

Supplement of

Nighttime atmospheric chemistry of iodine

Alfonso Saiz-Lopez et al.

Correspondence to: Alfonso Saiz-Lopez (a.saiz@csic.es)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Reaction	k / cm ³ molecule ⁻¹ s ⁻¹	Notes
$\overline{I + O_3 \rightarrow IO + O_2}$	$2.1 \times 10^{-11} e^{(-830 / T)}$	1
$IO + O_3 \rightarrow OIO + O_2$	3.6×10^{-16}	2
$I + HO_2 \rightarrow HI + O_2$	$1.5 \times 10^{-11} e^{(-1090 / T)}$	3
$IO + NO \rightarrow I + NO_2$	$7.15 \times 10^{-12} e^{(300 / T)}$	1
$IO + HO_2 \rightarrow HOI + O_2$	$1.4 \times 10^{-11} e^{(540 / T)}$	1
$IO + IO \rightarrow OIO + I$	$2.13 \times 10^{-11} e^{(180/T)} \times [1 + e^{(-p/191.42)}]$	1,4
$\rm IO + IO \rightarrow I_2O_2$	$3.27 \times 10^{-11} e^{(18071)} \times [1 - 0.65 e^{(-p/191.42)}]$	1, 4
$IO + OIO \rightarrow I_2O_3$	$w_1 \cdot exp(w_2 \cdot T)^a$	4, 5, 6 ^g
$\mathrm{OIO} + \mathrm{OIO} \rightarrow \mathrm{I_2O_4}$	$w_1 \cdot exp(w_2 \cdot T)^b$	4, 5, 6 ^{<i>g</i>}
$I_2 + O \rightarrow IO + I$	1.25×10^{-10}	1
$IO + O \rightarrow I + O_2$	$1.4 imes 10^{-10}$	1
$\rm IO + OH \rightarrow HO_2 + I$	$1.0 imes 10^{-10}$	7
$I_2O_2 \rightarrow OIO + I$	$w_1 \cdot exp(w_2 / T)^c$	5, 6 , 8 ^g
$I_2O_2 \rightarrow IO + IO$	$w_1 \cdot exp(w_2 / T)^d$	5, 6 , 8 ^g
$I_2O_4 \rightarrow 2 \text{ OIO}$	$w_1 \cdot exp(w_2 / T)^e$	5, 8 ^g
$\mathrm{I_2} + \mathrm{OH} \rightarrow \mathrm{HOI} + \mathrm{I}$	1.8 x 10 ⁻¹⁰	3
$I_2 + NO_3 \rightarrow I + IONO_2$	1.5×10^{-12}	9
$\rm I + \rm NO_3 \rightarrow \rm IO + \rm NO_2$	$1.0 imes 10^{-10}$	1
$OH + HI \rightarrow I + H_2O$	$1.6 \times 10^{-11} e^{(440 / T)}$	1
$I + IONO_2 \rightarrow I_2 + NO_3$	$9.1 \times 10^{-11} e^{(-146 / T)}$	5
$\rm HOI + OH \rightarrow \rm IO + \rm H_2O$	2.0×10^{-13}	10
$IO + DMS \rightarrow DMSO + I$	$3.2 \times 10^{-13} e^{(-925 / T)}$	11
$INO_2 \rightarrow I + NO_2$	$1008 \times 10^{15} e^{(-13670 / T)}$	12, 13, 14
$IONO_2 \rightarrow IO + NO_2$	$w_1 \cdot exp(w_2 / T)^{f}$	5, 15
$INO + INO \rightarrow I_2 + 2NO$	$8.4 \times 10^{-11} e^{(-2620/T)}$	3
$INO_2 + INO_2 \rightarrow I_2 + 2NO_2$	$4.7 \times 10^{-13} e^{(-1670 / T)}$	1
$OIO + NO \rightarrow IO + NO_2$	$1.1 \times 10^{-12} e^{(542 / T)}$	14
$HI + NO_3 \rightarrow I + HNO_3$	$1.3 \times 10^{-12} e^{(-1830 / T)}$	16
$IO + BrO \rightarrow Br + I + O_2$	$0.30 \times 10^{-11} \ e^{(510/T)}$	1
$IO + BrO \rightarrow Br + OIO$	$1.20 \times 10^{-11} e^{(510/T)}$	1
$I + BrO \rightarrow IO + Br$	1.44×10^{-11}	17, 18, 19

