Our results show that unsaturated semi-volatile com-

pounds at the plant surface should be considered as a source

of oxygenated volatile organic compounds, impacting gas

phase chemistry, as well as efficient ozone sink improving

the ozone tolerance of plants.

1 Introduction

Tropospheric ozone (O3) is formed as a product of pho-

tochemical reactions involving nitrogen oxides (NOx) and

volatile organic compounds (VOC) as precursors (Jenkin

and Clemitshaw, 2000). Increasing anthropogenic precursor

emissions from fossil fuel and biomass burning have led

to elevated ambient ozone concentrations over large por-

tions of the earth’s surface. Today, many regions experience

near-ground ozone background levels greater than 40 parts

per billion volume (ppbv) (Vingarzan, 2004), levels which

may be responsible for cellular damage inside leaves (He-

witt et al., 1990; Wohlgemuth et al., 2002), adversely affect-

ing photosynthesis and plant growth (Ashmore, 2005). Toxic

ozone concentrations cause visible leaf injury, plant damage,

and reduction in crop yields with associated economic costs

of several billion dollars per annum worldwide (Wang and

Mauzerall, 2004; Van Dingenen et al., 2009). Future trends

of tropospheric ozone strongly depend on the emission fac-

tors of the corresponding precursor compounds (i.e. VOC

and NOx) and indirectly also on land cover and character-
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istics of the vegetation (Dentener et al., 2006; IPCC, 2013;

Fu and Tai, 2015). Some recent studies revealed a stabiliza-

tion or even a lowering of the tropospheric background ozone

concentrations in parts of the industrialized western coun-

tries since the turn of the millennium (Logan et al., 2012;

Parrish et al., 2012; Oltmans et al., 2013; IPCC, 2013). This

is likely a result of preventive measures reducing ozone pre-

cursor emissions (Granier et al., 2011). In contrast, ozone

background concentrations are still rising in parts of Asia ex-

periencing high economic growth and a concomitant increase

in NOx emissions (Granier et al., 2011; Fu and Tai, 2015).

Land cover and land use changes, often determined by

changing climatic conditions, could impact tropospheric

ozone in different ways: a higher leaf area index of the veg-

etation would enhance dry deposition of ozone (Fu and Tai,

2015). In low NOx regions enhanced emissions of isoprene-

emitting species could decrease ozone concentrations, while

they would lead to an ozone increase in high NOx regions

(Fu and Tai, 2015).

Traditionally, the risk of ozone damage to plants is esti-

mated on the basis of the accumulated ozone exposure above

40 ppbv (AOT 40) (Felzer et al., 2005). However, the nega-

tive effects of ozone on vegetation have been observed to be

more closely related to the effective dose, i.e. the stomatal

flux× time minus the portion of ozone which can be detox-

icated by the plant defence system (Massman, 2004). In the

expected CO2 richer and warmer future atmosphere (IPCC,

2013), plants may reduce stomatal conductance and thus in-

directly alleviate ozone damage (Sitch et al., 2007).

However, accurate experimental quantification of the

stomatal uptake of ozone is complicated by the presence of

other ozone sinks, either in the gas phase or on the plant

surface (Fruekilde et al., 1998; Cape et al., 2009). In pre-

vious studies the ozone flux through the stomata was cal-

culated by multiplying the stomatal ozone conductance with

the ambient ozone concentration (see, e.g. Kurpius and Gold-

stein, 2003; Cieslik, 2004; Goldstein et al., 2004; Fares et al.,

2012), assuming similar gradient profiles of ozone and H2O

close to the stomata. As we will show, for ozone-reactive leaf

surfaces this approach is not fully correct and may lead to an

overestimation of stomatal ozone uptake in the case of very

reactive surfaces.

We present results from ozone fumigation experiments, in

which intact leaves of different varieties of tobacco (Nico-

tiana tabacum) were exposed to elevated ozone levels (20–

150 ppbv) under light and dark conditions in an exceptionally

clean plant enclosure system (see Sect. 2 for experimental

details). The Nicotiana tabacum species is famous for large

differences in the ozone tolerance of the different varieties.

For example, the Bel W3 is known to be very ozone sensitive

(Heggestad, 1991; Loreto et al., 2001) and has therefore been

used as an ozone indicator plant in earlier times (see Hegges-

tad, 1991, and references therein). Conversely, the Bel B va-

riety is known to be non-sensitive (Heggestad, 1991). The

high ozone tolerance of this variety has been attributed to

wider epidermal cells and more spongy mesophyll cell lay-

ers (Borowiak et al., 2010) and to differences in the plant’s

ability to cope with oxidative stress once ozone has entered

the stomata (Schraudner et al., 1998; Eltayeb et al., 2007).

Several studies were investigating the possibility to in-

crease the ozone tolerance of plants by external application

of ozone-scavenging compounds (Gilbert et al., 1977; Loreto

et al., 2001; Vickers et al., 2009a; Singh and Agrawal, 2010;

Agathokleous et al., 2014) or by enabling the emission of

volatile terpenoids in transgenic plants (Vickers et al., 2009b;

Palmer-Young et al., 2015). We show here that some of the

tobacco varieties investigated in our experiments are intrinsi-

cally equipped with ozone scavenging compounds located on

their leaf cuticula. As is the case for many other plant species

(Fahn, 1988), tobacco leaves possess glandular trichomes. In

tobacco, various diterpenoids are the major compounds ex-

uded by these secretory structures at the leaf surface (Sal-

laud et al., 2012). The exudates cover the plant leaves as

a defence barrier, for example against arthropod pests (Wag-

ner, 1991; Lin and Wagner, 1994); they were shown to have

an anti-fungal (Kennedy et al., 1992) and insecticidal action

(Kennedy et al., 1995). We show that in a tobacco variety se-

creting the diterpenoid cis-abienol, the exudates have a ben-

eficial side-effect: they act as a powerful chemical protection

shield against stomatal ozone uptake by depleting ozone at

the leaf surface.

Surface-assisted ozonolysis not only protects plants from

uptake of phytotoxic ozone through stomata, but also acts as

a source of volatile carbonyls into the atmosphere, impacting

atmospheric chemistry. To our knowledge, our study reports

for the first time on detailed measurements of plant surface-

assisted ozonolysis of semi-volatile diterpenoids forming

volatile carbonyl products.

