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Abstract. Understanding the processes controlling terrestrial
carbon fluxes is one of the grand challenges of climate sci-
ence. Carbon cycle process controls are readily studied at lo-
cal scales, but integrating local knowledge across extremely
heterogeneous biota, landforms and climate space has proven
to be extraordinarily challenging. Consequently, top-down or
integral flux constraints at process-relevant scales are essen-
tial to reducing process uncertainty. Future satellite-based es-
timates of greenhouse gas fluxes – such as CO2 and CH4
– could potentially provide the constraints needed to re-
solve biogeochemical process controls at the required scales.
Our analysis is focused on Amazon wetland CH4 emissions,
which amount to a scientifically crucial and methodologi-
cally challenging case study. We quantitatively derive the ob-
serving system (OS) requirements for testing wetland CH4
emission hypotheses at a process-relevant scale. To distin-
guish between hypothesized hydrological and carbon con-
trols on Amazon wetland CH4 production, a satellite mission
will need to resolve monthly CH4 fluxes at a ∼ 333 km reso-
lution and with a≤ 10 mg CH4 m−2 day−1 flux precision. We
simulate a range of low-earth orbit (LEO) and geostationary
orbit (GEO) CH4 OS configurations to evaluate the ability
of these approaches to meet the CH4 flux requirements. Con-
ventional LEO and GEO missions resolve monthly∼ 333 km
Amazon wetland fluxes at a 17.0 and 2.7 mg CH4 m−2 day−1

median uncertainty level. Improving LEO CH4 measurement
precision by

√
2 would only reduce the median CH4 flux un-

certainty to 11.9 mg CH4 m−2 day−1. A GEO mission with
targeted observing capability could resolve fluxes at a 2.0–

2.4 mg CH4 m−2 day−1 median precision by increasing the
observation density in high cloud-cover regions at the ex-
pense of other parts of the domain. We find that residual
CH4 concentration biases can potentially reduce the∼ 5-fold
flux CH4 precision advantage of a GEO mission to a ∼ 2-
fold advantage (relative to a LEO mission). For residual CH4
bias correlation lengths of 100 km, the GEO can nonetheless
meet the ≤ 10 mg CH4 m−2 day−1 requirements for system-
atic biases ≤ 10 ppb. Our study demonstrates that process-
driven greenhouse gas OS simulations can enhance conven-
tional uncertainty reduction assessments by quantifying the
OS characteristics required for testing biogeochemical pro-
cess hypotheses.

1 Introduction

Quantitative knowledge of biogeochemical processes regu-
lating global carbon–climate feedbacks remains highly un-
certain (Friedlingstein et al., 2013). Quantifying the sensi-
tivity of biogeochemistry to climate variables directly from
observations of atmospheric concentrations has long been
a goal of researchers (Bacastow et al., 1980; Vukicevic et
al., 2001; Gurney et al., 2008). Estimating the climate sen-
sitivity of carbon fluxes is complicated by both the spatial
scale and structure of climate anomalies and the variations
of factors affecting ecosystem responses: soils, vegetation,
land use and natural disturbance (King et al., 2015). Current
ground-based and even space-based carbon cycle observing

Published by Copernicus Publications on behalf of the European Geosciences Union.



15200 A. A. Bloom et al.: Amazon wetland CH4 emissions as a case study

systems (OSs) produce flux estimates at continental or even
zonal resolution, limiting direct estimation of relationships
between climate forcing, ecosystem properties and carbon
fluxes (Huntzinger et al., 2012; Peylin et al., 2013). The un-
certainty of carbon fluxes at continental and finer scales is
high, and different systems for flux estimation often produce
strikingly different spatial patterns (Schimel et al., 2015a;
Bloom et al., 2016). Because of the high uncertainty in the
spatial regionalization of fluxes, some of the most compelling
studies of carbon and climate have eliminated the spatial in-
formation and instead have used correlative approaches to
identify the regions likely to be responsible for observed
global concentration anomalies (Braswell et al., 1997; Cox
et al., 2013; Chen et al., 2015; Franklin et al., 2016).

The expansion of surface and aircraft observing networks
has increased our understanding of the carbon cycle and is
essential for precise quantification of trace-gas concentra-
tions (Andrews et al., 2014; Sweeney et al., 2015; Wilson
et al., 2016). Surface networks are intrinsically limited in
their density, by cost, access to remote terrestrial and ma-
rine environments, environmental conditions and other logis-
tical constraints (Schimel et al., 2015b). The first-generation
trace-gas observing satellites were designed to make global-
scale measurements of concentrations with unprecedented
frequency and accuracy but were not designed to test spe-
cific hypotheses about biogeochemical processes. The suc-
cesses of GOSAT (Yokota et al., 2009) and OCO-2 (Crisp
et al., 2004) open the door to designing a next generation of
spaceborne greenhouse gas measurements to test specific hy-
potheses about the terrestrial biosphere or the oceans. In this
paper, we report an observing system design exercise aimed
at identifying the observing system needed to increase under-
standing of a long-standing uncertainty in the global carbon
budget, specifically the role of tropical wetlands in the global
CH4 budget (Mitsch et al., 2010; Bloom et al., 2010; Melton
et al., 2013). While we focus this analysis on CH4, we note
that the models and methodology are equally applicable to
other gases (such as CO2), as well as other regions or mech-
anisms.

1.1 Wetland CH4 emissions

Biogenic methane (CH4) emission processes are one of the
principal components of global carbon–climate interactions;
CH4 is a potent greenhouse gas (Myhre et al., 2013) and wet-
lands account for roughly 20–40 % of the global CH4 source
(Kirschke et al., 2013). The processes controlling the mag-
nitude and temporal evolution of CH4 outgassing from wet-
land environments remain largely unquantified on continen-
tal scales. As a result, global-scale wetland CH4 emissions
(Melton et al., 2013) and their role in the interannual growth
of atmospheric CH4 remain highly uncertain.

