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Abstract. Tar balls (TBs) are a specific particle type that is

abundant in the global troposphere, in particular in biomass

smoke plumes. These particles belong to the family of atmo-

spheric brown carbon (BrC), which can absorb light in the

visible range of the solar spectrum. Albeit TBs are typically

present as individual particles in biomass smoke plumes,

their absorption properties have been only indirectly inferred

from field observations or calculations based on their elec-

tron energy-loss spectra. This is because in biomass smoke

TBs coexist with various other particle types (e.g., organic

particles with inorganic inclusions and soot, the latter emit-

ted mainly during flaming conditions) from which they can-

not be physically separated; thus, a direct experimental deter-

mination of their absorption properties is not feasible. Very

recently we have demonstrated that TBs can be generated

in the laboratory from droplets of wood tar that resemble

atmospheric TBs in all of their observed properties. As a

follow-up study, we have installed on-line instruments to

our laboratory set-up, which generate pure TB particles to

measure the absorption and scattering, as well as the size

distribution of the particles. In addition, samples were col-

lected for transmission electron microscopy (TEM) and total

carbon (TC) analysis. The effects of experimental parame-

ters were also studied. The mass absorption coefficients of

the laboratory-generated TBs were found to be in the range

of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström ex-

ponents (AAE) between 2.7 and 3.4 (average 2.9) in the

wavelength range 467–652 nm. The refractive index of TBs

as derived from Mie calculations was about 1.84− 0.21i at

550 nm. In the brown carbon continuum, these values fall

closer to those of soot than to other light-absorbing species

such as humic-like substances (HULIS). Considering the

abundance of TBs in biomass smoke and the global magni-

tude of biomass burning emissions, these findings may have

substantial influence on the understanding of global radiative

energy fluxes.

1 Introduction

Tar balls (TBs) are ubiquitous in the global troposphere and

represent a peculiar particle type emitted from biomass burn-

ing. The contribution of TBs to the number concentration of

particles could be as high as 80 % in the vicinity of biomass

burning sources (Pósfai et al., 2003), while it was in the

range of 6–14 % away from the sources (Adachi and Buseck,

2011), as observed using transmission electron microscopy

(TEM). At a site that represents regional background con-

ditions (K-puszta) the abundance of TBs varied from 0 to

40 % depending on the season and time of sampling (Pós-

fai et al., 2004). Even over the Himalaya TB particles ac-

counted for 3 % of all observed particles (Cong et al., 2009).

Near the Arctic, in Hyytiälä, during a pollution episode 1–

4 % of the particles were identified as TBs (Niemi et al.,

2006). Tar balls can be readily identified by transmission

electron microscopy (TEM) by their morphology, chemi-

cal composition, and amorphous structure. TBs are homoge-

neous, spherical particles that can withstand the high-energy

electron beam of the TEM. They are most often present in ex-

ternal mixture, i.e., as individual stand-alone particles. Their

sizes range from 30 to 500 nm in geometric diameter as de-

termined by TEM (Pósfai et al., 2004; Cong et al., 2009;

Adachi and Buseck, 2010; Fu et al., 2012; China et al., 2013).

Very recently we have demonstrated that TBs can be gen-
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erated in the laboratory from droplets of wood tar that re-

semble atmospheric TBs in all of their observed properties

(Tóth et al., 2014). These particles belong to the family of

atmospheric brown carbon (BrC) that can absorb light in

the visible range of the solar spectrum (Andreae and Ge-

lencsér, 2006). Chung et al. (2012) have estimated that the

global contribution of BrC to light absorption may be as high

as 20 % at 550 nm. Given that the estimated contribution of

humic-like substances (HULIS) to solar absorption can be

only few per cent at 500 nm (Hoffer et al., 2006), a substantial

fraction of BrC absorption may be attributed to TBs. So far a

direct experimental determination of absorption properties of

TBs has not been feasible because in biomass smoke TBs co-

exist with various other particle types from which they can-

not be separated. Thus, their absorption properties have been

so far only indirectly inferred from field observations (Hand

et al., 2005; Chakrabarty et al., 2010) or calculations based

on their dielectric functions obtained from electron energy-

loss spectrometry (Alexander et al., 2008).

Hand et al. (2005) were the first to estimate the opti-

cal properties of TB by measuring the optical properties of

ambient particles emitted from biomass burning during the

YACS (Yosemite Aerosol Characterization Study) conducted

from July to September 2002 in the western United States.