2 Materials and methods

2.1 Plant material

We used the following four tobacco cultivars: Ambalema,

secreting only the diterpenoid cis-abienol (C20H34O, see

Fig. 1), BYBA secreting α- and β-cembratrien-diols (CBT-

diols, C20H34O2, see Fig. 1), and Basma Drama, secreting

all these compounds (Sallaud et al., 2012). The new 3H02

line does not exude diterpenoids at all (see Appendix A).

Seeds of the tobacco cultivars were obtained from the

Leibniz Institute of Plant Biochemistry, Department of Cell

and Metabolic Biology, Halle. The plants were grown in the

green houses of the Institute of Ecology of the University of

Innsbruck for 8–10 weeks in standard soil.

Before being used in the experiments the sample plants

were allowed to adapt 1–4 weeks in the laboratory, obtaining

light from the same true light lamp type as used during the

measurements (see Sect. 2.2).
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Figure 1. Ozonolysis of diterpenoids exuded by the trichomes of the

investigated tobacco plants. The BYBA variety releases α- and β-

cembratrien-diols (C20H34O2), the Ambalema variety cis-abienol

(C20H34O); the Basma Drama variety exudes all these compounds.

Ozonolysis of the cembratriendiols requires at least two ozonolysis

steps to form short-chained, volatile carbonyls, e.g. 4-oxopentanal

(C5H8O2). Ozonolysis of cis-abienol leads to the formation of

volatile formaldehyde (HCHO) and methyl vinyl ketone (C4H6O).

The background image shows glandular trichomes on a tobacco

leaf.

Plants were installed into the plant enclosure used for

ozone fumigation the evening before the actual experiment,

so they could adapt to the system and recover from possible

stress during installation. The sample plants were well wa-

tered and in a good physiological condition and showed no

visible signs of damage. At the beginning of the experiments,

when no ozone was added, no significant stress signals in

form of green leaf volatiles were detected.

In total, combined dark and light ozone fumigation ex-

periments were conducted with five Ambalema, two Basma

Drama, one BYBA and three 3H02 samples. Moreover, ex-

periments under solely light conditions were conducted with

eight Ambalema, four Basma Drama, four BYBA, and two

3H02 plants. Each sample plant was tested only once.

2.2 Setup

In the present ozone experiments we used only inert ma-

terials such as Teflon®, PEEK® or Duran® glass in order

to minimize artificial side-reactions of ozone with unsatu-

rated compounds, present in, e.g. sealing materials like rub-

ber. Moreover, special care was taken to avoid fingerprints,

which could result in side reactions of ozone with skin oils

(Wisthaler and Weschler, 2010). Ozone loss, estimated from

measured ozone concentrations at the inlet and outlet of the

empty plant enclosure, was typically less than 5 %.

For plant fumigation, synthetic air 5.0 grade was mixed

with CO2 4.8 grade (both Messer Austria GmbH, Gumpold-

skirchen, Austria). By bubbling the air in distilled water

and passing it by a subsequent thermoelectric cooler (TEC)

the relative humidity was set. Before entering the plant en-

closure, the air was flushed through an ozone generator

(UVP, Upland (CA), USA). The enclosure system consisted

of a desiccator (Schott Duran®) of 17.3 L volume, turned

upside-down, and two end-matched PTFE® ground plates.

A central hole served as feed-through for the plant stem, pos-

sible gaps were sealed with Teflon® tape. The (single-sided)

leaf area enclosed was typically in the range of 250–850 cm2.

An ozone detector (Model 49i, Thermo Fisher Scientific

Inc. Franklin (MA), USA) and an infra-red gas analyser

(LI-840A CO2/H2O Analyzer, LI-COR® inc., Lincoln (NE),

USA) were sampling at 2 min intervals from either the inlet

or outlet of the enclosure. Plant enclosure inlet ozone con-

centrations were typically kept constant throughout each ex-

periment and were adjusted to obtain realistic ambient ozone

concentrations at the enclosure outlet during light conditions

(e.g. ∼ 60 ppbv in Fig. 3). Relative humidity in the plant en-

closure ranged from typically∼ 55 % in dark experiments up

to ∼ 95 % in light experiments.

VOC were quantitatively detected at the enclosure out-

let by a Selective Reagent Ionization Time-of-Flight Mass

Spectrometer (SRI-ToF-MS, see next section) which was

switched every 6 min between H3O+ and NO+ reagent ion

mode.

Sample plants were illuminated by a true light lamp

(Dakar, MT/HQI-T/D, Lanzini Illuminazione, Brescia,

Italy). Infra-red light was shielded off by a continuously

flushed water bath in order to prevent heating of the plant en-

closure. Photosynthetically active radiation (PAR) was mea-

sured with a sunshine sensor (model BF3, Delta T Devices

Ltd, Cambridge, UK) and temperature on the outer plant en-

closure surface with K-type thermocouples.

2.3 SRI-ToF-MS

The UIBK Advanced SRI-ToF-MS (University of Innsbruck

Advanced Selective Reagent Ionization Time-of-Flight Mass

Spectrometer, Breitenlechner and Hansel, 2015) combines

the high mass resolution of PTR-ToF-MS (Graus et al., 2010)

with the capability to separate isomeric compounds having

specific functional groups. For this purpose, the SRI-ToF-

MS makes use of different chemical ionization pathways of

a set of fast switchable primary ions (here: H3O+ and NO+).

Moreover, the employment of different primary ions could

help to differentiate molecules suffering from fragmentation

onto the same mass to charge ratio in the standard H3O+

mode (Karl et al., 2012).

Examples of differentiable isomers are aldehydes and ke-

tones. In the H3O+ reagent ion mode, aldehydes and ketones

both exhibit proton transfer and thus, e.g. methyl vinyl ke-

tone (MVK) and methacrolein (MACR) are both detected

as C4H7O+ (m/z 71.050). In NO+ reagent ion mode, most

aldehydes exhibit hydride ion transfer and ketones cluster-

ing reactions, comparable to the ionization mechanisms in
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a SIFT instrument (Španěl et al., 1997). Thus MVK is de-

tected as C4H6O qNO+ (m/z 100.040), whereas MACR is

detected as C4H5O+ (m/z 69.034).

In addition to isomeric separation, the high flow through

the drift tube (here: ∼ 500 mLmin−1 compared to 10–

20 mLmin−1 in a standard instrument) allows for the first

time the detection of semi-volatile compounds such as the

diterpenoid cis-abienol (C20H34O).

