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Abstract. Aerosol–cloud interactions continue to constitute

a major source of uncertainty for the estimate of climate ra-

diative forcing. The variation of aerosol indirect effects (AIE)

in climate models is investigated across different dynami-

cal regimes, determined by monthly mean 500 hPa vertical

pressure velocity (ω500), lower-tropospheric stability (LTS)

and large-scale surface precipitation rate derived from sev-

eral global climate models (GCMs), with a focus on liq-

uid water path (LWP) response to cloud condensation nuclei

(CCN) concentrations. The LWP sensitivity to aerosol per-

turbation within dynamic regimes is found to exhibit a large

spread among these GCMs. It is in regimes of strong large-

scale ascent (ω500<−25 hPa day−1) and low clouds (stra-

tocumulus and trade wind cumulus) where the models differ

most. Shortwave aerosol indirect forcing is also found to dif-

fer significantly among different regimes. Shortwave aerosol

indirect forcing in ascending regimes is close to that in sub-

sidence regimes, which indicates that regimes with strong

large-scale ascent are as important as stratocumulus regimes

in studying AIE. It is further shown that shortwave aerosol

indirect forcing over regions with high monthly large-scale

surface precipitation rate (> 0.1 mm day−1) contributes the

most to the total aerosol indirect forcing (from 64 to nearly

100 %). Results show that the uncertainty in AIE is even

larger within specific dynamical regimes compared to the un-

certainty in its global mean values, pointing to the need to re-

duce the uncertainty in AIE in different dynamical regimes.

1 Introduction

By scattering and absorbing sunlight, aerosol particles can

modify the solar radiation reaching the earth system, which

is termed the direct effect. The direct radiative effect of an-

thropogenic aerosols combined with subsequent rapid adjust-

ments of the surface energy budget, atmospheric state vari-

ables, and cloudiness to aerosol radiative effects is referred to

as Effective Radiative Forcing from aerosol–radiation inter-

actions (ERFari) (Boucher et al., 2013). Apart from ERFari,

aerosols can also alter the Earth’s radiation balance via inter-

actions with clouds, such as effects on cloud albedo and sub-

sequent changes to the cloud lifetime and thermodynamics
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as rapid adjustments, known as the aerosol indirect effect(s)

(AIE). These radiative effects are called Effective Radiative

Forcing from aerosol–cloud interactions (ERFaci) (Boucher

et al., 2013).

For liquid clouds, there are two principal ways through

which aerosols interact with them in AIE. First, an increase

in cloud condensation nuclei (CCN) concentration from an-

thropogenic aerosols leads to smaller cloud droplet sizes as-

suming constant liquid water content. The increased num-

ber but decreased droplet sizes in turn increase cloud albedo

due to more efficient backscattering. This is called the cloud

albedo effect or the first AIE, also known as the Twomey

effect (Twomey, 1977). Moreover, the smaller cloud droplet

sizes are hypothesized to lead to decreases in precipitation

efficiency, which may further alter cloud liquid water path

(LWP) and cloud lifetime (Albrecht, 1989). These adjust-

ments are also referred to as the cloud lifetime effect or the

second AIE. It is worth noting that delaying the onset of pre-

cipitation may further modify latent heating profiles, which

could lead to the invigoration of convective clouds (e.g., An-

dreae et al., 2004; Rosenfeld et al., 2008). There are also

adjustments on mixed-phase and ice clouds (e.g., Storelvmo

et al., 2008; Lohmann and Hoose, 2009; Liu et al., 2012b;

Wang et al., 2014). The focus of this study is on liquid cloud

response to aerosol perturbation, primarily from large-scale

clouds.

AIE could be large enough to offset much of the global

warming induced by anthropogenic greenhouse gases, yet its

magnitude is still very uncertain (IPCC, 2013). The uncer-

tainty in the cloud lifetime effect of aerosols is particularly

large.

The complexity of microphysical-dynamical-radiative

feedbacks involved in the cloud lifetime effect has been noted

in previous studies. Conventional theory regarding the cloud

lifetime effect suggests that higher CCN concentration slows

down precipitation formation and hence leads to more LWP

(Albrecht, 1989). However, this theory is inconsistent with

some observations (Coakley and Walsh, 2002; Kaufman et

al., 2005; Matsui et al., 2006; Chen et al., 2014) and large

eddy simulations (LESs) (e.g., Ackerman et al., 2004; Lu and

Seinfeld, 2005; Wang and Feingold, 2009b) that found either

an increase or decrease in LWP in responses to increases in

CCN concentration.

Further modeling studies (e.g., Ackerman et al., 2004;

Stevens and Feingold, 2009; Guo et al., 2011) suggest that

cloud top entrainment plays a critical role as a dynamic feed-

back, to balance LWP and modify the lifetime of bound-

ary layer clouds. Ackerman et al. (2004) found that an in-

crease in droplet number concentration (Nd) reduces cloud

water sedimentation while accelerating the cloud-top entrain-

ment rate, which makes the humidity of air overlying the

boundary layer, wet or dry, critically important in deter-

mining the response of LWP. When surface precipitation is

weak (< 0.1 mm day−1) and the overlying air is dry, LWP

decreases in response to increasing aerosol. They showed

that the entrainment rate was reduced by decreasing avail-

able boundary-layer turbulence kinetic energy (TKE). How-

ever, Bretherton et al. (2007) found that TKE remained un-

changed and changes in entrainment rate are mainly caused

by reduced evaporative cooling from removing out liquid wa-

ter. LES studies (e.g., Wang and Feingold, 2009a) with a

large model domain that is able to resolve mesoscale circu-

lations (on the order of ten kilometers) in marine stratocu-

mulus showed that aerosols can shift cloud regimes through

their impact on precipitation and associated dynamical feed-

backs. This can represent a more significant impact on cloud

radiative forcing than the conventional AIE.

Many state-of-the-art global climate models (GCMs) ap-

pear to overestimate AIE when compared with satellite ob-

servations (e.g., Quaas et al., 2009; Wang et al., 2012), de-

spite some uncertainties in satellite-derived estimates (e.g.,

Penner et al., 2011; Gryspeerdt et al., 2014a, b). The multi-

scale interactions between clouds, aerosols, and large-scale

dynamics (Stevens and Feingold, 2009; Wang et al., 2011;

Ma et al., 2015) and complex microphysical processes (e.g.,

Bretherton et al., 2007; Gettelman et al., 2013) cause uncer-

tainties in estimating AIE by GCMs. One possible source of

overestimation of AIE is their inability to reproduce nega-

tive LWP responses to aerosol perturbations, which are found

in some observations and LES studies, partly because they

do not explicitly simulate the droplet size effect on the en-

trainment process and on sub-grid cloud organizations asso-

ciated with changes in precipitation. Guo et al. (2011) found

that this effect could be captured through applying a param-

eterization based on multi-variate probability density func-

tions with dynamics (MVD PDFs) in single-column simula-

tions. They found decreased LWP in response to increasing

aerosols concentration and suggested that the implementa-

tion of MVD PDFs in GCMs may help lower the magni-

tude of the simulated AIE. A negative correlation between

LWP and aerosol loading was further found for clouds with

weak precipitation and dry air above the PBL in a subsequent

global model study (Guo et al., 2015).

Another likely source for the overestimation of cloud life-

time effects in GCMs is the treatment of cloud microphysics

(Penner et al., 2006; Posselt and Lohmann, 2009; Wang et

al., 2012). In warm clouds, cloud microphysical processes

are dominated by autoconversion and accretion in bulk mi-

crophysics schemes (Gettelman et al., 2013). Since autocon-

version acts as a sink of LWP, it is crucial in the formation of

precipitation, and thus plays an important role in determining

the cloud lifetime effect. The autoconversion rate is directly

dependent on droplet number concentration (Nd) while the

accretion rate is only weakly dependent on Nd (Khairout-

dinov and Kogan, 2000; Gettelman et al., 2013). Further-

more, the ratio of the autoconversion rate to the large-scale

surface precipitation rate is found to be strongly correlated

with the LWP response to anthropogenic aerosol perturba-

tions (e.g., Wang et al., 2012). Posselt and Lohmann (2009)

suggested this ratio is related to the rain scheme adopted
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in GCMs. They showed that the adoption of different rain

schemes (prognostic vs. diagnostic) in a GCM leads to a dif-

ferent LWP response to aerosol perturbations. A prognostic

rain scheme can shift the importance of (warm) rain pro-

duction from autoconversion process to the accretion process

and therefore reduces the AIE (Posselt and Lohmann, 2009;

Gettelman et al., 2015). However, Hill et al. (2015) shows

that adding prognostic rain scheme alone still cannot reduce

the spread of susceptibility of precipitation among differ-

ent cloud microphysics parameterizations and further shows

that increasing the complexity of the rain representation to

double-moment significantly reduces the spread of precipi-

tation sensitivity and improves overall consistency between

bulk and bin schemes.