Table 1. Iodine chemistry scheme in CAM-Chem: Bimolecular, thermal decomposition and termolecular reactions.

$2.585 \times 10^{-12} e^{(280/T)}$	1
$1.175 \times 10^{-12} e^{(280/T)}$	1
$0.940 \times 10^{-12} \ e^{(280/T)}$	1
2.49×10^{-11}	18, 19
$9.0 imes 10^{-12}$	20
2.0×10^{-12}	2^h
$2.90 \times 10^{-12} e^{(-1100/T)}$	3
$k_0 = 3 \times 10^{-31} \times (T / 300)^{-1}$ $k_{\infty} = 6.6 \times 10^{-11}$	3 ^{<i>i</i>}
$k_0 = 6.5 \times 10^{-31} \times (T / 300)^{-3.5}$ $k_{\infty} = 7.6 \times 10^{-12} \times (T / 300)^{-1.5}$	3 ^{<i>i</i>}
$k_0 = 1.8 \times 10^{-32} \times (T / 300)^{-1}$ $k_{\infty} = 1.7 \times 10^{-11}$	3 ^{<i>i</i>}
$k_0 = 1.5 \times 10^{-27} \times (T / 300)^{-3.93}$ $k_{\infty} = 7.76 \times 10^{-10} \times (T / 300)^{-0.8}$	14 ^{<i>i</i>}
$2.7 \times 10^{-12} (300/T)^{2.66}$	21
	$2.585 \times 10^{-12} e^{(280/T)}$ $1.175 \times 10^{-12} e^{(280/T)}$ $0.940 \times 10^{-12} e^{(280/T)}$ 2.49×10^{-11} 9.0×10^{-12} 2.0×10^{-12} $2.90 \times 10^{-12} e^{(-1100/T)}$ $k_0 = 3 \times 10^{-31} \times (T / 300)^{-1}$ $k_{\infty} = 6.6 \times 10^{-11}$ $k_0 = 6.5 \times 10^{-31} \times (T / 300)^{-1.5}$ $k_{\infty} = 7.6 \times 10^{-12} \times (T / 300)^{-1.5}$ $k_{\infty} = 1.7 \times 10^{-11}$ $k_{\infty} = 1.5 \times 10^{-27} \times (T / 300)^{-3.93}$ $k_{\infty} = 7.76 \times 10^{-10} \times (T / 300)^{-0.8}$ $2.7 \times 10^{-12} (300/T)^{2.66}$

¹ IUPAC-2008 (Atkinson et al., 2007) ; ²(Dillon et al., 2006b); ³ JPL-2010 (Sander et al., 2011); ⁴(Gómez Martín et al., 2007); ⁵(Kaltsoyannis and Plane, 2008); ⁶(Galvez et al., 2013); ⁷(Bösch et al., 2003); ⁸ (Gómez Martín and Plane, 2009); ⁹(Chambers et al., 1992); ¹⁰(Chameides and Davis, 1980); ¹¹(Dillon et al., 2006a); ¹²(McFiggans et al., 2000); ¹³(Jenkin et al., 1985); ¹⁴(Plane et al., 2006); ¹⁵(Allan and Plane, 2002); ¹⁶(Lancar et al., 1991); ¹⁷(Laszlo et al., 1997); ¹⁸(Bedjanian et al., 1997); ¹⁹(Gilles et al., 1997); ²⁰(Dillon et al., 2008); ²¹This work.