Global wetland CH4 emissions largely depend on soil in-
undation, temperature and substrate carbon availability. The
major sources of wetland CH4 emissions include boreal

North America, boreal Eurasia, the Indonesian archipelago,
the Congo and Amazon River basins (Fig. 1, map), which
are all characterized by high soil carbon content (Hiederer
and Köchy, 2011) and substantial seasonal or year-round in-
undation extent (Prigent et al., 2012). By and large, Amazon
wetland CH4 emissions dominate both the magnitude and
uncertainty of global wetland CH4 emissions (Melton et al.,
2013). Estimates of Amazon wetland CH4 emissions range
between 20 and 60 Tg CH4 year−1 (Fung et al., 1991; Riley
et al., 2011; Bloom et al., 2012; Melack et al., 2004), roughly
equivalent to 10–30 % of the global wetland CH4 source.
Major uncertainties are also associated with the spatial and
temporal variability of CH4 emissions (Fig. 1). Uncertain-
ties in tropical wetland CH4 emission estimates largely stem
from a lack of quantitative knowledge of process controls
on wetland CH4 emissions and a lack of data constraints on
the drivers of wetland emissions. In terms of processes, a
range of factors including soil pH, wetland vegetation cover,
wetland depth, salinity and air–water gas exchange dynam-
ics, likely impose fundamental controls on the rate of wet-
land CH4 emissions. On a continental scale, spatially explicit
knowledge of carbon cycling and inundation remain highly
uncertain in the wet tropics, primarily due to a sparse in situ
measurement network, high cloud cover and biomass density.

1.2 Top-down CH4 flux estimates

Top-down constraints on CH4 fluxes – from atmospheric
CH4 observations – are key to retrieving quantitative infor-
mation on continental-scale CH4 biogeochemistry (Bousquet
et al., 2011; Pison et al., 2013; Basso et al., 2016; Wilson
et al., 2016). Low-earth orbit (LEO) satellite missions, in-
cluding SCIAMACHY, IASI, TES and GOSAT, have sur-
veyed global CH4 concentrations for over a decade (Franken-
berg et al., 2008; Crevoisier et al., 2009; Butz et al., 2011;
Worden et al., 2012). In particular, column CH4 retrievals
from SCIAMACHY have proven sensitive to wetland and
other CH4 emissions (Bloom et al., 2010; Bergamaschi et
al., 2013). However, cloud cover is a major inhibiting fac-
tor when measuring atmospheric greenhouse gas concentra-
tions within the proximity of tropical wetland regions. In
particular, densely vegetated seasonally inundated areas of
the Amazon and Congo River basins can experience more
than 95 % monthly mean cloud cover. With fewer cloud-free
observations of lower tropospheric CH4 concentrations, at-
mospheric inversion estimates of wetland CH4 emissions re-
main exceedingly difficult, especially in the absence of well-
characterized prior information on the magnitude, location
and timing of emissions.

Atmospheric inverse estimates of CH4 emissions are ex-
pected to improve with tropospheric CH4 measurements
from the upcoming ESA TROPOMI mission (Butz et al.,
2012; Veefkind et al., 2012). Furthermore, geostationary mis-
sions (such as GEOCAPE) will potentially provide the mea-
surements needed to substantially improve CH4 emission es-
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Figure 1. Mean annual wetland and rice CH4 emissions (central map), and associated longitudinal and latitudinal uncertainty (grey bands),
based on the WETCHIMP model inter-comparison project (Melton et al., 2013). Inset: WETCHIMP model total Amazon basin monthly
CH4 emissions.

timates (Wecht et al., 2014; Bousserez et al., 2016). Ulti-
mately, the precision and sampling configuration of atmo-
spheric CH4 observations both determine the OS capabil-
ity of retrieving surface CH4 fluxes. It is currently unclear
whether future CH4 measurements will be sufficient to re-
solve key CH4 fluxes – such as the Amazon basin wetlands –
at a process-relevant resolution.

In this study we characterize the satellite observations
required to quantify the biogeochemical process controls
on Amazon wetland CH4 emissions. Specifically, we iden-
tify and characterize the Amazon CH4 emission processes
(Sect. 2.1), define the process-relevant CH4 flux resolution
and precision required to statistically distinguish between hy-
pothesized wetland CH4 emission scenarios based on several
hydrological and carbon datasets (Sect. 2.2), simulate atmo-
spheric measurements throughout the Amazon basin for a
range of LEO and geostationary orbit (GEO) satellite OSs,
and derive the corresponding CH4 flux uncertainty using an
idealized atmospheric inversion (Sect. 2.3). Based on our re-
sults, we establish the OS requirements and discuss the po-
tential of future OSs to resolve Amazon wetland CH4 emis-
sion processes (Sect. 3). We conclude our paper in Sect. 4.

2 Methods

We construct an Observing System Simulation Experi-
ment (OSSE) dedicated to characterizing the spaceborne OS
needed to resolve the processes controlling wetland CH4
fluxes from Amazon basin (Fig. 2). Our OSSE involves the
following three steps: we (1) characterize the variability of

wetland CH4 process controls, (2) define CH4 flux resolution
and precision requirements and (3) derive the atmospheric
CH4 concentration OS requirements. We define the atmo-
spheric CH4 OS requirement as the ability to meet the CH4
flux resolution and precision requirements during the cloud-
iest time of year. We focus our analysis on March 2007:
all temporally resolved carbon and hydrological observa-
tions chosen for this study overlap in 2007, and March 2007
mean cloud cover (84 %) amounts to the highest cloud cover
across the whole Amazon River basin within the January–
April 2007 wet season (cloud-cover range= 76–84 %) and is
considerably higher than the June–September 2007 dry sea-
son cloud cover (46–56 %).

2.1 Wetland process controls

Wetland CH4 emissions are controlled by a range of biogeo-
chemical processes: inundation is likely to be a first-order
control of wetland emissions, as soil CH4 production largely
occurs in oxygen-depleted soils (Whalen, 2005). However,
extensive studies of wetland CH4 emissions suggest that in-
undation is not the sole determinant of spatial and temporal
CH4 emission dynamics. CH4 can be transferred directly into
the atmosphere via macrophytes, thus circumventing the aer-
obic soil layer (Whalen, 2005). Water-body depth (Mitsch et
al., 2010), type (Devol et al., 1990) and aquatic macrophyte
density (Laanbroek, 2010) can affect the proportion of wet-
land CH4transferred to the atmosphere.

Carbon (C) availability is also a determinant of wet-
land CH4 emissions. Methanogen-available C turnover rates
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Figure 2. Wetland CH4 emissions into the atmosphere are regulated
by wetland biogeochemical processes (left column). Continental-
scale wetland CH4 process controls can be retrieved by (i) resolving
surface CH4 fluxes from retrieved satellite CH4 observations and
(ii) resolving process parameters from retrieved CH4 fluxes (middle
column). The optimal satellite CH4 observation requirements are
a function of the flux resolution and precision required to resolve
wetland CH4 process controls (right column): OSSE steps 1–3 are
described in Sects. 2.1–2.3.