The SRI-ToF-MS was operated under standard conditions,

60 ◦C drift tube temperature, 540 or 350 V drift voltage and

2.3 mbar drift pressure, corresponding to an E/N of 120 or

78 Td (E being the electric field strength andN the gas num-

ber density; 1Td= 10−17 Vcm2) in H3O+ or NO+ reagent

ion mode, respectively. The instrument was calibrated ap-

proximately once a week by dynamic dilution of VOC us-

ing two different gas standards (Apel Riemer Environmen-

tal Inc., Broomfield (CO), USA), containing ca. 30 differ-

ent VOC of different functionality distributed over the mass

range of 30–204 amu. Full SRI-ToF-MS mass spectra were

recorded up to m/z 315 with a 1 s time resolution. Raw data

analysis was performed using the PTR-ToF Data Analyzer

v3.36 and v4.17 (Müller et al., 2013).

2.4 cis-abienol identification

For the identification of cis-abienol a pure standard was ac-

quired (Toronto Research Chemicals, Toronto, Canada). The

powder was dissolved in n-hexane and applied on the sur-

face of a glass container, which was put into the enclo-

sure system and treated like the plant samples. In H3O+

reagent ion mode, the major cis-abienol derived signal was

detected onm/z 273.258 (C20H+33); like many other alcohols,

cis-abienol is losing H2O after the protonation reaction. Mi-

nor fragment signals in the range of a few percent were de-

tected at m/z 191.180 (C14H+23), m/z 163.149 (C12H+19) and

m/z 217.196 (C16H+25), respectively.

In NO+ reagent ion mode, the major cis-abienol de-

rived signals were detected at m/z 272.250 (C20H+32) and

m/z 178.172 (C13H+22). Minor signals were measured at

m/z 163.149 (C12H+19) and m/z 134.101 (C10H+14), respec-

tively.

Ozonolysis of the pure cis-abienol standard yielded the

same primary ozonolysis products (see below) as in the case

of Ambalema plants.

2.5 Leaf stripping

In order to relate the observed ozonolysis carbonyls to plant

surface reactions, leaf exudates of untreated tobacco plants

were stripped off by dipping leaves (of similar area) of un-

treated Ambalema, Basma Drama and 3H02 plants into n-

hexane (∼ 100 mL for 1000 cm2 leaf area) for ∼ 1 min. The

n-hexane – leaf exudate solution was then distributed as

evenly as possible onto the inner surface of the empty desic-

cator serving as plant enclosure. n-hexane evaporated quickly

and was further reduced by flushing the glass cuvette with

pure synthetic air. Afterwards, ozone fumigation experiments

were performed similar to the experiments with intact plants.

2.6 GC-MS analysis

Non-volatile ozonolysis products and unreacted surface com-

pounds were analysed by GC-MS (see also Supplement). Di-

rectly after the ozone fumigation experiments we extracted

leaf exudates and low-volatility ozonolysis products from the

fresh tobacco leaves (see Sect. 2.5). 1 µL portions of the sam-

ples were then injected directly into a GC-MS for analysis on

a 6890 N gas chromatograph coupled to a 5973 N mass spec-

trometer (Agilent Technologies) according to the procedures

described elsewhere (Sallaud et al., 2012).

Tobacco diterpenoids were identified on the basis of their

mass spectra, as described in the literature (Enzell et al.,

1984).

2.7 Calculation of leaf gas exchange parameters

For the calculation of the gas exchange parameters we fol-

lowed well-established procedures by Caemmerer and Far-

quhar (1981) and Ball (1987). Transpiration rate E, assimi-

lation rate A, total ozone flux Ftot,O3
and total water vapour

conductance gl,H2O were calculated from

E =
ue

s
·

wo−we

1−wo× 10−3
, [mmolm−2 s−1

] (1)

A=
ue

s
·

[
ce−

(
1−we× 10−3

1−wo× 10−3

)
· co

]
,

[µmolm−2 s−1
] (2)

Ftot,O3
=
ue

s
·

[
oe−

(
1−we× 10−3

1−wo× 10−3

)
· oo

]
,

[nmolm−2 s−1
] (3)

gl,H2O =

103
·E
(

1− wo+wi

2×103

)
wi−wo

,
[
mmolm−2 s−1

]
, (4)

with ue the molar flow of air entering the enclosure in

[mol s−1], s the leaf area in [m2], we/ce/oe and wo/co/oo

the mole fraction of water vapour/CO2/ozone entering re-

spectively leaving the plant enclosure in [mmolmol−1],

[µmolmol−1] and [nmolmol−1], respectively. wi is the mole

fraction of water vapour inside the leaf in [mmolmol−1] and

is typically assumed to be the saturation mole fraction at leaf

temperature (Ball, 1987).

For the calculation of the total ozone conductance we ap-

plied a ternary diffusion model as has been proposed by

Caemmerer and Farquhar (1981). Thereby, pairwise interac-

tions between ozone, water vapour and air are considered (for

the sake of simplicity we neglected interactions with CO2).

Interactions of ozone molecules with water vapour are im-

portant only for that portion of ozone, which is entering the
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stomatal pores and not for that lost in reactions at the leaf sur-

face. However, in the latter case the consideration of binary

diffusion between ozone and water leads to an overestima-

tion of the total ozone conductance in the range of < 1%.

Total ozone conductance gl,O3
is then defined by

gl,O3
=
−103

·Ftot,O3
+
(
oa+oi

2

)
·E

oa− oi

, [mmolm−2 s−1
], (5)

with oi and oa the mole fractions of ozone inside the leaf

(at the leaf surface for reactive leaf surfaces) and in the sur-

rounding air, respectively. oa equals the ozone mole fraction

oo measured at the outlet of the plant enclosure. Typically,

we consider oi ≈ 0 (Laisk et al., 1989) and therefore Eq. (5)

simplifies further to

gl,O3
=
−103

·Ftot,O3
+
oa

2
·E

oa

. (6)

2.8 Quantification of the ozone depletion capability of

individual plants

In our fumigation experiments the ozone concentrations in

the plant enclosure varied between the different experiments

and within experiments switching from light to dark con-

ditions. In order to compare the ozone depletion capability

(i.e. surface plus stomatal sinks) of different plants or of the

same plant under dark and light conditions, it is therefore

important to use a concentration independent measure. As

for a given ozone conductance the ozone flux increases with

the ambient ozone concentration (cf. Eqs. 3 and 6), we fol-

low others (see e.g. Wohlfahrt et al., 2009) and use the ozone

conductance values instead. In experiments with plants hav-

ing an ozone reactive surface, the total ozone conductance

gl,O3
(Eq. 6) comprises boundary layer conductance, stom-

atal conductance, and cuticular conductance. Stomatal and

boundary layer ozone conductances can be calculated from

those of water vapour by correcting for the different diffu-

sivities of the two gases. The boundary layer water vapour

conductance could be determined by measuring temperature

and evaporation rate from leaf models made of chromatog-

raphy paper (see Ball, 1987). However, in our experiments

this was not really practical for all sample plants which were

all complexly and differently shaped. Consequently, also the

stomatal water vapour and ozone conductances could not be

inferred from the calculated total water vapour conductance

(Eq. 4).