 $w2 = -12302.15294 + 252.78367 \text{ x e}^{(-0.75 \text{ p}/46.12733)} + 437.62868 \text{ x e}^{(-0.75 \text{ p}/46.12733)}$

 $f = -2.63544 \times 10^{13} + 4.32845 \times 10^{12} \times (0.75 \text{ p}) + 3.73758 \times 10^8 \times (0.75 \text{ p})^2 - 628468.76313 \times (0.75 \text{ p})^3$ w2 = -13847.85015 + 240.34465 x e ^(-0.75 p/49.27141) + 451.35864 x e ^(-0.75 p/49.27141) + 451.35864 x e ^(-0.75 p/49.27141)

^g The empirical expressions of the form $w_1 \cdot exp$ ($w_2 \cdot T$) were obtained by nonlinear least squares fitting of *Rice–Ramsperger–Kassel–Marcus* (RRKM) theoretical results for the indicated reaction rate constants and thermal dissociation rates in the (27 – 1013) hPa pressure range. RRKM calculations were carried out using the MESMER algorithm (Glowacki et al., 2012) as indicated in the corresponding references (e.g. (Galvez et al., 2013). Expression ^{*a*} produces negative values outside the range of modelled rate constants (p < 20 hPa), and therefore a fixed rate constant of 3 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ was assumed. Expressions ^{*e*} and ^{*f*} generate negligible dissociation rates below ~500 hPa which become negative at ~8 hPa – in this case they are set to zero below that pressure.

^{*h*} Updated heats of formation for IO, OIO, and CH₃O₂ (Dooley et al., 2008; Gómez Martín and Plane, 2009; Knyazev and Slagle, 1998) show that the only accessible exothermic product channel of CH₃O₂ + IO (Drougas and Kosmas, 2007) is CH₂O + I + O₂ (Δ H_r = -5 ± 6 kJ mol⁻¹), consistent with the high yield of I and low yield of OIO found experimentally (Bale et al., 2005; Enami et al., 2006). Sensitivity studies have been carried out (Saiz-Lopez et al., 2014) using the preferred rate constant for this reaction of 2 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ (Dillon et al., 2006b), resulting in an enhancement of the ozone loss of 0.5% in the MBL and of less than 0.1% integrated throughout the troposphere in the J_{IxOy} scenario, and similarly negligible enhancements in the Base scenario. Impacts in the I_y partitioning are also very minor.

^{*i*} The temperature and pressure dependent rate constant (k) is computed based on the low pressure (k_0) and the high-pressure (k_{∞}) rate coefficients following JPL-2010 (Sander et al., 2011).

^{*j*} The Fast rate constants and a thermally stable product $HOIO_2$ have been predicted theoretically (Plane et al., 2006), but no experimental studies reporting observation of $HOIO_2$ and its photochemical properties in the gas phase are available. Since the level of uncertainty is even larger than for the I_xO_y , it has not been included in the mechanism.

Table 2. Iodine chemistry scheme in CAM-Chem: Photochemical reactions.

Reaction
$CH_3I + h\nu \rightarrow CH_3O_2 + I$
$CH_2I_2 + h\nu \rightarrow 2I^{a}$
$CH_2IBr + h\nu \rightarrow Br + I^{a}$
$CH_2ICl + h\nu \rightarrow Cl + I^a$
$I_2 + h\nu \rightarrow 2I$
$IO + h\nu \rightarrow I + O$
$OIO + h\nu \rightarrow I + O_2$
$INO + h\nu \rightarrow I + NO$
$INO_2 + hv \rightarrow I + NO_2^{b}$
$IONO_2 + h\nu \rightarrow I + NO_3$
$\mathrm{HOI} + \mathrm{h}\nu \rightarrow \mathrm{I} + \mathrm{OH}$
$IBr + h\nu \rightarrow I + Br$
$ICl + h\nu \rightarrow I + Cl$
$I_2O_2 + h\nu \rightarrow I + OIO^{c}$
$I_2O_3 + h\nu \rightarrow IO + OIO^{c}$
$I_2O_4 + h\nu \rightarrow OIO + OIO$ ^c

Photolysis rates are computed online considering the actinic flux calculation in CAM-Chem. The absorption cross-sections and quantum yields for all species besides the I_xO_y have been taken from IUPAC-2008 (Atkinson et al., 2007; Atkinson et al., 2008) and JPL-2010 (Sander et al., 2011).