(Miyajima et al., 1997), composition (Wania et al., 2010),
temporal dynamics (Bloom et al., 2012) and C stocks to-
gether drive spatial and temporal variability of carbon lim-
itation on CH4 production in wetlands. C cycle state vari-
ables, including the spatial variability of total biomass
(Saatchi et al., 2011; Baccini et al., 2012) and soil car-
bon (Hiederer and Köchy, 2011), vary at < 1000 km scales.
Methanogen-available C sources – such as gross primary
production (GPP) and leaf litter – vary substantially at
monthly timescales in the wet tropics (Beer et al., 2010;
Chave et al., 2010; Caldararu et al., 2012). In the next sec-
tion, we establish the CH4 flux resolution and precision re-
quirements based on the variability of potential tropical wet-
land CH4 emissions process controls (namely carbon uptake,
live biomass and dead organic matter stocks, inundation and
precipitation).

2.2 Wetland CH4 flux requirements

Here we define a set of wetland CH4 flux precision and res-
olution requirements suitable for the formulation and test-
ing of wetland CH4 emissions process control hypotheses.
Measurement and model-based analyses of Amazon wetland
CH4 emissions provide a range of contradictory estimates on
spatial patterns and seasonality (Devol et al., 1990; Riley et
al., 2011; Bloom et al., 2012; Melton et al., 2013; Basso
et al., 2016) suggesting that the basin-wide process con-
trols on wetland CH4 emissions remain virtually unknown.
Here, our aim is to provide a first-order, model-independent
characterization of wetland CH4 flux resolution and preci-
sion requirements based on the basin-wide variations in car-

bon and hydrological processes. Our resolution requirement
is based on the correlation lengths of hypothesized wetland
CH4 emission process controls. At the required resolution,
our precision requirement is that wetland CH4 emissions
scenarios – derived from a range of hypothesized carbon
and hydrological process controls – are (a) statistically inter-
distinguishable and (b) distinguishable from a spatiotempo-
rally uniform wetland CH4 flux (i.e., a null hypothesis).

Given our process-level understanding of wetland CH4
emissions, we propose four carbon and three hydrological
proxies as the dominant drivers of wetland CH4 emission
variability (C1–C4 and H1–H3 respectively). We use car-
bon stocks and fluxes as proxies for variation in C avail-
ability for wetland CH4 production. We characterize the
spatial variability of carbon uptake based on the Jung et
al. (2009) eddy-covariance-based monthly 0.5◦× 0.5◦ GPP
product (C1) and monthly 0.5◦× 0.5◦ solar-induced fluores-
cence retrieved from the Global Ozone Monitoring Exper-
iment measurements (Joiner et al., 2013; C2). We use the
Saatchi et al. (2011) biomass map (C3) and the Harmonized
World Soil Database soil carbon stocks (C4; Hiederer and
Köchy, 2011). We define the spatial variability of hydrologi-
cal controls over methane flux based on two inundation frac-
tion datasets (Prigent et al., 2012; Schroeder et al., 2015; H1
and H2) and the NASA Tropical Rainfall Measuring Mission
(TRMM; Huffman et al., 2007) precipitation retrievals (H3).

2.2.1 CH4 flux resolution

Our resolution requirement is based on a first-order assess-
ment of the process variable correlation length scales: we
anticipate that retrieving wetland CH4 fluxes at much finer
scales may be redundant, while retrieving fluxes at much
coarser scales may hinder the potential to investigate bio-
geochemical process controls on wetland CH4 emission vari-
ability. We use an autocorrelative approach to identify the
variability length scales of potential CH4 emissions pro-
cess controls (see Appendix A). The spatial autocorrela-
tion coefficients (Moran’s I) of the seven limiting process
variables indicate coherent spatial structures spanning up to
∼ 333–666 km across the Amazon River basin (Fig. 3): pro-
cess variables exhibit high autocorrelation at a 1◦× 1◦ res-
olution (L∼ 111 km) and no significant spatial correlation
at 6◦× 6◦ (L∼ 666 km). Based on our correlative analy-
sis, we expect that wetland CH4 flux estimates at 3◦× 3◦

(L∼ 333 km) will likely be critical for a first-order distinc-
tion between the roles of carbon and water processes on
Amazon wetland CH4 emissions: we propose a ∼ 333 km
CH4 flux resolution as the spatial resolution required to de-
termine the role of process control variability on wetland
CH4 emissions. For all time-varying datasets (C1, C4, H1,
H2 and H3), we conducted a lagged Pearson’s correlation
analysis: the time-varying datasets indicate varying levels
of statistically significant 1-month autocorrelations across
the study region (percent of area exhibiting significant auto-
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Figure 3. Spatial autocorrelation (Moran’s I) for potential carbon controls (left column) and hydrological controls (right column) on wetland
CH4 emissions. The spatial variability of carbon controls are derived from satellite observations (biomass in Saatchi et al., 2011; solar-
induced fluorescence in Joiner et al., 2013), the Harmonized World Soil Database (soil carbon; Hiederer and Köchy, 2011) and FLUXNET-
derived GPP (Jung et al., 2009). The spatial variability estimates for hydrological controls are based on satellite measurements of inundation
(A: Prigent et al., 2012; B: Schroeder et al., 2015) and precipitation (the NASA Tropical Rainfall Measuring Mission). Significant Moran’s
I values (where the Moran’s I p value< 0.05) are highlighted as circles. We set a ∼ 333 km spatial resolution requirement for monthly CH4
flux retrievals, based on the maximum correlation lengths of potential carbon and hydrological controls on wetland CH4 emissions. The
details of the Moran’s I analysis are fully described in Appendix A.

correlations: C1= 98 %; C4= 6 %; H1= 47 %; H2= 51 %;
H3= 64 %), while virtually 0 % of the study region exhibits
significant 2-month temporal autocorrelations. For this study,
we opt for a monthly temporal resolution requirement; how-
ever, we note that higher-temporal-resolution datasets (given
their availability) can potentially provide an improved assess-
ment of the temporal correlation scales of carbon and hydro-
logical process controls.