Previous studies are mostly confined to global averages

(e.g Quaas et al., 2009; Wang et al., 2012) or a specific

dynamic environment (e.g., Bretherton et al., 2007; Guo et

al., 2011). However, aerosols, clouds, precipitation distribu-

tions, and dynamical feedbacks are all related to the pre-

vailing meteorological environment (Stevens and Feingold,

2009). Clouds are sensitive to changes in dynamical regimes,

which can be defined by large-scale circulations, thermody-

namic structure, and meteorological backgrounds (Bony et

al., 2004). Gryspeerdt and Stier (2012) and Gryspeerdt et

al. (2014c) used satellite data and found that the characteris-

tics of aerosol cloud-albedo effect (droplet number sensitiv-

ity) vary with cloud regimes and pointed out the importance

of regime-based studies of aerosol–cloud interactions.

In this study, we investigate how AIE in several GCMs

varies under different dynamical regimes over global oceans

(60◦ S–60◦ N), with a focus on cloud lifetime effects of

aerosols (2nd AIE). We note that the term “cloud lifetime

effects” can be somehow misleading, since aerosol effects

on cloud liquid water may have little to do with cloud life-

time per se (e.g., Small et al., 2009). Nevertheless, this term

is still used in some occasions in this paper for convenience.

The paper is organized as follows. Methods and models are

described in Sect. 2, and results and discussions are presented

in Sect. 3. The paper concludes with the summary in Sect. 4.

2 Methodology and models

The response of LWP to aerosol perturbations is defined as

λ= dlnLWP/dlnCCN. (1)

As simulated LWP and CCN can be quite differ-

ent among GCMs, the logarithmic form of LWP and

CCN is adopted in the λ formula. λ is a metric to

quantitatively measure cloud lifetime effect of aerosols

in models. It is directly calculated as the relative

change of monthly mean LWP from pre-industrial (PI)

to present day (PD) divided by the relative change

of CCN. Here dlnLWP= (LWPPD−LWPPI)/LWPPI and

dlnCCN= (CCNPD−CCNPI)/CCNPI, where LWPPD and

LWPPI are LWP in PD and PI, respectively, while CCNPD

and CCNPI are CCN in PD and PI, respectively. This param-

eter was used by Wang et al. (2012) to constrain the cloud

lifetime effects of aerosols over global oceans using precip-

itation frequency susceptibility (Spop) derived from A-Train

satellite observations. Lebo and Feingold (2014) examined

the relationship between λ and Spop to aerosol perturbations

for stratocumulus and trade-wind cumulus simulated by LES

and found that λmay increase in marine stratocumulus while

decrease in the case of trade-wind cumulus in response to in-

creasing Spop, suggesting a cloud regime dependence of this

relationship. Note that λ allows some feedbacks, for example

cloud effects on CCN.

Dynamical regimes can be defined by environment char-

acteristics such as large-scale vertical pressure velocity (e.g.,

Bony and Dufresne, 2005) and lower-tropospheric stabil-

ity (LTS, defined as the difference in potential tempera-

ture between 700 hPa and the surface, θ700hPa–θsurface) (e.g.,

Medeiros and Stevens, 2011). Medeiros and Stevens (2011)

noted that low clouds and deep convective clouds could be

separated by ω500 while different low cloud types under

large-scale subsidence can only be depicted by using LTS.

In this study the monthly averaged vertical pressure velocity

(ω) in the mid-troposphere (defined as at 500 hPa) is used as

a proxy for large-scale motions (Bony and Dufresne, 2005).

Note that ω500 with positive (negative) value means de-

scending (ascending) motions. We decompose global (60◦ S–

60◦ N) large-scale circulations over ocean as a group of dy-

namical regimes (equally sampled) by ω500 (and LTS). As-

cending regimes and descending regimes are defined by ω500

and descending regimes are further divided into stratocumu-

lus, transitional clouds and trade wind cumulus regimes by

LTS. This method is straight-forward to apply to GCM re-

sults and gives us a direct view of the relationship between

clouds and their favorable large-scale environmental charac-

teristics. Note however that the use of monthly means may

obscure some details in the microphysical relationships, es-

pecially where the variability of cloud properties is high.

Since vertical pressure velocity is used as a major crite-

rion here, dynamic regimes generally follow the features of

vertical pressure velocity distributions. Descending regimes

are mostly located at subtropical regions and western coasts

of continents, while ascending regimes locates around the

Inter-tropical Convergence Zone (ITCZ) and northern Pa-

cific where storm tracks prevail. The seasonal evolution of

dynamic regimes follows seasonal changes in the major me-

teorological systems. For example, ascending regimes move

north and/or south as ITCZ move north and/or south and de-

scending regimes move accompanying with subtropical high

move. The characteristics of dynamic and thermodynamic

regimes were discussed in detail in Bony et al. (2004).

As the perturbations in cloud radiative forcing from an-

thropogenic aerosols (indirect effect) are typically on the or-

der of 1 W m−2, which is small compared to the cloud ra-

diative forcing (shortwave radiative effect of ∼−47 W m−2
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Table 1. The types of clouds included in liquid water path (LWP) and surface rain rate and different rain schemes in 10 participating models

Model LWP Rain Rain scheme

CAM5 Sa S dc

CAM5-MG2 S S pd

CAM5-PNNL S S d

CAM5-CLUBB S+ shallow convective clouds S+ shallow convective clouds d

CAM5-CLUBB-MG2 S+ shallow convective clouds S+ shallow convective clouds p

ECHAM6-HAM2 S+ convective detrainment S d

SPRINTARS S+Cb S+C d

SPRINTATRS-KK S+C S+C d

ModelE2-TOMAS S+ anvil clouds S+ anvil clouds d

HadGEM3-UKCA S+C S p

a S in LWP and Rain stands for stratiform clouds. b C in LWP and Rain stands for convective clouds. c d in Rain schemes represents

diagnostic rain scheme. d p in Rain schemes represents prognostic rain scheme.

and longwave radiative effect of ∼ 27 W m−2) (Boucher et

al., 2013), long integrations are required to produce statis-

tically significant results. The Newtonian relaxation method

(nudging) provides a way to estimate AIE within a relatively

short integration time, while giving statistically significant

results (Lohmann and Hoose, 2009; Kooperman et al., 2012).

Nudging here refers to the method of adding a forcing to the

prognostic model equations, determined by the difference be-

tween a model-computed value and a prescribed value at the

same time and model grid-cell, to constrain the model re-

sults with prescribed atmospheric conditions. Kooperman et

al. (2012) implemented nudging to constrain PD and PI sim-

ulations toward identical meteorological fields and found that

the use of nudging provided a more stable estimate of AIE in

shorter simulations and increased the statistical significance

of the anthropogenic aerosol perturbation signal. All simula-

tions used in this study were nudged toward reanalysis winds

(year 2006 to 2010) provided by operational forecast cen-

ters. Some simulations were further nudged toward reanal-

ysis temperature, but this was discouraged because it might

affect the moist convection activities simulated in the model

(Zhang et al., 2014). All models were driven by the same

IPCC aerosol emissions for years 1850 and 2000 (Lamarque

et al., 2010) and 5-year simulations were performed in each

case (PI and PD). Sea surface temperature, sea-ice extent and

greenhouse gas concentrations are prescribed to climatolog-

ical values in all simulations. Monthly data were then ob-

tained by averaging over the 5-year integration period.

Only ω500 in PD runs is used to derive dynamical regimes

and then these dynamical regimes are applied to PI simula-

tions as well, with the assumption that ω500 does not change

much from PI to PD. This assumption is reasonable as both

PD and PI runs were nudged toward the reanalysis data here,

which ensures ω500 is very similar between PD and PI.