The derived (estimated from OC/EC and scattering data) en-

semble complex index of refraction of TBs was found to

be 1.56− 0.02i at 632 nm, indicating that the TBs do ab-

sorb light. The difference between the measured absorption

between 370 and 880 nm was the highest in periods when

TBs were the predominant particle type, suggesting that the

absorption Ångström exponent (AAE) of TB was different

from 1. Back-trajectory analyses showed that the particles

measured were affected by long-range transport; thus the res-

idence time of the particles allowed photochemical and age-

ing processes to take effect. These effects can be observed

on the distribution of the elements in individual TB parti-

cles. Whereas carbon and nitrogen were homogenously dis-

tributed over the entire particle volume, the abundance of

oxygen was strongly enhanced in the ∼ 30 nm outmost shell

of the particles. Since these particles were affected by atmo-

spheric processing, some of their properties might be differ-

ent from those of the freshly emitted TB particles.

Alexander et al. (2008) investigated individual particles

(“carbon spheres”) from ambient aerosols collected above

the Yellow Sea during the Asian Pacific Regional Aerosol

Characterization Experiment (ACE-Asia). The morphologi-

cal properties (size, structure, and mixing state) of the carbon

spheres observed by TEM were similar to those characteris-

tic of TB particles. The refractive indices of individual car-

bon spheres were derived from theoretical calculations based

on electron energy-loss spectra and were found to be cen-

tered around 1.67− 0.27i at 550 nm. The authors also calcu-

lated the wavelength dependence of the absorption and found

AAE of 1.5 which is not much different from that reported

for BC (Schnaiter et al., 2003; Moosmüller et al., 2009). The

derived mass absorption coefficients of the carbon spheres

were in the range of 3.6–4.1 m2 g−1, almost as high as those

of BC (4.3–4.8 m2 g−1) (Alexander et al., 2008).

Chakrabarty et al. (2010) measured the optical properties

of tar balls from smoldering combustion of Ponderosa pine

and Alaskan Pine duff in the laboratory. They found the index

of refraction of TB particles similar to those of humic-like

substances (Hoffer et al., 2006). The wavelength dependent

absorption Ångström exponents were split into 2.3–2.8 and

4.2–6.4 in the spectral range of 532–780 and 405–532 nm,

respectively. The TB particles were almost spherical, hav-

ing a carbon-to-oxygen ratio of about 6, as determined by

scanning electron microscopy with energy dispersive X-ray

spectroscopy (SEM-EDX).

The absorption properties of BrC including TBs are very

important in regional and global modeling of the radiative

budget, as well as in interpreting satellite-based radiation

measurements. In spite of being an abundant particle type

among BrC particles, TBs have so far eluded direct measure-

ments of their optical properties, since they always coexist

with other particle types and UV-absorbing gaseous species

in biomass smoke. By measuring pure TB particles in the

laboratory without the concurrent presence of other combus-

tion particles, we have directly obtained the optical proper-

ties of TBs for the first time in aerosol science. In this paper

we report the fundamental optical properties of laboratory-

generated TBs generated under different conditions.

2 Experimental

For particle generation liquid tar was produced by dry dis-

tillation of wood, as described in our previous paper (Tóth

et al., 2014). Briefly, dry European turkey oak wood (Quer-

cus cerris) chops (25× 10× 10 mm) were placed in a Kjel-

dahl flask (100 mL) fixed above a Bunsen burner in a slightly

down-tilted position. The liquid condensate produced dur-

ing the pyrolysis in the Kjeldahl flask was collected in a

40 mL vial in which it separated into “oily” and “aqueous”

phases (Maschio et al., 1992). Since the chemical compo-

sitions of the aqueous and the oily phases obviously differ,

the two phases were separated and investigated separately.

Both phases were aged further on a ∼ 300 ◦C plate to con-

centrate the solutions. The concentrates were taken up with

high purity methanol (J. T. Baker, HPLC Gradient) and used

for particle generation as described in the next paragraph.

The concentrations of solutions used for particle generation

were 1–3 g L−1.