As we show in the Supplement, even if stomatal and

boundary layer ozone conductances are known, for semi-

reactive leaf surfaces the calculation of stomatal and non-

stomatal parts of the total ozone flux is not feasible.

For these reasons we report here only total ozone con-

ductance values (Eq. 6), normalized to the single-sided leaf

area or to the area of the enclosure covered with leaf exu-

dates in experiments with pure leaf surface compounds (see

Sect. 2.5).

2.9 Statistical analysis

Data (gl,O3
, A, gl,H2O) were tested for statistically signifi-

cant differences between dark and light experiments (using

the same variety) and between different tobacco varieties

(in either dark or light experiments), respectively, using the

Wilcoxon-Mann-Whitney test in Matlab®. Due to the par-

tially small sample size, probabilities p< 0.1 are reported

as marginally significant. Lacking replicates of dark experi-

ments with BYBA plants, in the statistical analysis this type

of experiment was omitted.

2.10 Fluid dynamic calculations

In order to visualize the ozone concentration gradients

caused by plant ozone uptake, two idealized setups were sim-

ulated: a macroscopic plant model in an ambient air flow and

a microscopic model for the stomatal gas exchange. The sim-

ulations were done using the open-source CFD code Open-

FOAM (www.openfoam.com).

In the microscopic model the air flow was neglected and

a pure diffusion process was simulated. Stomata were mod-

elled as 100 µm long and 40 µm wide eye-shaped openings

recessed 20 µm deep into the leaf surface. The simulation do-

main with 500 000 cells covered an area of 300 µm square

around the stoma and extended 2 mm from the leaf surface

into the surrounding gas. A single stoma with cyclic bound-

aries was used to represent a whole leaf with stomata spread

repeatedly over its surface. The ozone-reactive bottom of the

stomata was modelled as 100 % efficient sink (Laisk et al.,

1989) with a constant ozone concentration of zero, while the

side walls of the stomata were assumed not to absorb ozone

and set to zero gradient. The top of the measurement domain

acting as ozone inlet from the surrounding was set to one.

The leaf surface around the stomata was set to zero gradient

or to a fixed concentration of zero, representing two idealized

plant types with either non-reactive or reactive leaf surface.

“scalarTransportFoam” was run on this grid with a uniform

zero velocity field until a steady state was reached.

For the macroscopic model (see Supplement) a laminar

flow around the plant was simulated using the steady-state

Reynolds averaged Navier–Stokes solver “simpleFoam”, the

transport of ozone in the resulting flow velocity field was

studied using the “scalarTransportFoam” solver. The simu-

lated gas volume consisted of a cube with 20 cm edge length

with the shape of an exemplary tobacco plant cut out of its

volume (see Fig. S3). The resulting simulation domain was

divided into a hexahedron-dominant grid of 3.7 million cells

with the finest granularity around the stomata and the leaf

surfaces with the OpenFOAM tool “snappyHexMesh”. The

domain was divided into eight subdomains for parallel com-

putation. Stomata were represented by small patches spread

equally over the leaf surfaces, covering 10 % of the total leaf

area. The boundary conditions for the gas flow simulation

consisted of an inlet with 2 mms−1 velocity entering on one

www.atmos-chem-phys.net/16/277/2016/ Atmos. Chem. Phys., 16, 277–292, 2016

www.openfoam.com


282 W. Jud et al.: Plant surface reactions

face of the cube and a constant pressure boundary condition

outlet on the opposite face. The gas velocity on the plant sur-

face was set to zero. Initial conditions for the flow simula-

tion were calculated with “potentialFoam” to speed up con-

vergence of the “simpleFoam” solver. The simulation was

run until the flow velocity field reached a steady state. For

the diffusion calculations a relative initial concentration of

ozone was set to one at the inlet and to zero on the stom-

ata patches. Like in the microscopic model calculations, the

leaf surface was either a zero concentration gradient bound-

ary (for an idealized 3H02 plant type) or a fixed concentra-

tion value of zero (for an idealized Ambalema plant type). In

the previously calculated velocity field the ozone transport

was simulated until a steady state was reached, too.

3 Results and discussion

3.1 Expected ozonolysis products of cis-abienol and

cembratrien-diols

Apart from the 3H02 variety, the investigated tobacco

varieties secrete different unsaturated diterpenoids (see

Sect. 2.1). According to the Criegee mechanism (Criegee,

1975), ozone attacks the carbon double bonds of alkenes

forming primary carboyls and so-called Criegee Intermedi-

ates (see Supplement). Criegee Intermediates are, however,

expected to be too short-lived to be detected directly by

the instruments used in our experiments (see Supplement).

We were therefore interested primarily in the stable, volatile

ozonolysis carbonyls, which could be detected in real-time

by our SRI-ToF-MS.

For the semi-volatile diterpenoid cis-abienol with two ex-

ocyclic double bonds, exuded by the Ambalema and Basma

Drama varieties, we expected the formation of formalde-

hyde (HCHO) and methyl vinyl ketone (MVK, C4H6O, see

Fig. 1).

In the case of the ring structured CBTdiols with three en-

docyclic double bonds, produced by the Basma Drama and

BYBA plants, at least two ozonolysis steps are needed to form

volatile carbonyls. The three smallest carbonyl products are

shown in Fig. 1, whereby 4-oxopentanal (C5H8O2) is ex-

pected to be the most volatile one (Goldstein and Galbally,

2007).

3.2 Ozone fumigation experiments with pure leaf

surface compounds

In order to relate a release of carbonyls to surface chemistry

only and to exclude stimulated emissions caused, e.g. by the

plant ozone defence system, we investigated ozone reactions

with pure leaf surface extracts. Leaf surface compounds were

extracted with n-hexane and subsequently applied onto the

inner surface of an empty plant enclosure and fumigated with

ozone (see Sect. 2.5).
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Figure 2. Ozonolysis experiments with pure leaf exudates extracted

from non-ozone fumigated, unimpaired plants. The leaf extracts

containing the surface compounds were applied to the inner surface

of the empty plant enclosure system (see Sect. 2). During ozone fu-

migation (grey shaded area), the total ozone conductance gl,O3
to

the enclosure surface was much higher for Ambalema leaf extracts

(containing large amounts of the diterpenoid cis-abienol) than for

3H02 extracts. Moreover, it remained high for many hours.