2.2.2 CH4 flux precision

We next derive the CH4 flux precision required to distin-
guish between hypothesized wetland CH4 process controls
at a ∼ 333 km monthly resolution. We derive the precision
requirements assuming 1 continuous year of CH4 flux re-
trievals. We formulate (a) spatial CH4 emission hypothe-
ses, where wetland CH4 emissions linearly co-vary with the
hypothesized processes at ∼ 333 km scales, and (b) tem-
poral CH4 emission hypotheses, where wetland CH4 emis-
sions linearly co-vary with the hypothesized processes on
monthly timescales. Our motivation for evaluating both spa-
tial and temporal hypotheses is that we do not necessarily
expect the spatial and temporal process controls on wet-

land CH4 emissions to be the same. For example, Ama-
zon wetland CH4 emissions could be spatially limited by
carbon uptake (GPP) and temporally driven by inundation.
Each wetland hypothesis is scaled to an annual mean flux
of 12 mg m−2 day−1, which corresponds to the Melack et
al. (2004) annual Amazon-wide wetland CH4 emission esti-
mate (29.3 Tg CH4 year−1 across 668 Mha). The explicit for-
mulation of spatial and temporal wetland CH4 emission hy-
potheses is described in Appendix B.

For a range of retrieved CH4 flux precisions across the
Amazon basin (spanning 1–100 mg m−2 day−1), we test
whether each spatial and temporal wetland CH4 emission
hypothesis is statistically distinct from alternative hypothe-
ses and a “no variability” hypothesis (i.e., a null hypoth-
esis); the derivation of the statistical confidence in distin-
guishing between hypotheses is described in Appendix B.
The distinction confidence (%) for spatial and temporal hy-
potheses is shown in Fig. 4: at a monthly ∼ 333 km resolu-
tion, both spatial and temporal wetland CH4 emission hy-
potheses are inter-distinguishable with > 95 % confidence at
a ≤ 10 mg m−2 day−1 CH4 flux precision.
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Figure 4. Distinction confidence between Amazon basin spatial and temporal wetland CH4 emission hypotheses against monthly ∼ 333 km
CH4 flux precision. Spatial and temporal wetland CH4 emission hypotheses are distinguishable with a 95 % confidence at a ≤ 10 mg m−2

day−1 precision. For this study we define our ∼ 333 km CH4 flux precision requirement as 10 mg m−2 day−1.

2.2.3 CH4 requirements

Given the spatial and temporal variability of potential hydro-
logical and carbon controls, we define the following require-
ments for wetland CH4 flux retrievals:

– ∼ 333 km spatial resolution

– monthly temporal resolution

– 10 mg CH4 m−2 day−1 precision.

Our resolution and precision requirements provide a first-
order assessment of the wetland CH4 emission biogeochem-
ical process control variability. We anticipate that satellite-
based CH4 flux estimates meeting the above-stated require-
ments will provide robust characterization of spatial varia-
tion in Amazon wetland CH4 emissions on the scale of vari-
ation in the major carbon and water controls, allowing forc-
ing (hydrology and carbon) and response (CH4 flux) to be
related directly. Therefore, by retrieving CH4 fluxes at the
required resolution and precision, carbon and hydrological
process hypotheses on the dominant drivers of Amazon wet-
land CH4 emissions can be adequately investigated. How-
ever, depending on the nature of the scientific investigation,
we recognize that the trade-off space between spatial reso-
lution, temporal resolution, precision and study duration can

be further explored to derive an optimal combination of CH4
flux requirements.

Throughout the next subsections, we characterize the re-
quired satellite column CH4 measurements needed to resolve
CH4 flux with the above-stated requirements. To quantify
the sensitivity of our results to the above-mentioned require-
ments, we repeat our analysis for a range of CH4 flux spatial
resolution requirements (L= 150–990 km) and we derive the
corresponding CH4 flux precision requirements.

2.3 CH4 observation requirements

We define the atmospheric CH4 observation requirements by
retrieving CH4 fluxes from a range of LEO and GEO OS
simulated CH4 retrieved concentrations, or “observations”.
Our approach is three-fold: (a) we simulate LEO and GEO
CH4 observations for March 2007; (b) we derive the pre-
cision of CH4 measurement averaged at an L×L resolu-
tion (henceforth the “cumulative CH4 measurement preci-
sion”); and (c) we employ an idealized inversion to simulate
CH4 flux retrieval uncertainty for March 2007 based on the
cumulative CH4 measurement precision. We note that wet-
land emissions are the largest and most uncertain source of
CH4 within the Amazon River basin (Wilson et al., 2016;
Melton et al., 2013). We henceforth assume that the non-
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Table 1. Observation system characteristicsa.

Observation Single sounding Single CH4 Visits
system footprint size measurement per day

precision

LEO 7 km× 7 km 0.6 % (10.8 ppb) 1
GEO 3 km× 3 km 0.6 % (10.8 ppb) 4
LEO+b 7 km× 7 km 0.42 % (7.6 ppb) 1
GEO×2 3 km× 3 km 0.6 % (10.8 ppb) 8
GEO-Z1 3 km× 3 km 0.6 % (10.8 ppb) 4c

GEO-Z2 3 km× 3 km 0.6 % (10.8 ppb) 4d

a LEO and GEO observation parameters are broadly consistent with TROPOMI and
GEOCAPE simulations by Wecht et al. (2014); to simplify comparisons, we set
GEO and LEO default single CH4 sounding precision to 0.6 %. b Single
measurement precision is a factor of

√
2 higher than LEO; this is the equivalent to

doubling the visits per day for LEO. c 2 (6) visits per day in 0–50 percentile
(50–100 percentile) cloud-cover areas; d 2 (10) visits per day in 0–75 percentile
(75–100 percentile) cloud-cover areas.

wetland CH4 contribution (namely fires and anthropogenic
CH4 sources) can be relatively well characterized using an-
cillary datasets and global inventories (Bloom et al., 2015;
Turner et al., 2015, and references therein).

2.3.1 LEO and GEO CH4 observations

The advantage of LEO systems is a near-global coverage; for
the TROPOMI mission CH4 orbit and measurement param-
eters, this equates to a 1-day maximum revisit period glob-
ally. While a GEO system can only view a fixed area on the
globe, revisit periods can be far shorter. To relate CH4 ob-
servation requirements to current technological capabilities,
we explore six OS configurations based on LEO and GEO
OS parameters used to simulate the upcoming GEOCAPE
and TROPOMI missions’ observations in North America by
Wecht et al. (2014) (Table 1). We note that, for regional CH4
emission estimates, the GEO OS configurations are expected
outperform LEO due to a larger data volume: the fixed view-
ing area permits multiple revisits per day (Wecht et al., 2014),
and the smaller GEO footprint size typically leads to lower
cloud contamination (Crisp et al., 2004). Our aim here is
not to compare CH4 emission estimates from LEO and GEO
CH4 retrievals. Rather, our aim is to determine whether CH4
emission estimates from a range of LEO and GEO OS con-
figurations are able meet the wetland process requirements
outlined in Sect. 2.1.