A total of 10 aerosol-climate models participated in

this study. This includes five versions of Community

Atmosphere Model (CAM) 5.3, and two versions of

SPRINTARS. These models show large differences in

their aerosol and cloud treatments. For example, while

most models (CAM5, CAM5-PNNL, CAM5-MG2, CAM5-

CLUBB, CAM5-CLUBB-MG2, ECHAM6-HAM2, and

SPRINTARS-KK) use the autoconversion scheme from

Khairoutdinov and Kogan (2000, hereafter KK), autocon-

version rate in ModelE-TOMAS is independent of cloud

droplet number concentration and the Berry scheme (Berry,

1968) is used for SPRINTARS. Most models use diagnos-

tic rain schemes, while an updated Morrison and Gettel-

man (2008) microphysics scheme with a prognostic rain

scheme (MG2) (Gettelman et al., 2015) is adopted in

CAM5-MG2 and CAM5-MG2-CLUBB. HadGEM3-UKCA

also adopts a prognostic rain scheme (Abel and Boutle,

2012). While most models only account for aerosol ef-

fects on large-scale stratiform clouds, CAM5-CLUBB and

CAM5-CLUBB-MG2 use a higher-order turbulence closure

(CLUBB) to unify the treatment of boundary layer turbu-

lence, stratiform clouds, and shallow convection, and there-

fore include aerosol effects on shallow convection (Bogen-

schutz et al., 2013). A brief description of each model is pro-

vided in Appendix A.

3 Results

3.1 Annual mean

We first examine the annual climatology in different simu-

lations to get an overall picture of the general differences

and/or similarities among these models (details within dy-

namic regimes are examined in Sect. 3.2). All of the simula-

tions reproduce the general pattern of large-scale circulations

(ω500): strong ascending motions within the inter-tropical

convergence zone (ITCZ) and subsidence dominating sub-

tropical eastern ocean regions (not shown). The similar pat-

terns of ω500 (due to nudging) in these simulations ensure

that dynamic regimes defined by ω500 do not vary much be-

tween models.
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Table 2. Global ocean (60◦ S–60◦ N) averages of LWP, column-integrated cloud condensation nuclei (CCN, at 0.1 % supersaturation) con-

centration, precipitation rate (PRECL), shortwave cloud radiative effect (SCRE) derived from the present-day (PD) cases and the relative

change from pre-industrial (PI) to PD of LWP and CCN (dlnLWP and dlnCCN) and the sensitivity of LWP to CCN concentration change

(λ, d lnLWP/dlnCCN) of the 10 GCM simulations.

Model λ LWP CCN dlnLWP dlnCCN PRECL SCRE

(g m−2) (1011 m−2) (mm day−1) (W m−2)

CAM5 0.20 31.1 1.86 0.07 0.36 0.90 −61.9

CAM5-MG2 0.23 30.0 1.73 0.07 0.32 0.76 −67.9

CAM5-PNNL 0.19 39.4 2.51 0.08 0.42 0.91 −64.6

CAM5-CLUBB 0.25 35.2 1.88 0.11 0.45 1.26 −57.7

CAM5-CLUBB-MG2 0.27 47.1 1.66 0.11 0.42 1.08 −70.6

ECHAM6-HAM2 0.19 84.6 2.39 0.07 0.41 1.35 −54.5

SPRINTARS 0.01 139.1 1.07 0.00 0.43 1.42 −62.6

SPRINTATRS-KK 0.04 98.9 1.04 0.02 0.45 1.59 −57.0

ModelE2-TOMAS 0.00 80.4 2.66 0.00 0.43 2.17 −68.1

HadGEM3-UKCA 0.03 57.1 1.01 0.01 0.67 0.87 −58.9

Table 1 lists the types of clouds included in LWP and

rain analyzed in this study and the different rain scheme

(prognostic or diagnostic) in these 10 GCM simulations. Ta-

ble 2 lists global annual means of aerosol, precipitation and

cloud parameters in PD simulations and λ for each model.

Note that all versions of CAM5 calculate LWP only for

large-scale clouds while SPRINTARS, SPRINTARS-KK and

HadGEM3-UKCA also count LWP from convective clouds.

As for ModelE2-TOMAS, LWP includes stratiform anvil

clouds that formed from convective detrainment of water va-

por and ice. ECHAM6-HAM2 also includes the contribution

of convective detrainment of liquid water and ice to strati-

form clouds. Also note that CAM5 models with CLUBB in-

clude LWP in the shallow convective regimes, which partly

explains why these models produce more LWP than their cor-

responding CAM5 models without CLUBB (Table 2).

There are large differences among global LWP annual

means. CAM5-MG2 has the lowest LWP among these sim-

ulations (30.0 g m−2). The LWP means over oceans are

31.1, 39.4, and 35.2 g m−2 in CAM5, CAM5-PNNL, and

CAM5-CLUBB, respectively. HadGEM3-UKCA simulates

higher LWP (57.1 g m−2) than all versions of CAM5. LWPs

in ModelE2-TOMAS (80.4 g m−2) and ECHAM6-HAM2

(84.6 g m−2) are greater than the aforementioned GCMs, but

less than in SPRINTARS and SPRINTARS-KK (139.1 and

98.9 g m−2 respectively) which include LWP from convec-

tive clouds. Even though CAM5-CLUBB simulates a higher

LWP in storm track regions and ECHAM6-HAM2 produces

much more LWP associated with deep convection in the

ITCZ, all models here display reasonable patterns of global

LWP distributions (not shown).

The differences in CCN (at 0.1 % supersaturation) among

these simulations are not as large as the differences in

LWP (Table 2). The global annual mean CCN in CAM5-

PNNL, which has a different treatment of wet scavenging

processes (Wang et al., 2013), is slightly larger than the

one in other versions of CAM5. CCN concentrations sim-

ulated by CAM5-PNNL, ECHAM6-HAM2, and ModelE2-

TOMAS are largest among these simulations and are more

than twice those simulated by SPRINTARS, SPRINTARS-

KK and HadGEM3-UKCA, which are the lowest. Since

these models are using the same emissions, differences of

CCN between the models are mainly due to different aerosol

lifetime between models.

The LWP response to aerosol perturbations, λ, in

ECHAM6-HAM2 (0.19) is close to those derived from

three CAM5 configurations (0.20 in CAM5, 0.19 in CAM5-

PNNL and 0.25 in CAM5-CLUBB). Notice that λ in CAM5-

MG2 and CAM5-CLUBB-MG2 is larger than that in CAM5

and CAM5-CLUBB, respectively, which indicates that the

changes of LWP in the models, using the MG2 scheme, are

more sensitive to the aerosol perturbations. LWP is much

less sensitive to the changes of CCN in SPRINTARS and

SPRINTARS-KK with λ of 0.01 and 0.04 respectively. λ is

also small in HadGEM3-UKCA (0.03) due to the large rel-

ative increase of CCN and a small relative increase of LWP.

Since the aerosol effect on precipitation formation is turned

off in ModelE2-TOMAS (its autoconversion parameteriza-

tion is not a function of Nd), LWP barely responds to the

increase of CCN (λ is−0.001). The variation in λ closely fol-

lows that of the relative enhancement of LWP (dlnLWP), as

the variation of the relative enhancement of CCN (dlnCCN)

among the simulations is generally much smaller than that of

d lnLWP.