A modified experimental setup similar to that used in pre-

vious experiments (Tóth et al., 2014) was applied for parti-

cle generation (Fig. 1). In order to maintain the concentra-

tion of the generated particles constant for a longer time that

is necessary for measuring the size distribution and optical

properties of the particles, particles were generated with an

ultrasonic atomizer. The production of tar droplets from their
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Figure 1. Experimental setup for the tar ball generation and mea-

surement.

solution in methanol was performed in a plastic flask placed

above the ultrasonic nebulizer (1.6 MHz, Exo Terra Fogger,

PT2080, Rolf C. Hagen Corp.), held in a water bath at room

temperature. The nebulizer flask was continuously rinsed

with purified nitrogen (Messer, purity 99.5 %) at a flow

rate of 0.100 L min−1. The generated droplets were passed

through a glass tube of 300 mm length (id= 9 mm) heated di-

rectly with a tube furnace (Carbolite, MTF 10/25/130). The

temperature of the heated zone (30 mm isotherm zone) was

set in the experiments between 500 and 800 ◦C. The resi-

dence time of the particles in the heated zone was about

1.15 s. After leaving the heated zone the nitrogen flow was

mixed with dry filtered air at a flow rate of ∼ 30 L min−1,

then passed through a buffer volume of 10.75 L (residence

time ∼ 22 s). A PM1 cyclone (SCC 2.229, BGI Inc.) was de-

ployed at the outlet of the system to remove the large par-

ticles (the calculated cut-off was ∼ 500 nm aerodynamic di-

ameter) from the gas stream. The measurements of the opti-

cal parameters (scattering and absorption) and the size dis-

tribution as well as the aerosol sampling were performed in

a single setup. The light absorption coefficients were mea-

sured with a CLAP (Continuous Light Absorption Photome-

ter) at three different wavelengths (467, 528, 652 nm). The

light scattering coefficients were measured with a TSI 3563

nephelometer at 450, 550, 700 nm (Anderson et al., 1996).

The data were recorded with a time resolution of 5 s, the raw

light absorption and scattering data were corrected according

to Bond et al. (1999), and Ogren (2010) and Anderson and

Ogren (1998), respectively. All data were also corrected for

standard temperature and pressure. The absorption Ångström

exponents of the particles were calculated from the measured

and corrected absorption coefficient for the wavelength range

between 467 and 652 nm with the equation (Moosmüller et

al., 2011):

AAE=− ln(A467/A652)/ ln(467/652),

where A467 and A652 are the absorbances measured at the

two different wavelengths.

The size distribution was measured in the range of 7–

800 nm with a differential mobility particle sizer (DMPS),

constructed at the University of Helsinki.

The generated particles were collected on Whatman QMA

quartz filters (pre-baked at 680 ◦C for 6 h). The elemental

composition (CHNS) of the particles on filters was mea-

sured by elemental analyzer (EuroVector EA3000). In certain

cases the particles were collected on TEM grids (lacey For-

mvar/carbon TEM copper grid of 200 mesh, Ted Pella Inc.,

USA) fixed on 13.1 mm spots of quartz filters placed in the

filter holder that were used for sampling for elemental anal-

ysis as well.

The morphologies of the particles were studied in bright-

field TEM images obtained using a Philips CM20 TEM op-

erated at 200 kV accelerating voltage. The possible pres-

ence of an internal structure was checked in high-resolution

electron micrographs and in selected-area electron diffrac-

tion patterns. The electron microscope was equipped with

an ultra-thin-window Bruker Quantax X-ray detector that al-

lowed the energy-dispersive X-ray analysis (EDS) of the ele-

mental compositions of individual particles. Spectra were ac-

quired for 60 s, with the diameter of electron beam adjusted

to include the entire individual TB particles.

3 Results

3.1 Morphology, elemental composition, and structure

of the generated particles

Two samples were collected for TEM analysis to investigate

the morphology and elemental composition of the generated

particles: one represented the particles generated from the

aqueous phase of the tar, whereas the other was collected

from the oily phase. In both cases the oven temperature was

set to 650 ◦C; the flows and other experimental parameters

were similar to those applied for samples collected for TC

(total carbon) analysis.

As it can be observed in Fig. 2, the particles generated

from the aqueous phase were spherical. From the oily phase

more irregularly shaped particles with oval two-dimensional

outlines were produced, indicating that in the latter case the

particles were not perfectly solid at the time of collection. It

was observed during the TEM analysis that all of the gener-

ated particles can withstand the high-energy electron beam

of the instrument: they did not evaporate or shrink while ex-

posed to the electron beam.