Cloud cover is a major limiting factor in Amazon basin
trace-gas retrievals. Mean March 2007 cloud cover is 89 %
– ranging from 38 to 98 % at a 1◦× 1◦ resolution –
throughout the Amazon River basin (based on MODIS
cloud-cover data; Fig. B1). We quantify the data rejection
due to cloud cover based on 1 km March 2007 MODIS
cloud-cover data. Based on four MODIS cloud-cover flags,
we categorize 1 km× 1 km cloud-cover observations into
“cloud-contaminated” and “cloud-free” observations (see
Appendix C). Any cloud-contaminated 3 km× 3 km (GEO)

or 7 km× 7 km (LEO) CH4 measurement footprints are re-
jected; i.e., all accepted footprints are 100 % “cloud-free”.

To assess the relative importance of CH4 measurement
density in high cloud-cover areas, we test two additional geo-
stationary configurations: “GEO-Z1” carries out two visits
per day and six visits per day in the top 50 % cloudiest areas;
“GEO-Z2” carries out 2 visits per day and 10 visits per day
in the top 25 % cloudiest areas (we note that these two OSs
would require targeting capabilities to optimize the sampling
strategy over the cloudiest area of the basin). We further ex-
plore OS space by testing LEO with a

√
2 precision enhance-

ment (“LEO+”) and GEO with eight visits per day instead of
four (“GEO×2”).

2.3.2 Cumulative CH4 measurement precision

For each OS ω (“GEO”,”LEO”, etc.), O{L,ω} is the cumu-
lative CH4 measurement precision at a L×L resolution.
O{L,ω} is an N ×1 array, where N is the number of Amazon
River basin grid cells at resolution L×L. We derive the cu-
mulative atmospheric CH4 precision within each L×L grid
cell i, O{L,ω}i as follows:

O
{L,ω}
i =

σω√
aφ
{ω}
i n{ω}L2

, (1)

where σω is the single observation precision (Table 1), φ{ω}i is
the fraction of cloud-free observations at location i, n{ω}

is the number of observations per km2 per month for OS
ω (based on Table 1 values) and a the fraction of ac-
cepted cloud-free CH4 column retrievals (set to a = 0.5). The
derivation of φ{ω}i is based on MODIS 1 km cloud-cover data
over the Amazon River basin in March 2007 (Appendix C).
The square of the denominator in (1) corresponds to the num-
ber of cloud-free atmospheric column CH4 measurements
per L×L grid cell. For all OSs, n{ω} is calculated assuming
continuous basin-wide coverage at the single-sounding foot-
print resolution (see Table 1). We highlight that our formula-
tion of cumulative CH4 precision in Eq. (1) implies retrieved
CH4 errors are spatially and temporally uncorrelated.

2.3.3 OS-retrieved CH4 flux precision

We calculate the monthly retrieved CH4 flux precision for OS
ω at an L×L resolution – F {L,ω} – based on O{L,ω} (Eq. 1).
F {L,ω} is a N × 1 array, where N is the number of Ama-
zon basin grid cells at resolution L×L. To calculate F {L,ω}

we simulate an ensemble of 1000 retrieved CH4 concentra-
tion vectors (c{L,ω}∗,n for n= 1–1000) over the Amazon River
basin, where

c{L,ω}∗,n = c{L,0}+N (0,1) ◦O{L,ω}. (2)

c{L,0} is a N × 1 array of L×L gridded unperturbed CH4
concentrations, and N(0,1) is an N × 1 array of normally
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distributed random numbers with mean zero and variance
one (“◦” denotes element-wise multiplication). We relate the
concentrations c{L,∗} to the underlying CH4 fluxes f {L,∗} as
follows:

c{L,∗} = A{L}f {L,∗}, (3)

where A{L} is the atmospheric transport operator (the N×N
matrix transforming fluxes to concentrations over the Ama-
zon River basin domain) and f {L,∗} is an N × 1 array of
surface CH4 fluxes. For the sake of brevity, we present a
summary of A{L} here and the complete derivation of A{L}
in Appendix D. We use a Lagrangian Particle Dispersion
Model (LPDM: Uliasz, 1994; Lauvaux and Davis, 2014) to
derive an “influence function” (or “column footprint”) re-
lating satellite-retrieved atmospheric CH4 concentrations to
surface fluxes (the inverse solution of the transport from the
surface to higher altitudes) at the center of the study area.
We simulate 30 km× 30 km CH4 transport – A{30 km} – by
spatially translating the LPDM influence function through-
out the domain. To assess the robustness of the LPDM ap-
proach, we also simulated CH4 column mixing ratios over
the Amazon River basin at 30 km using the Weather Research
and Forecasting model (WRF v2.5.1; Skamarock and Klemp,
2008). The WRF model March 2007 Amazon River basin
concentrations and the corresponding LPDM approximations
are shown in Fig. D1. Finally, we used a Monte Carlo ap-
proach to statistically construct A{L} based on A{30 km}. The
LPDM, WRF and the Monte Carlo derivation of A are fully
described in Appendix D.

For each L, we simulate the flux uncertainty based on the
inverse of A{L}, (A{L})−1 and simulated CH4 concentration
vectors (c{L,ω}∗,n , Eq. 2). For the sake of simplicity, we set all
unperturbed concentrations – c{L,0} in Eq. (2) – to be equal
to zero, since these do not influence our subsequent deriva-
tion of F {L,ω}. The nth retrieved flux estimate – f

{L,ω}
∗,n – is

calculated as

f
{L,ω}
∗,n = (A{L})−1c

{L,ω}
∗,n . (4)

Finally, we calculate the flux precision F {L,ω} at grid cell i
as follows:

F
{L,ω}
i = SD

(
f
{L,ω}
i,∗

)
. (5)

2.3.4 Residual CH4 bias simulation

Despite the implementation of CH4 bias correction methods
based on satellite CH4 retrieval comparison against ground
measurements of total column CH4 (Parker et al., 2011), spa-
tial structures in residual CH4 biases are a key limiting factor
in top-down CH4 flux accuracy. Here we quantify the role
residual CH4 biases for each OS configurations. We simulate
a retrieved pseudo-random CH4 bias structure with a spatial

correlation of s = 100 km and no temporal correlation, which
is consistent with the likely first-order predictors of retrieved
CH4 residual biases (Worden et al., 2016). Here we simulate
a range of pseudo-random bias distributions with standard
deviations spanning b = 0.5–50 ppb. For each b, we calcu-
late the bias-influenced flux uncertainty F {L,ω,b} based on
Eqs. (4) and (5): to incorporate spatially correlated biases, we
adapt Eq. (2) to derive the CH4 concentration vector c′

{L,ω,b}
∗,n

as

c′
{L,ω,b}
∗,n =N (0,1) ·O{L,ω}+N (0,1) · b ·

s

L
√
v
, (6)

where b represents the standard deviation of the pseudo-
random CH4 bias and v represents the number of visits per
month; for bias errors correlated across spatial scales s, the
scale factor s

L
√
v

accounts for the pseudo-random behavior
of bias errorsbat a monthly L×L resolution. We assess the
role CH4 biases on F {L,ω,b} for the LEO and GEO OS con-
figurations at L=∼ 333 km.