Ambalema leaf extracts showed a weak signal of cis- abi-

enol (we refer to Sect. 2.4 for the identification of this com-

pound), which disappeared during ozone fumigation while

MVK and formaldehyde were prominently observed. These

carbonyls were produced by surface-assisted ozonolysis of

cis-abienol (see Fig. 1). MVK was detected at m/z 71.050

(C4H7O+) and m/z 100.040 (C4H6O qNO+) in the H3O+

and NO+ reagent ion mode of the SRI-ToF-MS, respectively.

Formaldehyde was detected only using H3O+ as reagent

ion at m/z 31.018 (CH3O+), taking into account the humid-

ity dependent sensitivity (Hansel et al., 1997). In the NO+

reagent ion mode formaldehyde cannot be ionized (Španěl

et al., 1997), consequently we detected no signal.

In the ozone fumigation experiments using Basma Drama

leaf extracts, besides MVK and formaldehyde as ozonoly-

sis products of cis-abienol, also the most volatile CBTdiol

ozonolysis product – 4-oxopentanal – was detected in the

gas phase by SRI-ToF-MS. 4-oxopentanal was detected at

m/z 101.060 (C5H9O+2 ) in H3O+ andm/z 99.045 (C5H7O+2 )

in NO+ reagent ion mode, respectively.

No significant amount of volatile carbonyls was observed

from ozonolysis of 3H02 leaf extracts. Consistently, the

total ozone conductance was far less than in experiments

with extracts from diterpenoid-exuding tobacco varieties (see

Fig. 2). This is in line with the results from the correspond-

ing experiments with intact plants (see below). The ozone de-

pletion efficiency of the 3H02 exudates was decreasing fast,

while the presence of cis-abienol in Ambalema leaf exudates

kept the ozone conductance at elevated levels for many hours

(cf. Fig. 2).
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3.3 Ozone fumigation experiments with diterpenoid

exuding tobacco varieties

Also in experiments with intact plants we observed a prompt

release of volatile carbonyls as soon as the tobacco leaves

were fumigated with ozone. The Ambalema and Basma

Drama varieties released MVK and formaldehyde. In addi-

tion, we detected sclaral, a non-volatile compound, in sur-

face extracts obtained from ozone fumigated plants of the

same varieties (see Sect. 2 and Supplement). Sclaral is an iso-

merization product of the C16 carbonyl formed in cis-abienol

ozonolysis (cf. Fig. 1). All these compounds can therefore be

attributed again to surface-assisted ozonolysis of cis-abienol

(see Fig. 1).

In experiments using Basma Drama and BYBA plants

we detected the CBTdiol ozonolysis product 4-oxopentanal,

similar to the ozone fumigation experiments with leaf surface

extracts (see previous section).

Figure 3 shows a typical result of an ozonolysis experi-

ment using Ambalema plants. Immediately after starting the

ozone fumigation, the cis-abienol signal decreased, while ini-

tial bursts of MVK and formaldehyde were detected. These

initial bursts can be attributed to surface ozonolysis of cis-

abienol deposited on all surfaces (i.e. surfaces of the whole

plant, the enclosure and the enclosure outlet tubing) dur-

ing plant acclimatization under ozone free conditions lasting

> 12 h (see Sect. 3.6 and Supplement).

In plant experiments using diterpenoid exuding tobacco

varieties, the carbonyl emission and consequently the total

ozone conductance and flux (under constant light) eventu-

ally reached a steady state, when the diterpenoid production

by the trichomes (leading to a permanent deposition of those

onto the plant surface) and plant surface reactions were in

equilibrium (cf. Fig. 3). This is in contrast to experiments

with pure leaf surface compounds, in which the diterpenoids

were slowly consumed as ozone fumigation progressed (see

Sect. 3.2).

Simulating diurnal ozone variations over 2 days in exper-

iments with Ambalema and Basma Drama plants, we could

show that the reactive layer at the plant surface is a large pool

and not quickly consumed (see Supplement and Fig. S2). We

therefore assume that the diterpenoids released are likely to

represent a long-term ozone protection for these varieties.

3.4 Variety-specific ozone depletion during dark and

light phases

In further experiments we investigated the ozone depletion

by different tobacco varieties under dark and light conditions.

In dark experiments, when stomatal pores are almost

closed, the Ambalema variety showed the highest total ozone

conductance under steady-state conditions (cf. Fig. 4, top

panel). This is a direct indication for the high ozone depletion

capacity of the surface of this variety.
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Figure 3. Temporal evolution of selected VOC in an ozonolysis ex-

periment with an Ambalema plant and corresponding total ozone de-

position flux Ftot,O3
. The yellow shaded area denotes time ranges,

in which the sample plant was illuminated. Starting the fumigation

with∼ 60 ppbv ozone (indicated by the black arrow) the cis-abienol

signal decreased quickly. At the same time, the carbonyl products

of cis-abienol ozonolysis, formaldehyde and MVK (measured in

H3O+ respectively NO+ reagent ion mode of the SRI-ToF-MS),

started to rise. The large scattering of the formaldehyde signal de-

rives from the strongly reduced sensitivity of the SRI-ToF-MS un-

der high humidity conditions towards this compound. Two hours

after the start of the ozone fumigation an equilibrium between ac-

tual diterpenoid production and loss due to surface reactions was

established, resulting in stable signals of the oxygenated VOC.

Due to the lack of reactive diterpenoids on the leaf surface

of 3H02 plants, the surface ozone sink plays a minor role

for this tobacco line. However, we cannot totally exclude the

presence of other unsaturated compounds at the surface of

this variety.

The low surface reactivity of the Basma Drama and

BYBA varieties correlates with the lower amount of detected

ozonolysis carbonyls compared to that of the Ambalema va-

riety in dark conditions. This might be related to a lower

diterpenoid surface coverage of these two varieties and the

expected lower reactivity of the CBTdiols having endocyclic

double bonds (Atkinson and Arey, 2003).