The observed sizes of the particles vary widely (up to

∼ 360 nm in diameter), the number size distribution peaks

at ∼ 100 nm as determined from the TEM images. Bimodal

number size distribution was obtained from the DMPS mea-

surements for the particles produced from both the aqueous

and oily phase of the tar (Fig. 3). For the particles aged at

650 ◦C the two modes are centered around 20–40 and 100–

140 nm. The number size distributions of nigrosin and the

blank (pure) methanol are unimodal, peaking at 117 and

41 nm, respectively. Nevertheless, in cases when the ageing

temperature was higher than 500 ◦C the mass and volume of

the particles are dominated by the larger particles: at least 86

and 70 % of the total mass is represented by the larger parti-

cle mode in the case of the aqueous and oily samples, respec-

tively. Considering that both the absorption and scattering ef-
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Figure 2. TEM images of tar balls generated from the aqueous (a,

b) (sample 16-d2) and oily (c, d) phase of tar obtained from dry

distillation of wood.

ficiencies are very small for small particles, the optical prop-

erties are also determined by the particles of the larger mode.

(Here we note that the mass absorption coefficient was cal-

culated only for size distributions in which the relative con-

tribution of the second mode to total volume was larger than

93 %. The sizes of the particles of the second mode were sim-

ilar to those determined for ambient TB particles observed in

samples from K-puszta and Southern Africa (Pósfai et al.,

2004)).

The EDS spectra of the particles generated from both

the aqueous and oily phase indicated that the particles con-

sist predominantly of carbon and oxygen. In the case of

the particles formed from the aqueous phase, the average

carbon to oxygen molar ratio was 10 : 1, with 90 mol % C

(RSD= 10 %), 9 mol % O (RSD= 16 %) and N, Na, Si, S,

K only in trace amounts. The limitations of determining mo-

lar ratios by this method are described in detail elsewhere

(Pósfai et al., 2003). It should be noted that the spectra were

practically indistinguishable from those obtained from atmo-

spheric TBs. Both high-resolution transmission electron mi-

croscopy (HRTEM) images and electron diffraction confirm

that the particles in both samples are perfectly amorphous,

lacking even the short-range order that is characteristic of

nanosphere-soot (ns-soot) (Buseck et al., 2014).

3.2 Measurement uncertainties

In order to estimate the measurement uncertainties, nigrosin

dye (Sigma-Aldrich, Acid black 2, water soluble) was mea-

sured with the same setup that was used for the measure-

ments of TBs. The nigrosin was also dissolved in methanol

and particles were generated with the process used for the

TB samples. Oven temperature was set to 65 ◦C in order to

evaporate methanol from the droplets without inducing com-

positional changes of nigrosin. Using inverse Mie calculation

(Guyon et al., 2003; Hoffer et al., 2006) the index of refrac-

tion of nigrosin was obtained and compared to that reported

in the literature Pinnick et al., 1973). It should be noted

that many parameters might affect the results of an inverse

Mie calculation. Beside the uncertainty of the optical instru-

ments, the uncertainty of the size distribution measurement

(the distribution was measured as a function of electromo-

bility diameter), as well as the experimental conditions (e.g.,

the presence of volatile compounds) might also contribute to

the overall uncertainty of the calculations. For example, ac-

cording to Massoli et al. (2009), the scattering coefficient of

absorbing particles with single scattering albedo (SSA)= 0.4

(at 532 nm) is overestimated by 25 % using the Anderson

and Ogren correction (Anderson and Ogren, 1998) for the

raw data measured by a TSI nephelometer. Since in our case

the SSA of the generated nigrosin was ∼ 0.4 at 550 nm, the

scattering coefficient might be also overestimated by∼ 25 %.

The uncertainty of the measurements of the Particle Soot Ab-

sorption Photometer (PSAP), whose measurement principle

is very similar to that of the CLAP, is 20–30 % (Bond, 1999).

It was demonstrated that the presence of organic compounds

(secondary organic aerosol, SOA) causes positive bias and

enhances the uncertainty of the PSAP (Cappa et al., 2008;

Lack et al., 2008).