^{*a*} radical organic products are not considered.

^b only the reaction channel reported in JPL 06-02 (Sander et al., 2006) is considered. ^c photolysis reactions only considered in the J_{IxOy} scheme (Saiz-Lopez et al., 2014).

Sea-salt aerosol reactions	Reactive uptake
$\overline{\text{IONO}_2} \rightarrow 0.5 \text{ IBr} + 0.5 \text{ ICl}$	$\gamma = 0.01$
$INO_2 \rightarrow 0.5 IBr + 0.5 ICl$	$\gamma = 0.02$
HOI $\rightarrow 0.5$ IBr + 0.5 ICl	$\gamma = 0.06$
$I_2O_2 \rightarrow$	$\gamma = 0.01^{\$}$
$I_2O_3 \rightarrow$	$\gamma = 0.01^{\$}$
$I_2O_4 \rightarrow$	$\gamma = 0.01^{\$}$

Values based on the THAMO model (Saiz-Lopez et al., 2008) and implemented in CAM-Chem following (Ordóñez et al., 2012).

 $^{\$}$ Deposition of $I_{x}O_{y}$ species on sea-salt aerosols has been included following the free regime approximation.

Species	k ₀ (M atm ⁻¹)	Deposition velocity [§] (cm s ⁻¹)	Reference
IBr ^{ice}	2.4×10^{1}	_	1
ICl ^{ice}	1.1×10^2	_	1
HI	7.8×10^{-1}	1.0	1 ^{<i>a</i>}
$HOI - (J_{IxOy} / Base)$	$1.9 \times 10^3 / 4.5 \times 10^3$	0.75	1 ^b
IONO ₂ ice	1.0×10^{6}	0.75	2 ^c
INO ₂ ^{ice}	3.0×10^{-1}	0.75	1^{d}
IO	4.5×10^2	_	2
OIO	1.0×10^{4}	_	2
I_2O_2	1.0×10^{4}	1.0	2
I_2O_3	1.0×10^4	1.0	2
I ₂ O ₄	1.0×10^4	1.0	2

Table 4. Iodine chemistry scheme in CAM-Chem: Henry's Law constants and dry deposition velocities.

[§] Dry deposition velocities are based on the THAMO model (Saiz-Lopez et al., 2008). ¹ Values reported in (Sander, 1999).

² Values based on the THAMO model (Saiz-Lopez et al., 2008).

^{*a*} Considering a dissociation constant $K_a = 3.2 \times 10^9$ and a temperature dependent coefficient c = 9800 K

^b Within the range of values given in the corresponding reference.

^c Virtually infinite solubility is represented by using a very large arbitrary number.

^{*d*} Value assumed to be equal to those of BrNO₂.

^{ice} Species for which ice-uptake is considered following (Neu and Prather, 2012).

References

Allan, B. J., and Plane, J. M. C.: A Study of the Recombination of IO with NO₂ and the Stability of INO₃: Implications for the Atmospheric Chemistry of Iodine, J. Phys. Chem. A, 106, 8634-8641, 2002.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III: gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981-1191, 2007.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8, 4141-4496, 10.5194/acp-8-4141-2008, 2008.

Bale, C. S. E., Canosa-Mas, C. E., Shallcross, D. E., and Wayne, R. P.: A discharge-flow study of the kinetics of the reactions of IO with CH_3O_2 and CF_3O_2 , Phys. Chem. Chem. Phys., 7, 2164-2172, 2005.