The Ambalema variety also shows a higher gl,H2O and dark

respiration than the other varieties (cf. Fig. 4, middle and bot-

tom panels). gl,H2O linearly correlates with the stomatal wa-

ter vapour conductance and therefore also with the stomatal

ozone conductance. However, higher stomatal conductance

during dark conditions cannot explain the large differences in

gl,O3
between the plant types. While gl,H2O of the Ambalema

variety in dark conditions is about twice as high as that of the

3H02 variety, the corresponding gl,O3
is four times as high.

When switching from dark to light conditions we assume

cuticular conductance not to change significantly and thus an

increase in the calculated gl,O3
is attributable mainly to an

increasing stomatal ozone conductance. In the case of Am-

balema, switching the light on increased the total conduc-
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Figure 4. Total ozone conductance gl,O3
(top), total water vapour

conductance gl,H2O (middle) and assimilation rates A (bottom) of

different tobacco varieties during dark and light conditions. Error

bars denote the standard error of 5 (13), 2 (6), 1 (5) and 3 (5) repli-

cates of Ambalema, Basma Drama, BYBA respectively 3H02 in dark

(light) experiments. Different capital letters denote significant dif-

ferent means in light and dark experiments of the same plant type

and lower case letters significant different means of different plant

types in either dark or light experiments, respectively (Wilcoxon-

Mann-Whitney test, p< 0.1, see Sect. 2.9. Lacking replicates in the

statistical analysis dark experiments using BYBA plants were omit-

ted). Under dark conditions stomatal ozone conductance is gener-

ally low and consequently surface reactions are the major ozone

sink. The surface sink is high for the Ambalema tobacco line, which

exudes cis-abienol and lower for the other lines, exuding less reac-

tive or no diterpenoids.

tance by ∼ 55 % (see Fig. 4, top panel). In contrast, in the

3H02 case, switching on the light triggered a substantial in-

crease in the total ozone conductance by∼ 340 % (cf. Fig. 4,

top panel).

During light conditions the total ozone conductances of

the different tobacco varieties were in a comparable range;

slightly higher values were observed for the diterpenoid ex-

uding lines Ambalema, Basma Drama, and BYBA.

Statistical analysis confirmed the observed tendencies of

the total ozone conductance: only for the Ambalema variety

was gl,O3
under light conditions not significantly different

from the values measured under dark conditions (p> 0.1).

Conversely, gl,O3
calculated for the Ambalema variety was

significantly higher than that of the other tobacco lines under

dark conditions (p< 0.1, see Fig. 4, top panel).

3.5 Volatile carbonyl yields from surface ozonolysis

In the ozone fumigation experiments the yield of volatile

ozonolysis products was generally in the low percentage

range, e.g. for Ambalema plants∼ 7 % under dark and∼ 5 %

under light conditions considering the major volatile ozonol-

ysis products MVK and formaldehyde quantified by SRI-

TOF-MS. The slight change from∼ 7 to∼ 5 % when switch-

ing from dark to light conditions can be explained by the ef-

fect of the open stomata. Open stomata offer an alternative

sink for ozone and for volatile carbonyls produced in surface

assisted reactions (Karl et al., 2010; Niinemets et al., 2014).

The reason why only a small percentage of the consumed

ozone is detected as volatile products indicates that most of

the ozonolysis products are not volatile enough to leave the

plant surface (cf. Fig. 1 and Supplement). The fate of the

Criegee Intermediates in surface ozonolysis is discussed in

detail in the Supplement.

3.6 Separation of ozone surface and gas phase

reactions

In order to qualify the measured total ozone fluxes for the cal-

culation of gl,O3
values, we had to take into account the pos-

sibility of homogeneous gas phase ozonolysis of the semi-

volatile diterpenoids exuded by the tobacco varieties.

To assess the significance of gas phase ozonolysis to our

results, we connected the plant enclosure containing a diter-

penoid emitting tobacco plant with a second empty enclosure

downstream and added ozone only to the second enclosure.

Only negligible carbonyl signals were observed once the ini-

tial burst from deposited diterpenoids faded away (see Sup-

plement and Fig. S1). This result indicates that with our setup

gas-phase reactions of the diterpenoids were not significant.

This observation can be explained theoretically, too. The

air in our enclosure system was exchanged every ∼ 5 min.

Therefore, only extremely fast gas phase ozone–alkene re-

actions have to be considered. For an ozone concentration

of 100 ppbv, a reaction rate of 1.35× 10−15 cm3 s−1 results

in an alkene ozonolysis lifetime of 5 min. Such fast ozonol-

ysis rates have only been measured for a few very reactive

sesquiterpenes (Atkinson and Arey, 2003). We found no re-

action rates of cis-abienol and CBTdiols with ozone in the

literature to exclude the possibility of a gas phase contribu-

tion to total ozone loss in our experiments a priori. Nonethe-
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less, taking into account the estimated vapour pressures of

cis-abienol (∼ 10−9 bar) and CBTdiol (∼ 10−12 bar) (Gold-

stein and Galbally, 2007) we can state that the bulk of the

exuded diterpenoids stayed at the leaf surface and that other

surfaces (e.g. the inner surface of the plant enclosure and the

tubing system) were very slowly covered by condensed diter-

penoids. This is also the explanation for the bursts of volatile

ozonolysis products at the beginning of every ozone fumi-

gation (see e.g. Fig. 3). We therefore assume that gas phase

reactions are unlikely to have played a major role in our ex-

periments.

3.7 Fluid dynamic model calculations

Microscopic fluid dynamic model calculations (see Materi-

als and methods) revealed the principles responsible for the

strong variety-dependent partitioning between stomatal and

non-stomatal ozone loss (see Sect. 3.4). The mixed convec-

tive and diffusive ozone transport from the surrounding at-

mosphere to the plant surface and into the stomata was sim-

ulated for two idealized plant types under light conditions

when the leaf stomata are open. The stomatal pores were ex-

emplarily modelled as small patches uniformly spread over

the entire leaf surface. For one model plant we assumed

stomatal ozone uptake only, corresponding to an idealized

3H02 variety plant lacking any reactive surface compounds.

The second model plant was representing an idealized Am-

balema variety. The surface acted as a perfect ozone sink

with every ozone molecule reaching it being lost, either on

the leaf surface or through the stomata.