When the measured absorption and scattering coefficient

of nigrosin was decreased by 25 %, we obtained a refrac-

tive index of 1.65− 0.29i and 1.77− 0.27i for nigrosin at

wavelengths of 550 and 652 nm, respectively. In this case

the real part of nigrosin is slightly overestimated, as the in-

dex of refraction of nigrosin at 633 nm was reported to be

1.67− 0.26i (Pinnick et al., 1973). By assuming that the ab-

sorption is similar at both 633 and 652 nm, Mie calculations

using the refractive index of nigrosin (1.67− 0.26i) and the

measured size distribution yield scattering and absorption co-

efficients at 652 nm higher by ∼ 17 % and lower by ∼ 2 %,

respectively, as compared to those directly measured and cor-

rected by 25 %. These uncertainties are considered when in-

terpreting the results. It is important to note that discrepan-

cies in an inverse Mie calculation are a consequence of many

parallel effects; thus our obtained biases might not always

apply.

3.3 Mass absorption coefficient

Table 1 summarizes the measured optical properties of the

particles produced from the aqueous phase. At 650 ◦C the

measured mass absorption coefficients of the TBs generated

from the aqueous phase of the wood tar varied between 2.4

and 3.2 m2 g−1 C, the average being 2.7 m2 g−1 C at 550 nm.

Taking into account the potential positive bias in absorp-

tion measurements (see discussions in Sect. 2), related un-

certainties (e.g., uncertainty of total carbon measurements),

and the fact that the mass-to-carbon ratio of TBs is about

1.2, this range translates into mass absorption coefficients of
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Figure 3. Number and volume size distribution of particles generated from aqueous tar (sample 16-d2) measured with TEM and DMPS.

Table 1. Optical parameters of tar ball particles generated from the aqueous phase. The AAE is calculated between 467 and 652 nm, the mass

absorption coefficient (MAC) and the refractive indices are for 550 nm.

Sample Tube furnace AAE MAC Re Im Volume of

name temperature (m2 g−1) large particles

(◦C) (%)

18-d1 500 3.4 59

14-d1 650 2.8 0.8–2.5 1.88 0.27 98

15-d1 650 3.4 1.79 0.15 86

16-d2 650 2.8 1.87 0.27 99

17-d1 650 2.8 1.0–3.0 1.82 0.18 93

22-d2 650 3.0 0.8–2.3 93

25-d2 650 2.7 0.8–2.3 1.84 0.17 95

20-d1 800 3.0 1.0–3.1 97

20-d2 800 3.0 96

about 0.8–3.0 m2 g−1 (see Table 1). These values are some-

what lower (by a factor of 2–10) than that characteristic for

BC (∼ 7 m2 g−1, Schnaiter et al., 2003; Clarke et al., 2004;

Taha et al., 2007), but definitely much higher (by a factor

of 25–100) than the mass absorption coefficient of HULIS

(∼ 0.032 m2 g−1, Hoffer et al., 2006).

The range of the measured mass absorption coefficients

for the particles generated from the oily phase of wood tar

was found to be largely similar to that obtained for the par-

ticles from the aqueous phase. However, the former is not

evaluated since the particles generated from the oily phase

morphologically differ from atmospheric TB particles.

3.4 Ångström exponent of generated tar balls

The absorption Ångström exponents of particles generated

varied between 2.7 and 3.7 (2.7–3.4 and 3.1–3.7 for the

aqueous and oily phase, respectively) in the spectral range

between 467 and 652 nm. The Ångström exponents of the

particles being closest to atmospheric TB particles in all of

their observed properties are in the lower part of this range.

These values are in line (but slightly lower) with those de-

rived from laboratory observations (2.3–2.8 and 4.2–6.4 in

the spectral range of 532–780 and 405–532 nm, respectively;

Chakrabarty et al., 2010) but are markedly higher than that

calculated for individual carbon spheres based on measured

electron energy-loss spectra (Alexander et al., 2008). Since

the AAE depends on particle size, we estimated the AAE of

the brown spheres investigated by Alexander et al. (2008)

and that of our laboratory-generated tar balls, assuming the

same size distribution. For the calculations we used the size

distribution of ambient tar ball particles measured by TEM in

a rural background station (K-puszta) in Hungary (Pósfai et

al., 2004), as well as the reported index of refractions (at 467

and 652 nm) of the brown spheres studied by Alexander et

al. (2008) and those of the tar balls generated in the present

study (see Sect. 3.5). The AAE of the laboratory-generated

TBs with an ambient size distribution was 2.4 in the wave-

length range between 467 and 652 nm. This value is higher

than that obtained for the brown spheres (1.3) in the same
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wavelength range. The lack of highly ordered structures in

laboratory-generated TB particles as observed by HRTEM,

and the carbon-to-oxygen ratios measured by EDS reason-

ably explain the obtained Ångström exponents. These val-

ues fall between those of BC and humic-like substances, the

less polar fraction of the water soluble fraction of the aerosol

(Hoffer et al., 2006).