We should note that large differences in CCN shown in

Table 2 do not necessarily correspond to equally large dif-

ferences in droplet concentration (Nd), since Nd is primarily

dependent on cloud base updraft, which is an extremely

uncertain parameter and may vary significantly between

the GCMs. It therefore seems reasonable to define λ as the

change in LWP vs. the change in cloud droplet number

concentration (Nd), which would provide a direct insight

www.atmos-chem-phys.net/16/2765/2016/ Atmos. Chem. Phys., 16, 2765–2783, 2016
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Figure 1. (a) LWP and (b) column-integrated CCN (at 0.1 % super-

saturation) as a function of 500 hPa vertical pressure velocity (ω500)

derived from different models: CAM5 (blue solid line), CAM5-

MG2 (blue dashed line), CAM5-PNNL (blue dotted line), CAM5-

CLUBB (cyan solid line), CAM5-CLUBB-MG2 (cyan dashed line),

ECHAM6-HAM2 (red solid line), SPRINTARS (green solid line),

SPRINTARS-KK (green dashed line), ModelE2-TOMAS (purple

solid line) and HadGEM3-UKCA (orange solid line).

into how clouds’ response to Nd changes since LWP directly

depends on Nd, not necessarily on CCN. However, this alter-

native definition of λ as d lnLWP/dlnNd would be difficult

to compare with observations, and this also does not directly

measure cloud response to anthropogenic aerosols. The in-

teractions between clouds and anthropogenic aerosols arise

through a chain of processes, from effects of the CCN on

Nd to effects ofNd on cloud water, which can be expressed as

d lnLWP/dlnCCN= (d lnLWP/dlnNd) · (d lnNd/dlnCCN).

This chain of processes has now been examined in Ghan

et al. (2016) based on the same set of model simulations

documented in this study.

3.2 Regime dependence

3.2.1 LWP, CCN, and λ

Figure 1 shows LWP and CCN as a function of vertical pres-

sure velocity at 500 hPa (ω500) derived from PD simulations.

To derive Fig. 1, the 12-month monthly global grid values

are first sorted into 20 dynamical regimes according to their

ω500 values, keeping the number of samples in each bin

equal. LWP, CCN, and values of other fields for each bin are

then calculated from averaging the values of all samples in

that particular bin.

In general, SPRINTARS (default and KK) simulates

much higher LWP in all dynamic regimes and ECHAM6-

HAM2/ModelE2-TOMAS in most regimes than different

versions of CAM5 runs (default, PNNL, CLUBB and MG2)

(Fig. 1a), which is consistent with global means in Ta-

ble 2. A peak of LWP is found around ω500= 0 hPa day−1

in CAM5, ModelE2-TOMAS, and ECHAM6-HAM2. For

SPRINTARS, LWP decreases from 190 to 100 g m−2 as ω500

increases from −60 to 40 hPa day−1. In all simulations LWP

is low in regimes where ω500 is larger than 10 hPa day−1,

i.e., regimes dominated by low clouds. HadGEM3-UKCA

simulates larger LWP than CAM5 especially in ascending
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Figure 2. Same as Fig. 1a, but for (a) the sensitivity of LWP to

the change of CCN (λ), (b) relative enhancement of liquid water

path (d lnLWP) and (c) relative enhancement of cloud condensation

nuclei (d lnCCN) from pre-industrial (PI) to present day (PD).

regimes. The model spread of LWP response is larger in

the ascending regimes than in the subsiding regimes. This

may be partly related to the fact that the types of clouds

included in LWP are not the same in different models (Ta-

ble 1). Figure 1b shows that CCN concentrations peak at

around 25 hPa day−1 among all the models. This peak is

partly caused by little precipitation (and therefore low wet

scavenging rate) in subsidence regimes as well as by the fact

that these dynamic regimes are located near continents where

the sources of anthropogenic aerosols are strong. Further-

more, CCN concentrations are low at around 0 hPa day−1,

which could be explained by the fact that most regimes

around 0 hPa day−1 are located over the oceans far away

from continents (i.e. remote marine aerosols) and anthro-

pogenic aerosol source regions (figures not shown). Gener-

ally, CCN in two versions of SPRINTARS and HadGEM3-

UKCA is less than other models in most regimes, consistent

with Table 2.

All the simulations show positive λ within all dynamical

regimes (Fig. 2a), which is consistent with the theory pro-

posed by Albrecht (1989) that an increase in aerosols leads

to more liquid cloud water. However, λ can vary significantly

between regimes in CAM5 and ECHAM6-HAM2 (Fig. 2a),

which indicates that changes in LWP in response to aerosol

perturbations are regime-dependent in these GCMs. For ex-

ample, λ in CAM5-PNNL ranges from 0.35 in strong as-

cending regions to 0.11 in strong subsidence regions, which

means that LWP in strong ascending regimes is more sen-

sitive to aerosol perturbations than in strong subsidence

regimes. Exceptions are ModelE2-TOMAS, SPRINTARS

(default and SPRINTARS-KK), and HadGEM3-UKCA, in

which λ is low in magnitude (i.e., LWP changes little in re-

sponse to the changes of CCN, consistent with the global an-

nual means shown in Table 2).
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We note that although the global means of λ in all CAM5

configurations and ECHAM6-HAM2 are close, from 0.19

in ECHAM6-HAM2 to 0.25 in CAM5-CLUBB, λ in the

different dynamical regimes can differ significantly among

these simulations (Fig. 2). For example, LWP in CAM5-

PNNL is much more sensitive to CCN perturbations than in

ECHAM6-HAM2 in strong ascending regimes; and in strong

subsidence regimes, LWP in CAM5-CLUBB and ECHAM6-

HAM2 is more sensitive than in CAM5-PNNL and CAM5.

Models that use the MG2 with prognostic rain scheme (i.e.

CAM5-MG2 and CAM5-CLUBB-MG2) simulate larger λ

than the models that use the default MG scheme in most

regimes, only except for strong subsidence regimes. How-

ever, generally the shapes of the λ distribution are very sim-

ilar. λ in CAM5-CLUBB-MG2 is large in both ascending

and subsidence regimes, which explains the largest global

λ in CAM5-CLUBB-MG2 among all configurations (Ta-

ble 2). Except for the models producing very low values

of λ (SPRINTARS, SPRINTARS-KK, ModelE2-TOMAS

and HadGEM3-UKCA), λ from the other models converges

around 0 hPa day−1 and then diverges greatly in strong as-

cending regimes (from 0.10 to 0.46) and, to a lesser extent, in

strong subsidence regimes. This indicates that it is in regimes

with weak vertical velocity where models agree most, while

it is in strong ascending and descending regimes where mod-

els differ most. The diversity of λ within dynamical regimes

in different GCMs highlights the need to distinguish different

dynamical regimes in studying AIE.

When analyzing the numerator and denominator of λ sep-

arately, we found that this large spread in λ is mainly con-

tributed by the numerator, d lnLWP. dlnLWP ranges from

about 0 to 0.22 among the models (Fig. 2b), while the de-

nominator d lnCCN is more stable than dlnLWP within dy-

namical regimes and fluctuates around 0.45, except for larger

d lnCCN in HadGEM3-UKCA (Fig. 2c). In summary, the ra-

tio of d lnLWP to dlnCCN (λ) therefore changes more con-

sistently with dlnLWP within dynamical regimes.

The decreasing trends of λ with increasing ω in CAM5,

CAM5-MG2, and CAM5-PNNL are similar, which is oppo-

site to the increasing trends derived from ECHAM6-HAM2,

CAM5-CLUBB, and CAM5-CLUBB-MG2. It is interest-

ing that the regime-dependence of λ simulated by CAM5-

CLUBB and CAM5-CLUBB-MG2 is quite different from

that simulated by CAM5, CAM5-MG2, and CAM5-PNNL

even though all these five model versions are originally from

CAM5 and share many similarities. In CAM5, CAM5-MG2,

and CAM5-PNNL, three separate parameterization schemes

are used to treat planetary boundary layer (PBL) turbu-

lence, stratiform cloud macrophysics, and shallow convec-

tion. In CAM5-CLUBB and CAM5-CLUBB-MG2, instead,

a higher-order turbulence closure, Cloud Layers Unified by

Binormals (CLUBB), is adopted to replace these three sepa-

rate schemes to provide a unified treatment of these processes

(Bogenschutz et al., 2013). A major improvement of CAM-

CLUBB is the better simulation of the transition of stratocu-

mulus to trade wind cumulus over subtropical oceans (Bo-

genschutz et al., 2013). Figure 2a shows that λ in CAM5-

CLUBB and CAM5-CLUBB-MG2 is quite different from

that in CAM5 simulations without CLUBB (i.e., CAM5,

CAM5-MG2 and CAM5-PNNL) in regimes where ω500 is

larger than 10 hPa day−1. Under such suppressed conditions,

low clouds such as trade wind cumulus and stratocumulus are

typically formed. This higher λ might be expected because

CAM5-CLUBB formulations apply the MG microphysics

(and effects of aerosols on cloud microphysics) to shallow

convective regimes. The better representation of low clouds

in CAM5-CLUBB, and the representation of double-moment

microphysics and AIE in shallow convective regimes from

the unified parameterization may help to explain the differ-

ent behaviors between CAM5 runs with CLUBB (CAM5-

CLUBB and CAM5-CLUBB-MG2) and CAM5 runs without

CLUBB (CAM5, CAM5-MG2 and CAM5-PNNL) in subsi-

dence regimes.