Bedjanian, Y., Le Bras, G., and Poulet, G.: Kinetic study of the Br + IO, I + BrO and Br + I 2 reactions. Heat of formation of the BrO radical, Chem. Phys. Lett., 266, 233-238, doi: 10.1016/S0009-2614(97)01530-3, 1997.

Bösch, H., Camy-Peyret, C., Chipperfield, M. P., Fitzenberger, R., Harder, H., Platt, U., and Pfeilsticker, K.: Upper limits of stratospheric IO and OIO inferred from center-tolimb-darkening-corrected balloon-borne solar occultation visible spectra: Implications for total gaseous iodine and stratospheric ozone, J. Geophys. Res., 108, 4455, 2003.

Chambers, R. M., Heard, A. C., and Wayne, R. P.: Inorganic gas-phase reactions of the nitrate radical: iodine + nitrate radical and iodine atom + nitrate radical, J. Phys. Chem., 96, 3321-3331, 10.1021/j100187a028, 1992.

Chameides, W. L., and Davis, D.: Iodine: Its Possible Role in Tropospheric Photochemistry, J. Geophys. Res., 85, 7383-7398, 1980.

Dillon, T. J., Karunanandan, R., and Crowley, J. N.: The reaction of IO with CH3SCH3: products and temperature dependent rate coefficients by laser induced fluorescence, Phys. Chem. Chem. Phys., 8, 847-855, 2006a.

Dillon, T. J., Tucceri, M. E., and Crowley, J. N.: Laser induced fluorescence studies of iodine oxide chemistry Part II. The reactions of IO with CH₃O₂, CF₃O₂ and O₃., Phys. Chem. Chem. Phys., 8, 5185-5198, 2006b.

Dillon, T. J., Tucceri, M. E., Sander, R., and Crowley, J. N.: LIF studies of iodine oxide chemistry Part 3. Reactions IO + NO₃ -> OIO + NO₂, I + NO₃ -> IO + NO₂, and CH₂I + O_2 -> (products): implications for the chemistry of the marine atmosphere at night., Phys. Chem. Chem. Phys., 10, 1540-1554, 2008.

Dooley, K. S., Geidosch, J. N., and North, S. W.: Ion imaging study of IO radical photodissociation: Accurate bond dissociation energy determination, Chem. Phys. Lett., 457, 303-306, 2008.

Drougas, E., and Kosmas, A. M.: Ab Initio Characterization of (CH3IO3) Isomers and the CH3O2 + IO Reaction Pathways, J. Phys. Chem. A, 111, 3402-3408, 2007.

Enami, S., Yamanaka, T., Hashimoto, S., Kawasaki, M., Nakano, Y., and Ishiwata, T.: Kinetic Study of IO Radical with RO_2 ($R = CH_3$, C_2H_5 , and CF_3) Using Cavity Ring-Down Spectroscopy, J. Phys. Chem. A, 110, 9861-9866, 2006.

Galvez, O., Gomez Martin, J. C., Gomez, P. C., Saiz-Lopez, A., and Pacios, L. F.: A theoretical study on the formation of iodine oxide aggregates and monohydrates, Phys. Chem. Chem. Phys., 15, 15572-15583, 10.1039/C3CP51219C, 2013.

Gilles, M. K., Turnipseed, A. A., Burkholder, J. B., and Ravishankara, A. R.: A study of the Br + IO \rightarrow I + BrO and the reverse reaction, Chem. Phys. Lett., 272, 75-82, doi: 10.1016/S0009-2614(97)00485-5, 1997.

Glowacki, D. R., Liang, C.-H., Morley, C., Pilling, M. J., and Robertson, S. H.: MESMER: An Open-Source Master Equation Solver for Multi-Energy Well Reactions, J. Phys. Chem. A, 116, 9545-9560, 10.1021/jp3051033, 2012.