Figure 5a and b show the resistance schemes used to de-

scribe the ozone flux to the leaves in the two scenarios, which

were the basis for our simulations. Ambient ozone has to

overcome the boundary layer resistance Rb and the stom-

atal resistance Rs before being destroyed in the stomatal cav-

ity (for the sake of simplicity we neglected here the mes-

ophyll resistance, which comprises diffusion through inner

air spaces and dissolution of the gas in the cell wall water,

followed by losses in the aqueous phase, penetration of plas-

malemma or chemical reactions in the cell, cf. Neubert et al.,

1993). In the case of a non-reactive leaf surface, ozone deple-

tion within the stomata is the sole ozone sink (see Fig. 5a).

In the case of an ozone-reactive leaf surface, an addi-

tional surface chemical resistance Rsc has to be introduced,

which is parallel to the stomatal resistance (see Fig. 5b). Rsc

inversely correlates with the reactive uptake coefficient of

ozone at the leaf surface. In the case of the model plant hav-

ing a non-reactive surface, Rsc is very large (Rsc→∞) and

ozone flux to the leaf surface can be omitted. Conversely, Rsc

is small for reactive surfaces.

The porous leaf surface architecture has special relevance

for the gas uptake of plants. For gases having a negligible

leaf surface sink (or source) – e.g. CO2 – steep concentration

gradients parallel and perpendicular to the surface develop

in close proximity to the stomata. These gradients enhance

the gas transport in the diffusive leaf boundary layer towards

the pores. This effect is extensively described in the literature

as the “paradox of pores” (see, e.g. Monson and Baldocchi,

2014). It enables plants to effectively harvest CO2 for photo-

synthesis, but in the same manner also “funnels” phytotoxic

ozone through the stomata into the plant leaves (see Fig. 5c).

In the case of an ozone-reactive leaf surface, Rsc is small

compared to Rs and only surface-parallel ozone concentra-

tion isosurfaces develop (black lines in Fig. 5d). Concentra-

tion gradients (white lines) close to the stomata are exclu-

sively perpendicular to the surface. Consequently, the ozone

transport in the diffusive leaf boundary layer is equally dis-

tributed over the whole leaf surface and the ozone concen-

tration in this layer is strongly reduced (see Fig. 5d). Simi-

larly, also macroscopic model calculations show that this ef-

fect broadens the space of reduced ozone concentrations sur-

rounding a plant with opened stomata (see Supplement and

Fig. S3).

The surface-parallel concentration isosurfaces are the rea-

son why we can use the same reference concentration cb, r

for both the stomatal and the surface chemical resistance,

(cf. Fig. 5b). However, this approach does only hold if the

leaf surface is a complete ozone sink (see Supplement and

Fig. S5).

The different ozone concentration patterns in the two mod-

elled scenarios have important implications for the stomatal

ozone uptake. Typically, the stomatal conductance of ozone

gs,O3
is estimated from that of water gs,H2O, by correcting for

the different diffusivity of the two gases (see e.g. Ball, 1987;

Neubert et al., 1993). The stomatal ozone flux Fs,O3
can then

be calculated with the following formula:

Fs,O3
= gs,O3

· (ci,O3
− cb,O3

), (7)

with ci,O3
being the ozone concentration in the leaf inter-

cellular space and cb,O3
the ozone concentration in the leaf

boundary layer. For high ambient ozone concentrations ci,O3

was found to be positive (Moldau and Bichele, 2002; Loreto

and Fares, 2007), but typically it is assumed to be close to

zero (Laisk et al., 1989). Therefore, Eq. (7) simplifies to

Fs,O3
=−gs,O3

· cb,O3
. (8)

If now surface reactions drastically reduce cb,O3
(cf. Fig. 5b

and d), the effective stomatal ozone flux (see Supplement)

and with that the effective ozone dose are also reduced,

which eventually determine the phytotoxic effects of ozone

to plants (Massman, 2004). At this point, it is important to

note that the uptake of non surface-reactive gases such as

CO2 is not affected by the altered ozone gradients.

Thus, whenever surface loss plays a role, both surface and

stomatal ozone uptake by plants have to be considered to-

gether. Previous studies might therefore have overestimated

stomatal ozone uptake (e.g. Kurpius and Goldstein, 2003;

Cieslik, 2004; Goldstein et al., 2004; Fares et al., 2012).

Hence, their reported stomatal ozone flux values should be

considered as upper limits.
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Figure 5. Fluid dynamic calculations of ozone uptake by stomata and leave surface. (a and b) show the resistance schemes for ozone uptake

of leaves with non-reactive (nr) and reactive (r) surfaces. ci, cc, cb, and ca denote ozone concentrations in the stomatal cavity, at the leaf

surface, in the boundary layer and in ambient air, respectively. Rs and Rb denote the stomatal and boundary layer resistances. The surface

chemical resistance Rsc is infinite (Rsc =∞) on a non-reactive surface. Fluid dynamic calculations reveal ozone concentration gradients

(white lines indicate their orientation) evolving parallel and perpendicular to the leaf surface around the stoma (located at the coordinate

(0,0)) in this case (c). If the leaf surface is covered with ozone-reactive substances, the parallel fraction of the ozone gradients vanishes,

resulting in isosurfaces of ozone concentration (black lines) parallel to the leaf surface and stronger ozone depletion in the leaf boundary

layer (d).

In future studies investigating the ozone depositions to

vegetation, it might be worth to analyse also the surface com-

position of the plants. If the surfaces are covered with sub-

stantial amounts of unsaturated organic compounds, surface

loss has to be considered right from the beginning in order

not to overestimate stomatal ozone uptake. Due to the fact

that surface reactions reduce ozone concentrations in the leaf

boundary layer, it is not correct to calculate stomatal ozone

loss applying the resistance scheme shown in Fig. 5a and to

eventually define the surface loss of ozone as that portion of

the total loss which is not explainable by gas phase reactions

and stomatal uptake.

For real plants the altered ozone gradient profile shown

in Fig. 5d is less pronounced depending on stomata depth,

which reduces the total stomatal uptake, and reactive sur-

face compounds, which show smaller surface reaction rates

than assumed for the idealized 100 % efficient ozone de-

pleting surface (see Supplement). In the case of such semi-

reactive leaf surfaces a more sophisticated resistance scheme

has to be used, which strongly complicates the calculation

of stomatal and non-stomatal ozone fluxes (see Supplement

and Fig. S5). Nonetheless, the simulations explain the experi-

mentally observed behaviour of different tobacco plants very

well.

3.8 Atmospheric implications

Over the last decade, several studies have shown discrep-

ancies between measured and expected ozone deposition

fluxes. Large downward ozone fluxes (Kurpius and Gold-

stein, 2003; Goldstein et al., 2004; Fares et al., 2010) and

high levels of oxidized VOC (Holzinger et al., 2005) have

been taken as evidence for “unconventional in-canopy chem-

istry” in a Ponderosa pine plantation, the Blodgett forest site.