In order to find out the crucial geographic locations of

dynamic regimes where d lnLWP differs most in Fig. 2b,

we plot the global distribution of annual averaged dlnLWP

in different simulations, shown in Fig. 3. The ascending

regimes where ECHAM6-HAM2 differs significantly from

the two CAM5 configurations (CAM5, CAM5-PNNL) are

located over the North Pacific Ocean (from 30 to 60◦ N),

for weak ascending motions and the southern coast of

Asia for strong ascending motions. The spatial patterns in

ECHAM6-HAM2, CAM5-CLUBB, CAM5-CLUBB-MG2,

and HadGEM3-UKCA share some similarities over the

northern Pacific Ocean, but the magnitude in CAM5-CLUBB

and CAM5-CLUBB-MG2 is larger than in ECHAM6-

HAM2 and HadGEM3-UKCA. Moreover, not only the spa-

tial pattern but also the magnitude of d lnLWP in ECHAM6-

HAM2 differ significantly from those in CAM5, CAM5-

MG2 and CAM5-PNNL. For the southern coast of Asia

where strong ascending motions dominate, all simulations

show a relative increase of LWP. However, d lnLWP in

ECHAM6-HAM2 in this region is much smaller than in all

CAM5 simulations. This makes dlnLWP, and thus λ, in

ECHAM6-HAM2 much less than in the five CAM5 mod-

els (CAM5, CAM5-MG2, CAM5-PNNL, CAM5-CLUBB,

and CAM5-CLUBB-MG2) in ascending regimes, as shown

in Fig. 2b and a.

Despite the fact that SPRINTARS (default and KK),

ModelE2-TOMAS, and HadGEM3-UKCA all show almost

no relative change of LWP in response to aerosol pertur-

bations, the spatial patterns of d lnLWP in these four sim-

ulations shown in Fig. 3 are indeed different from each

other. HadGEM3-UKCA simulates larger d lnLWP in mid-

dle northern subtropical oceans, which is similar to CAM5-

CLUBB and ECHAM6-HAM2 but with smaller magnitude.

However, the pattern in SPRINTARS is unlike any model dis-

cussed above. SPRINTARS simulates larger d lnLWP over

the North Pacific Ocean, the North Atlantic Ocean, and

the western coasts of continents than other parts of the
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Figure 3. Relative change of annual averaged LWP from PI to PD (dlnLWP) simulations derived from the 10 GCM simulations.

global ocean. SPRINTARS-KK simulates the same pattern as

SPRINTARS only with larger values. Meanwhile, d lnLWP

in ModelE2-TOMAS shows no special global pattern and the

values are all near zero, which indicates LWP in ModelE2-

TOMAS has indeed little response to aerosol perturbations

as autoconversion rate in ModelE2-TOMAS is not influenced

by cloud droplet number concentrations.

Figure 3 shows that the differences in subsidence regimes

in Fig. 2b are mainly contributed by middle northern sub-

tropical oceans and western coasts of continents. In middle

northern subtropical oceans, the relative changes of LWP in

ECHAM6-HAM2, HadGEM3-UKCA and the two CAM5

models with CLUBB (CAM5-CLUBB and CAM5-CLUBB-

MG2) are much more sensitive to the aerosol perturbations

than in the three CAM5 models without CLUBB (CAM5,

CAM5-PNNL, and CAM5-MG2), even though dlnLWP in

ECHAM6-HAM2 and HadGEM3-UKCA is not as large

as that in CAM5-CLUBB and CAM5-CLUBB-MG2. An-

other difference among these models is in regions dominated

by more intensive subsidence, over the western coasts of

North America, South America, and Africa. In these regions

dlnLWP in ECHAM6-HAM2 and the two CAM5 models

with CLUBB is large while it is small in the three CAM5

models without CLUBB.

To examine the cloud lifetime effect in different

cloud regimes more specifically, another criterion, lower-

tropospheric stability (LTS= θ700hPa-θsurface), is added to

distinguish stratocumulus from trade wind cumulus regimes,

following Medeiros and Stevens (2011). Table 3 lists the cri-

teria of different low cloud types conditionally sampled by

ω500 and LTS. The annual mean cloud fractions of each low

cloud type in CAM5-CLUBB are shown in Fig. 4; the distri-

butions in other simulations are generally similar to CAM5-

CLUBB (figures not shown). The cloud type distribution is

consistent with satellite observations which show that stra-

tocumuli occur over subtropical oceans near western conti-

nents while trade wind cumuli dominate over oceans further

away from continents (Medeiros and Stevens, 2011). Fig-

ure 4 shows that some differences in d lnLWP between mod-

els shown in Fig. 3 are located at regions dominated by low

clouds (i.e., stratocumulus and trade wind cumulus).

The joint distributions of LTS and ω500 over global oceans

between 60◦ S and 60◦ N derived from the models are shown

in Fig. 5. Note that the bins here are not equally sampled as

in previous figures but divided into equal LTS and ω inter-

vals. LTS ranges from 8 to 24 K while ω ranges from −100

to 60 hPa day−1. Instances with slight downward vertical mo-

tions and moderate LTS are most frequent.

Figure 5 shows that, though ω500 plays the primary role

in determining the dlnLWP/dlnCCN distribution, LTS can

reveal further details of the differences among various low

cloud types in subsidence regimes. The large λ in strong sub-

sidence regimes in ECHAM6-HAM2 and CAM5-CLUBB is

mainly caused by stratocumulus and trade wind cumulus. As

for regions of ascending motions, LTS is confined between

12 and 14 K. λ in CAM5, CAM5-PNNL and CAM5-CLUBB
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S. Zhang et al.: Aerosol indirect effect based on dynamic regimes 2773

Table 3. Criteria used to conditional sampling stratocumulus, transitional clouds, and trade wind cumulus regimes (adopted from Medeiros

and Stevens, 2011).

Stratocumulus Transitional clouds Trade wind cumulus

LTS (K) LTS≥ 18.5 18.5>LTS≥ 15.4 15.4>LTS≥ 11.3

ω500hPa (hPa day−1) ω500hPa> 10 ω500hPa> 10 ω500hPa> 10

Figure 4. The annual mean cloud fraction (averaged on the months when the regime occurs) of stratocumulus regime (top left), transi-

tional clouds regime (top right) and trade wind cumulus regime (bottom left) derived from PD monthly simulation in CAM5-CLUBB. The

definitions of different cloud types are listed in Table 3.

in ascending regimes is larger than in regimes with weak

large-scale vertical velocity (ω500 around 0 hPa/d) and larger

than in ECHAM6-HAM2 in ascending regimes. In ascend-

ing regimes, LWP is more sensitive to the change of CCN

in the two CAM5 models with the MG2 scheme (CAM5-

MG2 and CAM5-CLUBB-MG2) than in the two correspond-

ing CAM5 models without the MG2 scheme (CAM5 and

CAM5-CLUBB), which is consistent with Fig. 2a. In CAM5-

CLUBB-MG2, λ is larger in transitional cloud regimes

than in stratocumulus cloud regimes and trade wind cloud

regimes, which is evidently different from the low cloud

regimes in CAM5-CLUBB. HadGEM3-UKCA simulates a

higher LWP response in transitional clouds and stratocumu-

lus regimes than trade wind cloud regime. It is also inter-

esting to note that λ in SPRINTARS and SPRINTARS-KK

shows stronger dependence on LTS than on ω500.