3 Results and discussion

Cumulative CH4 precision for mean monthly atmospheric
column CH4 measurements is 0.10–0.98 ppb for the LEO
OS (Fig. 5, left) and 0.02–0.20 ppb for the GEO OS (Fig. 5,
right). The lowest CH4 concentration precision occurs in the
eastern and central Amazon River basin. A crucial advan-
tage of the smaller GEO OS footprint is the 88–148 % higher
probability of cloud-free observations in the cloudiest re-
gions of the Amazon River basin (Fig. B1); the probability
of acquiring cloud-free observations in cloud-prone areas is
further enhanced by the GEO OS ability to conduct multiple
visits per day (see Eq. 1).

For L=∼ 333 km, median monthly retrieved CH4 flux
precision for the LEO OS (i.e., the median of F {L,ω})

is 17.0 mg CH4 m−2 day−1 (Fig. 6); increasing the single
sounding retrieval precision by

√
2 (from 0.6 to 0.42 ppb) for

LEO observations (LEO+) reduces the retrieved flux uncer-
tainty to 11.9 mg CH4 m−2 day−1. This uncertainty reduction
is equivalent to a second LEO visit per day (see Table 1): the
factor 3-to-10 lower uncertainties for cumulative GEO CH4
concentrations (Fig. 5) lead to a 2.7 mg CH4 m−2 day−1 me-
dian uncertainty in the retrieved flux (Fig. 6). Doubling the
number of GEO visits per day (GEO×2 OS) reduces the re-
trieved flux uncertainty to 1.9 mg CH4 m−2 day−1. GEO-Z1
and GEO-Z2 uncertainties (2.4 and 2.0 mg CH4 m−2 day−1)

are both lower than GEO. These results indicate that – de-
spite a lower number of cloud-free observations – a higher
observation density in the high cloud-cover areas of the Ama-
zon basin (and lower observation density elsewhere) can be
used to reduce the retrieved CH4 flux uncertainty without in-
creasing the number of observations per day. Based on the
LEO OS, we anticipate that missions similar to the ESA
TROPOMI observation configuration (Veefkind et al., 2012;
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Figure 5. Retrieved monthly∼ 333 km CH4 cumulative precision (i.e., the combined precision of monthly-averaged CH4 measurements) for
LEO and GEO observing systems; the observing system configurations are described in Table 1.

Figure 6. CH4 observations density (observations per unit area; y axis) vs. retrievable ∼ 333 km flux precision (x axis) for six CH4 observa-
tion systems (see Table 1 for details). The “observation density” includes all attempted CH4 measurements, including accepted (cloud-free)
and rejected (cloudy) observations.

Wecht et al., 2014) will lead to lower-than-required informa-
tion content for Amazon wetlands and are unlikely to provide
sufficient observational constraints to resolve the dominant
CH4 flux process controls.

Our bias CH4 analysis (Fig. 7) indicates that GEO-
retrieved CH4 flux precisions at L=∼ 333 km are relatively
unaffected by residual CH4 biases < 1 ppb, while LEO-
retrieved CH4 flux precisions are relatively unaffected by
residual CH4 biases < 5 ppb. We find that the advantage
of GEO CH4 flux precision over LEO diminishes from al-
most 1 order of magnitude at residual CH4 biases < 1 ppb,
to roughly a factor of 2 for residual biases > 20 ppb. Here
we assume a residual CH4 bias correlation scale of 100 km
(Sect. 2.3); based on Eq. (6), we expect a larger impact of
residual CH4 biases on OS-retrieved CH4 flux precision for
residual CH4 bias correlation lengths> 100 km or for tempo-
rally correlated CH4 biases. Overall, the relative advantage
of GEO over LEO OSs is contingent on both the cumulative
CH4 precision (Fig. 5) as well as the anticipated spatiotem-
poral structure of residual CH4 bias.

Estimates of fluxes at L= 150–990 km show that median
GEO-retrieved CH4 flux uncertainty is consistently a factor
of∼ 5 lower than the median LEO-retrieved CH4 flux uncer-
tainty (Fig. 8); for a 10 ppb residual pseudo-random bias, the
median GEO-retrieved flux uncertainty is consistently a fac-
tor of ∼ 3 lower than LEO-retrieved flux uncertainty. GEO-
derived CH4 fluxes meet the both the precision and resolu-
tion requirements for L=∼ 180–333 km; for a 10 ppb resid-
ual bias, GEO-derived CH4 fluxes meet both requirements at
L=∼ 280–333 km. At the expense of the resolution require-
ment, both GEO simulations meet the precision requirements
for all L≥∼ 333 km. Unbiased median LEO-derived CH4
fluxes meet the precision requirements at L > 500 km; LEO-
derived CH4 fluxes with a 10 ppb pseudo-random bias meet
the precision requirement at L > 800 km and partially meet
the precision requirement for 550 km>L> 800 km.

In our analysis we have assumed (i) no systematic bi-
ases in our atmospheric inversion simulation and (ii) per-
fectly known boundary conditions. Significant systematic at-
mospheric CH4 retrieval and transport model biases can un-
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Figure 7. Retrieved GEO and LEO flux precision for L=∼ 333 km with modeled pseudo-random residual bias error. See Table 1 for details
on GEO and LEO CH4 observing systems.

dermine the enhanced accuracy of geostationary OSs. For
example, we find that our LPDM-derived transport opera-
tor yields a conservative estimate of the monthly mean CH4
gradient across the domain relative to the WRF model sim-
ulation (Appendix D; Fig. D1). We assess the sensitivity
of our results to a factor of 1.5 increase in the LPDM-
derived transport operator (A{L}); OS CH4 flux precision re-
sults exhibit an inversely proportional response, correspond-
ing to a ∼ 33 % uncertainty reduction (median GEO flux
precision of 1.8 mg CH4 m−2 day−1 and a LEO precision of
11.3 mg CH4 m−2 day−1). GEO missions are likely to pro-
vide a higher volume of observations at the boundaries of the
observation domain, relative to LEO OS: therefore, bound-
ary conditions are likely to reinforce the potential of GEO
OS compared to LEO. We recognize that further efforts are
required to fully assess the role of seasonal transport vari-
ability, transport errors, boundary condition assumptions and
atmospheric CH4 bias structures on the accuracy of GEO and
LEO CH4 flux retrievals.