Tóth et al. (2004) showed that heat shock is necessary to

generate TB particles from the liquid condensate obtained

from biomass pyrolysis. Since the heat affects the compo-

sition and therefore the optical properties of the generated

particles, investigation of the effect of temperature used for

heat shock is important. The optical properties of the gen-

erated TB particles were measured continuously while the

tube furnace was gradually cooled from the temperature of

∼ 650 ◦C (Fig. 4). In the case of particles generated from

the aqueous phase of the tar the Ångström exponent did not

change significantly down to about 550 ◦C, below which it

drastically increased. The same phenomenon was observed

for particles generated from the oily phase, the Ångström ex-

ponent (and also the SSA, not shown in the figure) changed

rapidly only below a certain oven temperature (< 580 ◦C).

This finding implies that the optical properties of tar balls

are markedly different from those of the bulk tar material,

and suggests that the chemical transformations induced by

heat shock or atmospheric ageing that produce rigid and re-

fractory spherical particles also significantly alter the absorp-

tion properties of the resulting TB particles. The results of

Mie calculations (assuming monodisperse size distribution

and using the index of refraction of TBs derived for different

wavelengths) showed that the AAE of the generated particles

decreases with increasing particle diameter above ∼ 150 nm.

This means that the observed effect (the increasing AAE with

decreasing temperature) cannot be the consequence of in-

creasing particle size.

3.5 Index of refraction of tar ball particles

The indices of refraction of particles generated from the

aqueous phase and aged at 650 ◦C were calculated based on

the method of Guyon et al. (2003), also used in Hoffer et

al. (2006). Since the SSA of TB samples varied between 0.4

and 0.5 (at 550 nm) the measured absorption and scattering

coefficients were corrected as described for the nigrosin par-

ticles. The obtained index of refraction was 1.94− 0.21i (at

550 nm). Based on the nigrosin measurements, if we assume

that the measured scattering coefficient is overestimated by a

further 17 %, the real part of the obtained index of refraction

can be considered as an upper limit, as it is overestimated by

about 5 %, the average value is 1.84− 0.21i at 550 nm. This

is comparable to the complex refractive index of individual

carbon spheres – in particular in its imaginary part – calcu-

lated from TEM-electron energy loss spectra (Alexander et

al., 2008). The real part of the index of refraction as mea-

sured in our experiment is higher by about 10 % than the one

Figure 4. The effect of heat shock (oven temperature) on the

Ångström exponent of TB particles generated from the aqueous and

from the oily phase of wood tar.

calculated for the carbon spheres. Assuming that the same

correction applies at other wavelengths as well, the obtained

average index of refraction at 467 and 652 nm is 1.84− 0.27i

and 1.82− 0.15i, respectively.

4 Conclusions

Tar balls have been shown to be abundant in the parts of

the troposphere impacted by biomass smoke, which is now

the main global source of anthropogenic aerosol particles.

Given the abundance of TBs in the global troposphere and

their relatively high absorption efficiency over the entire so-

lar spectrum (the obtained AAE between 467 and 652 nm

is 2.7–3.4), their contribution to column absorption can be

clearly significant. This is particularly true for immense ge-

ographical regions impacted by atmospheric brown clouds

(ABCs) where TBs may make a contribution to solar absorp-

tion comparable to that of BC. The last question that remains

is where TBs are positioned in the black-to-brown carbon

continuum of atmospheric aerosols (Andreae and Gelencsér,

2006; Sun et al., 2007). Somewhat surprisingly, their opti-

cal properties (the obtained mass absorption coefficient is

0.8–3.0 m2 g−1 at 550 nm) suggest that they are not very far

from BC or amorphous carbon, despite their markedly dif-

ferent formation mechanism and chemical composition. On

the other hand, it is clear that TBs are very much different

from faintly colored species such as HULIS or SOA in their

absorption properties. We suggest that TBs are on the dark

side of brownness of aerosol carbon, but clearly out of the

BC regime in terms of their key absorption parameters (e.g.,

refractive index, the obtained value is 1.84− 0.21i at 550 nm

and AAE) and for lack of fundamental BC properties (Pet-

zold et al., 2013). Nevertheless, the importance of TBs in the
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global radiation budget is unquestionable and warrants fur-

ther modeling and observational studies.
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