3.2.2 Microphysics process rates and precipitation

The balance between autoconversion and accretion is found

to be critical in determining cloud lifetime effect in climate

models (Posselt and Lohmann, 2009; Wang et al., 2012). Au-

toconversion rate is sensitive to cloud droplet concentration

while accretion has little dependence of droplet number. If

the role of accretion dominates over autoconversion (with

all other effects equal), the effect of aerosols on clouds is

expected to be weakened in GCMs (Posselt and Lohmann,

2009; Gettelman et al., 2013). Wang et al. (2012) found that

the cloud lifetime effect is highly correlated with the ratio of

autoconversion rate to large-scale surface precipitation rate

(AUTO/PRECL, where PRECL also includes ice and snow)

over global oceans in climate models. AUTO/PRECL for

different dynamical regimes is shown in Fig. 6a. Here PD

monthly averaged autoconversion rate and surface precipita-

tion rate are used in calculating AUTO/PRECL. Generally

the curves of AUTO/PRECL are smoother than λ (Figs. 6a

and 2a). The ratio from different simulations shows large

diversity in ascending regimes and subsidence regimes. In

all versions of CAM5 and SPRINTARS the ratio decreases

with increasing ω500 in ascending regimes and then in-

creases in descending regimes. The ratio is especially large in

CAM5-CLUBB-MG2 and HadGEM3-UKCA in descending

regimes. However, the ratio in ECHAM6-HAM2 remains un-

changed in ascending regimes and then increases under sub-

sidence. As discussed above, λwas shown to be highly corre-

lated with this ratio from global average results (Wang et al.,

2012). According to our results, the correlation also applies

well for individual dynamical regimes in ECHAM6-HAM2,

HadGEM3-UKCA, and CAM-CLUBB, in which the corre-

lation coefficients between λ and AUTO/PRECL are 0.98,

0.92, and 0.86 respectively. However, these high correlation

coefficients are not found in other simulations, in which the
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Figure 5. dlnLWP/dlnCCN conditioned on vertical motion and LTS derived from the 10 GCM simulations. Solid lines are contours of grid

number distribution and each line interval is 20 % of the total counted data.
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Figure 6. Same as Fig. 1, but for (b) column-integrated autocon-

version rate (AUTO), (c) the large-scale surface precipitation rate

(PRECL) and (a) their ratio AUTO/PRECL from the 9 GCM simu-

lations. The number marked in each simulation is the corresponding

correlation coefficient between AUTO/PRECL and λ and number

with mark “*” indicates the correlation is significant (at 95 % con-

fidence).

correlation coefficients are lower than 0.7, which indicates

that the relationship of AUTO/PRECL and λ in these models

is changing from regime to regime (i.e., this relationship is

regime-dependent).

Wang et al. (2012) and Gettelman et al. (2013) found that

the diagnostic rain scheme used in the CAM configurations

might overestimate the role of autoconversion over accretion.

Using instantaneous microphysical process rates, Gettelman

et al. (2015) found that adding the new microphysics with

prognostic precipitation to cloud scheme (MG2) decreases

the ratio of autoconversion to accretion. It is in moder-

ate regimes (−20 hPa day−1<ω500< 10 hPa day−1) where

the result is consistent with Gettelman et al. (2015), which

shows larger AUTO/PRECL in CAM5 than CAM5-MG2.

However, in other regimes of CAM5 and all regimes of

CAM5-CLUBB, adding the prognostic precipitation (MG2)

increases the ratio of AUTO/PRECL. The result of larger

AUTO/PRECL in some regimes from models with MG2

seems different from the results of Gettelman and Morri-

son (2015) in idealized tests of MG2 and of Gettelman et

al. (2015) in CAM simulations with MG2. We have verified

using the same model output from Gettelman et al. (2015)

that the difference is not due to the simulations performed.

The difference is likely due to the following: (a) the use of

instantaneous output in Gettelman et al. (2015) for process

rate comparisons while monthly data are used here; (b) mi-

crophysics variables and precipitation are sorted by ω500 here

while Gettelman et al. (2015) sorted them by LWP, which the

microphysics sees, which includes contributions from deep

convection; (c) vertical integrals of autoconversion rate are

used here while vertical mean values are used in Gettelman

et al. (2015).

As discussed in Sect. 1, precipitation is a key process in

interactions between aerosols and clouds. A decrease in sur-

face precipitation increases cloud water while a decrease in

cloud-top sedimentation increases the entrainment rate and

thus dries out LWP when the free troposphere air is dry (Ack-

erman et al., 2004). Here we investigate the LWP response to

aerosol perturbations under low precipitation (monthly aver-
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Table 4. The fractional occurrences of low and high surface precipitation in PD cases over downdraft regimes (ω500> 0 hPa day−1) and

global oceans and λ under these low and high surface precipitation situations only over downdraft regimes. Low precipitation situations

refer to monthly surface precipitation rate (PRECL) less than 0.1 mm day−1 while high precipitation situations refer to PRECL larger than

0.1 mm day−1.

Model λa λb f c f d f e f f

low, high, low, high, low, high,

down down down down glb glb

CAM5 0.21 0.19 0.47 0.54 0.27 0.73

CAM5-MG2 0.19 0.24 0.57 0.43 0.39 0.61

CAM5-PNNL 0.17 0.17 0.48 0.52 0.28 0.72

CAM5-CLUBB 0.33 0.30 0.04 0.96 0.02 0.98

CAM5-CLUBB-MG2 0.26 0.33 0.22 0.78 0.16 0.84

ECHAM6-HAM2 0.25 0.23 0.31 0.69 0.18 0.82

SPARINTARS 0.06 0.01 0.06 0.94 0.03 0.97

SPARINTARS-KK 0.24 0.04 0.05 0.95 0.03 0.97

ModelE2-TOMAS −0.011 0.001 0.002 0.998 0.001 0.999

HadGEM3-UKCA 0.04 0.03 0.11 0.89 0.06 0.94

a λ under low PRECL for downdraft regimes. b λ under high PRECL for downdraft regimes.
c Fractional occurence of low PRECL for downdraft regimes. d Fractional occurence of high PRECL for

downdraft regimes. e Fractional occurence of low PRECL over all dynamical regimes. f Fractional

occurence of high PRECL over all dynamical regimes.

aged surface precipitation rate less than 0.1 mm day−1) and

high precipitation (monthly averaged surface precipitation

rate larger than 0.1 mm day−1). Table 4 lists the occurrence

frequency of each situation in different simulations. It shows

that instances with low PRECL occurs much less often (from

2.2 % in CAM5-CLUBB to 38.8 % in CAM5-MG2) than

those with high PRECL. The occurrence frequency of low

precipitation situations is increased with the MG2 scheme

(CAM5-MG2 and CAM5-CLUBB-MG2), compared with

simulations without MG2. This increase is especially evident

in CAM5-CLUBB (from 0.02 in CAM5-CLUBB to 0.16 in

CAM5-CLUBB-MG2). This is consistent with Gettelman et

al. (2015), who showed that surface precipitation decreases

slightly in GCMs with MG2.

Note that low precipitation situations are only found in

subsidence regimes (ω500> 0 hPa day−1). Thus, the sensitiv-

ity of the LWP response to aerosol change under low and

high precipitation is compared only in subsidence regimes.

Table 4 also shows λ and the fractional occurrences of

each precipitation situation in descending regimes. The frac-

tional occurrence of low precipitation increases evidently

in subsidence regimes, compared with that over global

ocean. We find that the averages of λ under low precipita-

tion are larger than those under high precipitation in most

models (CAM5, CAM5-PNNL, CAM5-CLUBB, ECHAM6-

HAM2, SPRINTARS, SPRINTARS-KK and HadGEM3-

UKCA) (Table 4). This result is different from some LES

and single column model (SCM) results showing that smaller

λ values are found for low surface precipitation rather than

high precipitation due to a decrease of LWP in response to

increasing CCN (Ackerman et al., 2004; Guo et al., 2011).

The decrease in LWP in these previous studies is found to

come from the entrainment drying due to increased entrain-

ment from increasing aerosol loading (e.g., Bretherton et

al., 2007) and this effect has not been explicitly included in

most GCMs. Exceptions are CAM5 runs with the prognostic

precipitation scheme MG2 (CAM5-MG2, CAM5-CLUBB-

MG2). It can be seen from Table 4 that λ under low sur-

face precipitation is smaller than under high precipitation

only when MG2 scheme is used. It is still unclear what

might cause this difference. It is interesting to note that λ

under low surface precipitation is still higher for HadGEM3-

UKCA though a prognostic precipitation scheme is applied

in HadGEM3-UKCA.