We note that a limiting factor in our analysis is the lack of
data constraints on diurnal cloud-cover variability (since the
MODIS cloud-cover dataset does not provide diurnal con-
straints). The March 2007 ERA-Interim monthly mean 3 h
cloud-cover dataset indicates a 7–80 % (median 29 %) co-
efficient of variation of cloud-free fraction diurnal variability
throughout the Amazon basin. Given the nonlinear sensitivity
of data yield to synoptic cloud cover (Fig. B1), the cloud-free

fraction coefficient of variation may amount to an important
component in assessing and optimizing the performance of
LEO and GEO OSs over the Amazon basin, as well as other
high cloud-cover regions across the globe.

Our CH4 flux resolution requirement (monthly L=∼

333 km CH4 flux retrievals) is derived based on an as-
sessment of carbon and hydrological autocorrelation scales
across the Amazon River basin. Although our sensitivity
analysis (Fig. 8) shows that GEO can potentially distin-
guish between the hypothesized CH4 emission scenarios at
L>∼ 333 km, we anticipate that additional biogeochemi-
cal investigations – such as the second-order interactions be-
tween carbon and hydrological drivers on wetland CH4 emis-
sions – would likely be increasingly challenging at coarser
resolutions. We recognize that our resolution requirement
and our quantification of correlation scales is specific to
our study region: for example, quantification of greenhouse
gas measurement requirements for finer-scale studies would
yield a unique set of requirements, and supporting analyses
may require higher-resolution datasets. Our approach pro-
vides the means to examine trade-offs between spatial and
temporal resolutions. For example, further analyses can be
conducted to establish the space–time trade-offs to optimize
biogeochemical investigations and process uncertainty re-
duction. We also note that GEO OSs provide unprecedented
volume of observations: the enhanced sampling approach can
potentially be used at shorter timescales to optimally resolve
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Figure 8. Median retrieved LEO and GEO CH4 fluxes for L= 150–990 km; the dashed lines indicate precision and resolution requirements.
See Table 1 for details on GEO and LEO CH4 observing systems. The bias value of 10 ppb indicates modeled systematic CH4 measurement
biases with 100 km spatial correlations (see Sect. 2.3).

source and transport patterns. This approach could be partic-
ularly useful in instances when wetland CH4 emissions are
densely focused in space or time. Finally, we highlight the
potential for combining multiple OSs (e.g., LEO and GEO
systems) to optimally constrain CH4 fluxes and biogeochem-
ical process controls; the potential of OS synergies undoubt-
edly requires further investigation.

In contrast to our approach, CH4 flux uncertainty require-
ments can alternatively be derived by quantifying process-
based wetland CH4 emission model uncertainty (Melton et
al., 2013) or by characterizing the CH4 flux uncertainty
stemming from wetland CH4 model parametric uncertainty
(Bloom et al., 2012). An advantage of model-based require-
ments is the ability to assess CH4 flux uncertainties asso-
ciated with the complex interactions between wetland CH4
processes (e.g., Riley et al., 2011). Prior information on the
magnitude and variability of fluxes can also be introduced
(e.g., in a Bayesian atmospheric transport and chemistry in-
version framework) to reassess posterior uncertainty esti-
mates.

However, as outlined in Sect. 2.1, large unknowns preside
over the processes governing the spatial and temporal vari-
ability of wetland CH4 fluxes. Moreover, wetland CH4 mod-
els often exhibit structural similarities (Melton et al., 2013);
for example, wetland CH4 emission models (Melton et al.,
2013) suggest major CH4 emissions along the main stem of
the Amazon River (Fig. 1). Since model spatiotemporal CH4
flux variations – and their associated processes – have not
been adequately assessed due to insufficient in situ measure-
ments (particularly in the tropics), the introduction of prior

spatial and temporal correlations in wetland CH4 flux esti-
mates would hinder the potential to independently investigate
biogeochemical process controls on wetland CH4 emissions.
To our knowledge, our analysis provides a first quantification
of the OS requirements for confronting prior knowledge on
CH4 fluxes at a process-relevant resolution.

4 Concluding remarks

Quantitative knowledge of biogeochemical processes con-
trolling biosphere–atmosphere greenhouse gas fluxes re-
mains highly uncertain. Optimally designed satellite green-
house gas OSs can potentially resolve the processes control-
ling critical boreal and tropical greenhouse gas fluxes. In this
study, we have characterized a satellite OS able to resolve
the principal process controls on Amazon basin wetland
CH4 emissions. Conventional low-earth orbit satellite mis-
sions will likely be unable to resolve Amazon wetland CH4
emissions at a process-relevant scale and precision. Obser-
vation density in time and space, and its reduction by cloud
cover are the major limiting factors. Increasing the number of
daily CH4 measurements in cloudy regions at the expense of
other measurements can further reduce the retrieved CH4 flux
precision from geostationary satellite CH4 measurements.
OSSEs based on reducing process uncertainty can inform
observation requirements for future greenhouse gas satellite
missions in a far more targeted way than simply quantifying
overall flux uncertainty reduction for a given OS.
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5 Data availability

The Surface WAter Microwave Product Series inundation
dataset (described by Schroeder et al., 2015) was obtained
from http://wetlands.jpl.nasa.gov (accessed on 5 June 2014);
the land surface inundation dataset described by Prigent et
al (2012) was obtained from http://noaacrest.org/rscg/ (ac-
cessed on 20 May 2014). TRMM 3B43 (V7) precipitation
data are available at http://mirador.gsfc.nasa.gov (accessed
on 12 May 2014). The gross primary production dataset
(described by Jung et al., 2009) was obtained from http:
//bgc-jena.mpg.de (accessed 15 June 2012). The Harmonized
World Soil Database soil carbon dataset is available at http:
//esdac.jrc.ec.europa.eu (accessed on 23 April 2014). Euro-
pean Centre for Medium-Range Weather Forecasts reanaly-
sis (ECMWF ERA-Interim) synoptic monthly means were
downloaded from http://apps.ecmwf.int (accessed on 7 April
2015).
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Appendix A: Correlation lengths