Gómez Martín, J. C., Spietz, P., and Burrows, J. P.: Kinetic and Mechanistic Studies of the I₂/O₃ Photochemistry, J. Phys. Chem. A, 111, 306-320, 2007.

Gómez Martín, J. C., and Plane, J. M. C.: Determination of the O-IO bond dissociation energy by photofragment excitation spectroscopy, Chem. Phys. Lett., 474, 79-83, 2009.

Jenkin, M. E., Cox, R. A., and Candeland, D. E.: Photochemical Aspects of Tropospheric Iodine Behavior, J. Atmos. Chem., 2, 359-375, 1985.

Kaltsoyannis, N., and Plane, J. M. C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO₃, (IO)₂, I₂O₃, I₂O₄ and I₂O₅) of importance in the atmosphere., Phys. Chem. Chem. Phys., 10, 1723-1733, 2008.

Knyazev, V. D., and Slagle, I. R.: Thermochemistry of the R–O2 Bond in Alkyl and Chloroalkyl Peroxy Radicals, J. Phys. Chem. A, 102, 1770-1778, 10.1021/jp9726091, 1998.

Lancar, I. T., Mellouki, A., and Poulet, G.: Kinetics of the reactions of hydrogen iodide with hydroxyl and nitrate radicals, Chem. Phys. Lett., 177, 554-558, 1991.

Laszlo, B., Huie, R. E., Kurylo, M. J., and Miziolek, A. W.: Kinetic studies of the reactions of BrO and IO radicals, J. Geophys. Res., 102, 1997.

McFiggans, G., Plane, J. M. C., Allan, B. J., Carpenter, L. J., Coe, H., and O'Dowd, C.: A modeling study of iodine chemistry in the marine boundary layer, J. Geophys. Res., [Atmos.], 105, 14371-14385, 2000.

Neu, J. L., and Prather, M. J.: Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone, Atmos. Chem. Phys., 12, 3289-3310, 10.5194/acp-12-3289-2012, 2012.

Ordóñez, C., Lamarque, J. F., Tilmes, S., Kinnison, D. E., Atlas, E. L., Blake, D. R., Sousa Santos, G., Brasseur, G., and Saiz-Lopez, A.: Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys., 12, 1423-1447, 10.5194/acp-12-1423-2012, 2012.

Plane, J. M. C., Joseph, D. M., Allan, B. J., Ashworth, S. H., and Francisco, J. S.: An Experimental and Theoretical Study of the Reactions OIO + NO and OIO + OH, J. Phys. Chem. A, 110, 93-100, 2006.

Saiz-Lopez, A., Plane, J. M. C., Mahajan, A. S., Anderson, P. S., Bauguitte, S. J.-B., Jones, A. E., Roscoe, H. K., Salmon, R. A., Bloss, W. J., Lee, J. D., and Heard, D. E.: On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O_3 , HO_x , NO_x and the Hg lifetime, Atmos. Chem. Phys., 8, 887-900, 2008.

Saiz-Lopez, A., Fernandez, R. P., Ordóñez, C., Kinnison, D. E., Gómez Martín, J. C., Lamarque, J. F., and Tilmes, S.: Iodine chemistry in the troposphere and its effect on ozone, Atmos. Chem. Phys., 14, 13119-13143, 10.5194/acp-14-13119-2014, 2014.

Sander, R.: Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (v3), available at: <u>http://www.henrys-law.org/</u> (last access: 1 Sept 2016), 1999.

Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Diego, S., Jolla, L., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15, JPL_NASA, 06-2, Jet Propulsion Laboratory, Pasadena, CA, 2006.

Sander, S. P., Friedl, R. R., Barker, J. R., Golden, D. M., Kurylo, M. J., Sciences, G. E., Wine, P. H., Abbatt, J. P. D., Burkholder, J. B., Kolb, C. E., Moortgat, G. K., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL_NASA, 10-6, Jet Propulsion Laboratory, Pasadena, CA, 2011.