3.2.3 Shortwave cloud radiative effect

The shortwave cloud radiative effect (SCRE) is defined as the

difference between all-sky and clear sky shortwave radiative

fluxes at the top of atmosphere. Here SCRE is adjusted to the

“clean-sky” SCRE, which is estimated as a diagnostic with

aerosol optical depth set to zero (Ghan, 2013). Recent stud-

ies on aerosol indirect effects mostly focus on stratocumulus

clouds due to their significant cooling effect (e.g., Lu and

Seinfeld, 2005; Bretherton et al., 2007). However, by sorting

the change of SCRE (dSCRE) from PI to PD into dynamical

regimes, our results suggest that the regimes of ascending

motions are as important as the subsidence regimes and in

some simulations dSCRE in ascending regimes is even larger

than under subsidence regimes (e.g., CAM5-PNNL) (Fig. 7).

This suggests that ascending regimes are crucial regimes in

studying aerosol climate effect.

We also examined dSCRE contributed by low and high

precipitation situations (note that the total dSCRE is the sum
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Figure 7. Change in shortwave cloud radiative effect (dSCRE, shown in blue line) from PI to PD as a function of dynamic regimes. Red

patches are dSCRE contributed by low precipitation situations while blue patches are by high precipitation situations.

of dSCRE under a low and high precipitation situation). It

is found that high precipitation situations constitute most

of dSCRE (from 64 % in CAM5-MG2 to nearly 100 % in

CAM5-CLUBB, Fig. 7) and the contributions from clouds

with low precipitation rates are generally small, ranging from

0 to 36 %, due to their low occurrence frequency. dSCRE

is reduced by 33 % for high precipitation situations from

CAM5 to CAM5-MG2, and 15 % from CAM5-CLUBB to

CAM5-CLUBB-MG2 (Fig. 7), consistent with the argument

that prognostic precipitation schemes reduce aerosol indirect

forcing (Posselt and Lohmann, 2009; Wang et al., 2012; Get-

telman and Morrison, 2015). However, adopting a prognostic

precipitation scheme is found to increase dSCRE under low

precipitation situations. This is partly from the increase in

the occurrence frequency of low precipitation instances when

MG2 is adopted (Table 4).

Our sensitive tests indicate that results in Table 4 and

Fig. 7 can be potentially sensitive to the precipitation thresh-

old applied to separate high precipitation and low precipi-

tation situations (not shown). The occurrence frequency of

low precipitation situations increases with increasing thresh-

old and the magnitude of increase can be different for dif-

ferent models. For example, when the precipitation thresh-

old increases from 0.01 to 0.20 mm day−1, the occurrence

frequency of low precipitation situations increases from 2

to 37 % in CAM5-PNNL while it increases from near 0 to

5 % in CAM5-CLUBB. Increasing the precipitation thresh-

old also increases the contribution of low precipitation situ-

ations to the total aerosol indirect forcing as the occurrence

frequency of low precipitation situations increases. However,

our results indicate that the LWP response to aerosol per-

turbations under low and high precipitation does not change

much as the precipitation threshold changes and that high

precipitation situations generally contribute more to the to-

tal aerosol indirect forcing for precipitation threshold in the

range of 0.01 to 0.20 mm day−1. More work is needed to

explore this further, such as how results may be different

when instantaneous precipitation data (e.g., 3-hourly data)

are used.

4 Summary

We have examined the regime-dependence of aerosol in-

direct effects (AIE) over global oceans (from 60◦ S to

60◦ N) in several GCMs (CAM5, CAM5-MG2, CAM5-

PNNL, CAM5-CLUBB, CAM5-CLUBB-MG2, ECHAM6-

HAM2, SPRINTARS, SPRINTARS-KK, ModelE2-TOMAS

and HadGEM3-UKCA). Model results are sorted into differ-

ent dynamical regimes, characterized by the monthly mean

mid-tropospheric 500 hPa vertical pressure velocity (ω500),

lower-tropospheric stability (LTS, θ700hPa–θsurface), and sur-

face precipitation rate.

The response of liquid water path (LWP) to aerosol pertur-

bations, λ= dlnLWP/dlnCCN, a metric to quantify cloud

lifetime effect of aerosols (Wang et al., 2012), shows a large

spread within dynamical regimes among GCMs, although

the global means are close. This diversity indicates that the
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aerosol cloud lifetime effect is regime-dependent. It is in

strong ascending regimes and subsidence regimes that λ dif-

fers most between GCMs (Fig. 2a). Stratocumulus regimes

have traditionally been the focus for studying aerosol indi-

rect effects because of their significant cooling effect in cli-

mate system (e.g., Ackerman et al., 2004; Bretherton et al.,

2007; Gettelman et al., 2013). However, our results highlight

that regimes with strong large-scale ascent should be another

important regime to focus on in the future. Our results in-

dicate that aerosol indirect forcing in regimes of vertical as-

cent is close to, or even larger than that in low cloud regimes

(Fig. 7). Note however that these GCMs do not treat aerosol

effects in their representations of deep convection that dom-

inates clouds and LWP in regimes with strong ascent, while

new versions of CAM exist where a version of the MG mi-

crophysics has been embedded in the deep convective param-

eterization (Song and Zhang, 2011).

By adding LTS as another criterion, we further separated

different low cloud types under large-scale subsidence and

revealed some further differences in cloud lifetime effect

of aerosols on different types of low clouds. For exam-

ple, the large λ in subsidence regimes in CAM5-CLUBB

and ECHAM6-HAM2 comes from both stratocumulus and

trade wind cumulus, while in CAM5-CLUBB-MG2 it mostly

comes from trade wind cumulus (Fig. 5). It is also interest-

ing to note that the distribution of λ in SPRINTARS and

SPRINTATSKK is more likely to depend on LTS rather than

vertical pressure velocity.

Precipitation is another important factor in understanding

simulated aerosol indirect forcing and its spread across mod-

els. LWP is more sensitive to CCN change under low pre-

cipitation situations (monthly mean surface precipitation rate

less than 0.1 mm day−1) than under high precipitation situ-

ations (monthly mean surface precipitation rate larger than

0.1 mm day−1) in all models except for CAM5 simulations

with prognostic rain scheme (MG2) (Table 4). Results de-

rived from large eddy simulation (LES) and single column

model (SCM) (e.g., Ackerman et al., 2004; Guo et al., 2011)

have shown that λ could be negative under low precipitation

situations, which indicates that λ is expected to be smaller

under low precipitation situations. Further efforts are needed

to understand the differences among different models and

the difference between global model results and results from

process-level studies.

Our results indicate that grids with high precipitation con-

tribute most to aerosol indirect forcing (from 64 % in CAM5-

MG2 to nearly 100 % in CAM5-CLUBB, Fig. 7) and the

contributions from model grids with low precipitation are

relatively small, ranging from 0 to 36 %. Adding prognos-

tic precipitation scheme (MG2) reduces the shortwave cloud

radiative effect (SCRE) for high precipitation situations. As

low precipitation situations are much less prevalent than high

precipitation situations, total SCRE decreases in models with

prognostic rain scheme compared to those with a diagnostic

rain scheme.

The regime categorization used in this study is derived

from monthly mean data. Giving the high variability of pre-

cipitation and microphysics processes on short timescales,

we acknowledge that instantaneous data (e.g. 3 hourly) might

provide more reliable information. For example, instanta-

neous data may help to reconcile some of the discrepan-

cies between our studies and that of Gettelman et al. (2015)

regarding the prognostic rain scheme noted in Sect. 3.2b.