Measured ozone deposition fluxes could not be explained by

modelled stomatal and known non-stomatal sinks, such as

reactions with measured VOC in the gas phase (Wolfe et al.,

2011a, b). The same observation was made by Rannik et al.

(2012) in a Scots pine dominated field site in Hyytiälä. All

these studies assume the presence of yet unmeasured highly

reactive semi- or low-volatile compounds, which have a sim-

ilar temperature-dependent emission pattern as mono- and

sesquiterpenes.

Wolfe et al. (2011b) assumed that the unmeasured reac-

tive compounds might be unsaturated, cyclic terpenoids. Due

to their low vapour pressure, the measurement of semi- or

low-volatile compounds represents a challenge, since these

substances strongly partition into the condensed phase and

are therefore easily lost in the inlet systems of most current

VOC instrumentation. However, Bouvier-Brown et al. (2007,

2009) were able to identify several different sesquiterpenes in

ambient air and in branch enclosure experiments at the Blod-

gett forest site.

A large number of compounds with diterpenoid back-

bones were recently observed for the first time in a different

Ponderosa pine forest site during the BEACHON-RoMBAS

campaign 2011 (Chan et al., 2015). These unsaturated diter-

penoids contain the same backbone as abietic acid, a primary

component of resin acids. The observed temporal variations

Atmos. Chem. Phys., 16, 277–292, 2016 www.atmos-chem-phys.net/16/277/2016/



W. Jud et al.: Plant surface reactions 287

in concentrations were similar to those of sesquiterpernoids,

suggesting they are directly emitted from the local vegeta-

tion.

Most recently, Palm et al. (2015) have shown that semi-

and intermediate volatility organic compounds measured for

the first time at the same site with a novel thermal desorp-

tion electron impact mass spectrometer (TD-EIMS) could

likely close the gap between observed and expected sec-

ondary aerosol growth, estimated from gas-phase concen-

trations of the most abundant measured VOC (mono- and

sesquiterpenes, toluene/p-cymene, isoprene). We therefore

speculate that the high ozone deposition fluxes in such for-

est sites could be a result of not only gas-phase reactions, but

to a certain extent also of ozone reactions with semi-volatiles

emitted or redeposited onto the vegetation surfaces.

Possible sources of the measured and unmeasured higher

terpenoids are – among others – constitutive plant emis-

sions or resins, which are known to contain high amounts of

sesqui-, di- and triterpenoids (Dell and McComb, 1979; Lan-

genheim, 2003). Resins can be released during mechanical

stress, e.g. in the event of hail storms (Bamberger et al., 2011)

and could eventually evaporate depending on their vapour

pressure (and therefore ambient temperature).

Di- and triterpenoids are also known constituents of sur-

face waxes (Estell et al., 1994a, b; Altimir et al., 2008;

Thimmappa et al., 2014). Moreover, it is estimated that about

30 % of vascular plants have glandular trichomes, which of-

ten exude higher terpenoid compounds, too (Wagner et al.,

2004).

Clearly, additional experiments are needed to better quan-

tify the amount of semi-volatiles deposited onto vegetation

surfaces and their impact on atmospheric chemistry.

4 Conclusions

Our results reveal for the first time a powerful ozone protec-

tion mechanism of plants having an ozone reactive leaf sur-

face. This opportunistic defence mechanism, which is a ben-

eficial side effect of semi-volatile terpenoids emitted onto

the leaf surface, takes place before the phytotoxic gas enters

the stomata. Plants emitting unsaturated semi-volatile com-

pounds could have an advantageous effect for neighbouring

plants as well: either directly by reducing overall ozone con-

centrations (see Supplement) or indirectly through the de-

position of the semi-volatile compounds onto unprotected

neighbouring leaves (Schmid et al., 1992; Himanen et al.,

2010; Chan et al., 2015).

Reactive surface compounds might also contribute to the

varying ozone sensitivity of different conifer species (Schnit-

zler et al., 1999; Landolt et al., 2000) when exposed to the

same cumulative ozone concentrations under light condi-

tions. We anticipate therefore that surface ozonolysis plays

an important role for the ozone tolerance of certain conifer

species, too.

Our findings have relevance not only for plants, but also

for additional ozone-initiated processes that occur in the in-

door and outdoor environment. Semi-volatile, unsaturated or-

ganic species are common on various surfaces including soil

with plant litter (Weiss, 2000; Isidorov et al., 2003; Ormeño

et al., 2009), aerosols (Rogge et al., 1993; D’Anna et al.,

2009; Baduel et al., 2011), man-made structures (Wisthaler

et al., 2005; Weschler et al., 2007; Shi and Zhao, 2015),

and even human skin (Wisthaler and Weschler, 2010). These

are potential ozone sinks and sources of oxygenated VOC in

ozone-rich environments, as has been shown previously (see

e.g. Wisthaler et al., 2005; Weschler et al., 2007; D’Anna

et al., 2009; Wisthaler and Weschler, 2010; Baduel et al.,

2011). We speculate that some of the ozonolysis-derived

products may play important roles in atmospheric processes,

influencing the budgets of OH radicals and ozone. Con-

versely, in our experiments we had no indication that surface

ozonolysis itself releases detectable amounts of OH radicals

into the gas phase (see Supplement). In order to assess the

global impact of surface-assisted ozonolysis on atmospheric

chemistry a more complete knowledge about the nature of

reactive, semi- and low-volatile compounds at plant surfaces

as well as the mechanisms triggering their release (e.g. con-

stitutive vs. biotic and mechanical stress induced emission)

is needed.
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Appendix A: Generation of the 3H02 variety –

a Nicotiana tabacum line without diterpenoids

The Ambalema variety which produces only cis-abienol and

the Colorado variety which produces only CBTdiols (Sallaud

et al., 2012) were crossed to produce hybrid F1 plants which

produce both diterpenoids. Because the genetic loci respon-

sible for the absence of CBTdiols and the absence of cis-

abienol are distinct and unlinked, recombinant plants which

produce neither diterpenoids could be recovered by analysing

the leaf surface extracts by GC-MS in the selfed progeny of

the F1 plants. One of these plants was selected, propagated

over two generations by single seed descent and named line

3H02.
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The Supplement related to this article is available online

at doi:10.5194/acp-16-277-2016-supplement.
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