However, it is challenging to calculate λ and aerosol indirect

forcing using instantaneous data. Here λ and aerosol indi-

rect forcing are derived from the difference between present-

day (PD) and pre-industrial (PI) simulations. Using instan-

taneous data will not guarantee that the sorted bins of dy-

namical regimes include the same instances from PI to PD,

giving the high variability of instantaneous data. Since the

main goal in this manuscript is to demonstrate the impor-

tance of examining aerosol indirect effects in different cloud

and dynamical regimes, the use of monthly mean data serves

this goal well. It is our future plan to carry in-depth analysis

to further understand some of the findings documented here,

such as the large spread in λ in regimes of vertical ascent

in different models. For example, LWP response to aerosol

perturbation documented in this study may include contribu-

tions from mixed-phase and ice clouds. In-depth analysis of

cloud macrophysics and microphysics processes will help to

improve the understanding of the model uncertainty.
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Appendix A: Global aerosol-climate models

CAM5: This is the default version of CAM5.3. The moist

turbulence scheme is based on Bretherton and Park (2009),

which explicitly simulates stratus- radiation-turbulence in-

teractions. The shallow convection scheme is from Park and

Bretherton (2009) and the deep convection parameterization

is retained from CAM4.0 (Neale et al., 2008). The two-

moment cloud microphysics scheme from Morrison and Get-

telman (2008) (MG) is used to predict both the mass and

number mixing ratios for cloud water and cloud ice with a

diagnostic formula for rain and snow. The cloud ice micro-

physics was further modified to allow ice supersaturation and

aerosol effects on ice clouds (Gettelman et al., 2010). The

activation of aerosol particles into cloud droplets is param-

eterized by Abdul-Razzak and Ghan (2000, hereafter ARG)

and the autoconversion scheme is based on Khairoutdinov

and Kogan (2000) (KK). A modal approach is used to treat

aerosols in CAM5 (Liu et al., 2012a; Ghan et al., 2012).

Aerosol size distribution can be represented by using either 3

modes or 7 modes, and the default 3-mode treatment is used

in this study. Simulations were performed at 1.9◦× 2.5◦ hor-

izontal resolution with finite volume dynamical core, using

30 vertical levels.

CAM5-PNNL: This is the same as CAM5, but a new

unified treatment of vertical transport and in-cloud wet re-

moval processes in convective clouds developed by Wang

et al. (2013) is applied. It has a more detailed treatment of

aerosol activation in convective updrafts and a mechanism

is added for laterally entrained aerosols to be activated and

then removed. In addition, a few other changes have been

introduced to stratiform cloud wet scavenging processes in

CAM5-PNNL to improve the fidelity of the aerosol simula-

tion, including the vertical distribution of aerosols and their

transport to remote regions (Wang et al., 2013).

CAM5-MG2: This is the same as CAM5, but the original

two-moment MG scheme with diagnostic treatment for rain

and snow in CAM5 is replaced by the updated MG scheme

(MG2) with prognostic scheme for rain and snow (Gettelman

et al., 2015).

CAM5-CLUBB: This is the same as CAM5, but the sep-

arate treatments of boundary layer turbulence, large-scale

cloud macrophysics and shallow convection in CAM5 is re-

placed by CLUBB, a higher-order turbulence closure that

unifies these different treatments (Bogenschutz et al., 2013).

This therefore includes aerosol effects on shallow convec-

tion.

CAM5-CLUBB-MG2: This is the same as CAM5-

CLUBB, but the MG2 scheme with prognostic rain and snow

treatment replaces the original MG scheme with diagnostic

rain and snow treatment (Gettelman et al., 2015). This also

includes aerosol effects on shallow convection.

ECHAM6-HAM2: ECHAM-HAMMOZ (echam6.1-

ham2.2-moz0.9) is a global aerosol-chemistry climate

model. In this study only the global aerosol-climate model

part of ECHAM-HAMMOZ is used and for the sake of

brevity referred to as ECHAM6-HAM2 (Neubauer et al.,

2014). It consists of the general circulation model ECHAM6

(Stevens et al., 2013) coupled to the latest version of the

aerosol module HAM2 (Stier et al., 2005; Zhang et al.,

2012) and uses a two-moment cloud microphysics scheme

that includes prognostic equations for the cloud droplet

and ice crystal number concentrations as well as cloud

water and cloud ice (Lohmann et al., 2007; Lohmann and

Hoose, 2009). The activation of aerosol articles into cloud

droplets is parameterized by Lin and Leaitch (1997) and

the autoconversion scheme is based on the KK scheme.

Cumulus convection is represented by the parameterization

of Tiedtke (1989) with modifications by Nordeng (1994) for

deep convection. Aerosol effects on convective clouds are

not included, but there is a dependence of cloud droplets

detrained from convective clouds on aerosol. Simulations

were performed at T63 (1.9◦× 1.9◦) spectral resolution

using 31 vertical levels (L31).

SPRINTARS: SPRINTARS (Takemura et al., 2005) is

a global aerosol transport-climate model based on a gen-

eral circulation model, MIROC (Watanabe et al., 2010).

In this study, the horizontal and vertical resolutions are

T106 (1.125◦× approx. 1.125◦) and 56 layers, respectively.

SPRINTARS is coupled with the radiation and cloud micro-

physics schemes in MIROC to calculate the aerosol-radiation

and aerosol–cloud interactions. A prognostic scheme for de-

termining the cloud droplet and ice crystal number concen-

trations is introduced (Takemura et al., 2009). The default

autoconversion scheme in MIROC-SPRINTARS is based on

Berry (1968), and the activation of aerosol particles into

cloud droplet is based on the ARG scheme.

SPRINTARS-KK: This is the same as SPRINTARS, but

the default autoconversion scheme in SPRINTARS is re-

placed with the KK autoconversion scheme.

ModelE2-TOMAS: ModelE2-TOMAS is a global-scale

atmospheric chemistry-climate model, which consists of the

state-of-the-art NASA GISS ModelE2 general circulation

model (Schmidt et al., 2014) coupled to the TwO-Moment

Aerosol Sectional (TOMAS) microphysics model (Lee and

Adams, 2012; Lee et al., 2015). ModelE2-TOMAS has 2◦

latitude by 2.5◦ longitude resolution, with 40 vertical hy-

brid sigma layers from the surface to 0.1 hPa (80 km). In the

model, clouds are distinguished into convective and large-

scale stratiform clouds. The clouds parameterizations are

similar to Del Genio and Yao (1993) and Del Genio et

al. (1996) but have been improved in several respects (see

details in Schmidt et al., 2014, 2006). Using a prognostic

treatment of cloud droplet number concentration (CDNC)

from Morrison and Gettleman (2008), ModelE2-TOMAS

represents the first aerosol indirect effects only on large-

scale stratiform clouds (Menon et al., 2010). In ModelE2-

TOMAS, CDNC and a critical supersaturation are com-

puted using a physical-based activation parameterization

from Nenes and Seinfeld (2003) with a model updraft veloc-
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ity that is computed based on a large-scale vertical velocity

and sub-grid velocity.

HadGEM3-UKCA: HadGEM3-UKCA is a global compo-

sition climate model (http://www.ukca.ac.uk). It consists of

the third generation of the Hadley Centre Global Environ-

mental Model (Hewitt et al., 2011) developed at the UK Met

Office. This general circulation model is non-hydrostatic and

uses a semi-Lagrangian transport scheme. We are using the

atmospheric configuration: General Atmosphere (GA) 4.0 as

documented in Walters et al., (2014), except for the addition

of the UKCA aerosol and chemistry scheme which is fully

coupled with the radiation scheme of HadGEM3 (Bellouin

et al., 2013). UKCA is a two-moment pseudo-modal scheme

which carries both aerosol number concentration and compo-

nent mass as prognostic tracers. It calculates the evolution of

five aerosol species, sulfate, particulate organic matter, black

carbon, sea salt and dust, in both internally and externally

mixed particles. The aerosol scheme in UKCA is based on

the Global Model of Aerosol Processes (GLOMAP-mode,

Mann et al., 2010). The main exception is that dust is cal-

culated separately using 6 size bins. UKCA hence only con-

siders 5 modes. The tropospheric chemistry part of UKCA

is described in O’Connor et al. (2014). HadGEM3 uses a

prognostic treatment of rain formulation (Abel and Boutle,

2012) and employs a prognostic cloud fraction and conden-

sation cloud scheme (PC2) (Wilson et al., 2008), in which

the cloud droplet number concentration is diagnosed from

the expected number of aerosols that are available to activate

at each timestep (West et al., 2014). Cumulus convection is

represented by a mass flux convection scheme based on Gre-

gory and Rowntree (1990) with various extensions (Walters

et al., 2014). Simulations were performed at N96L85 reso-

lution, a regular 1.25◦ latitude× 1.875◦ longitude grid in the

horizontal, with 85 hybrid-height vertical levels.

www.atmos-chem-phys.net/16/2765/2016/ Atmos. Chem. Phys., 16, 2765–2783, 2016
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