All datasets described in Sect. 2.2 were aggregated to a com-
mon 0.5◦× 0.5◦ resolution. For each process control dataset,
we derive the Moran’s I spatial autocorrelation coefficient
(rMI) at an L×L resolution, where L= 0.5, 1, 1.5, . . . ,
10◦. For every L we aggregated the dataset to L×L res-
olution. To determine whether the derived rMI are signifi-
cant relative to the null hypothesis, we repeat the Moran’s I
derivation 2000 times for normally distributed random num-
bers (in the place of the L×L gridded dataset), which
together statistically represent the Moran’s I distribution
(RMI) for statistically insignificant spatial correlation. When
rMI>median(RMI), the rMI p value is twice the fraction
of instances where RMI > rMI; when rMI<median(RMI),
the rMI p value is twice the fraction of instances where
RMI<rMI. A p value≥ 0.05 indicates that the null hypothe-
sis cannot be rejected with a 95 % confidence.

Figure A1. January to December 2010 GOSAT averaging kernels (AKs) for the broader Amazon region (green dots). The black line denotes
the AK cubic fit (w.r.t. pressure p; equation shown at the top of the figure). This AK was used to vertically weight the LPDM footprint and
sample WRF CH4 concentrations (see Appendix D).
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Appendix B: Spatial and temporal wetland CH4
emission hypotheses

B1 Detectability of wetland CH4 hypotheses

Based on the four carbon and three hydrological proxies (see
Sect. 2.2), we formulate spatial and temporal wetland CH4
emission hypotheses (henceforth S and T respectively) – at
a monthly ∼ 333 km resolution – and determine our abil-
ity to statistically distinguish between these at a range of
retrieved CH4 flux precisions (p = 1–100 mg m−2 day−1).
For all S we prescribe temporally constant CH4 emissions
and for T we annually normalize mean annual emissions to
12 mg m−2 day−1 within each ∼ 333 km× 333 km area. For
both S and T we also include a “no variability” scenario,
where all emissions in space and time are 12 mg m−2 day−1.
We note that by minimizing the variability of each hypoth-
esis to a single temporal or spatial variable, we effectively
assume a “worst-case” scenario for the detectability S and T
hypotheses relative to the null hypothesis.

For hypothesized process control h we derive the temporal
wetland CH4 emission hypothesis T∗,∗,h, as

Tx,t,h = sx Px,t,h, (B1)

where Px,t,h represents the hypothesized process control h
at location x and time t , and sx is a scaling factor such
that T x,∗,h = 12 mg m−2 day−1. For the temporal hypothe-
ses we omit the soil carbon and carbon stock proxies, as these
datasets are not temporally resolved. Each spatial hypothesis
S∗,∗,h is defined as

Sx,t,h = sP x,∗,h, (B2)

Figure B1. Left: March 2007 mean MODIS cloud cover aggregated to 1◦× 1◦. Right: summary of March 2007 cloud-free observations vs.
footprint size for the broader study area, the Amazon River basin and two subregions (eastern and western Amazon River basin).

where s is a scaling factor such that S∗,t,h =

12 mg m−2 day−1. For each hypothesis h and each pre-
cision p we simulate retrieved CH4 fluxes Fx,t,h,p as

Fx,t,h,p = Hx,t,h+N (0,1) ·p, (B3)

where Hx,t,h is the spatial or temporal hypothesis CH4 flux
(Tx,t,h or Sx,t,h) and N(0,1) is a normally distributed num-
ber with mean 0 and variance of 1. For each h, we compare
F∗,∗,h,p against all hypothesized process controls h′ as fol-
lows:

Jh,h′,p =
∑
x,t

(Fx,t,h,p −Hx,t,h′)
2. (B4)

We repeat the derivation of J 500 times, and we define
the detectability confidence Ch,p as the percentage of times
where Jh,h,p =min(J h,∗,p); the min() function denotes the
minimum of all J h,∗,p elements. In summary, Ch,p is the
probability of correctly distinguishing a hypothesized wet-
land CH4 process control h from alternative wetland CH4
process controls when wetland CH4 fluxes are retrieved with
precision p. Ch,p values for spatial and temporal wetland
CH4 hypotheses are summarized in Fig. 4. We henceforth
define a wetland CH4 hypothesis as “distinguishable” from
alternative hypotheses at precision p when Ch,p > 95 %.
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Appendix C: MODIS cloud cover

The MODIS cloud-cover analysis was performed based on
the MOD06_L2 1 km cloud mask product (downloaded from
http://modis.gsfc.nasa.gov). We consider “probably cloudy”
and “cloudy” 1 km× 1 km pixel flags as cloud-covered areas
(CC= 1) and the remaining pixel flag categories (“probably
clear” and “clear”) as cloud-free areas (CC= 0): here we as-
sume that the statistical patterns of cloud-cover across the
Amazon domain remain well characterized when assigning
“probably clear” and “probably cloudy” pixels to the “cloud-
free” and “cloud-covered” categories. We aggregate the 1 km
data toN km×N km (N is the OS footprint resolution; GEO
N = 3 km; LEON = 7 km; see Table 1) to calculate the num-
ber of cloud-free N km×N km areas within each MODIS
cloud-cover scene. The monthly fraction of cloud-free ob-
servations φ{ω}i (see Eq. 1) is calculated by deriving the ratio
of cloud-free to total N km×N km areas within each L×L
area. A regional summary of the observation yields (percent
of cloud-free N km×N km areas) for a range of footprint
resolutions (N = 1–10 km) is shown in Fig. B1.

Appendix D: Atmospheric transport operator

For L= 150–990 km, we derive the N ×N atmospheric
transport operator A{L} for L×L resolution fluxes based on
N random CH4 flux vectors (f′{L}) and their corresponding
concentrations (c′{L}): f′{L} and c′{L} areN×N arrays, where
each column of f′{L} is a vector of randomly sampled CH4

fluxes throughout the domain, and each column in c′{L} is a
vector of the corresponding CH4 concentrations. A{L} is de-
rived as

A{L} =
(

f′{L}
)−1

c′{L}. (D1)

For each n, random CH4 fluxes at grid cell i are derived as
f ′
{L}
i,n = R(0,1), where R(0,1) is a random number sampled

from a normal distribution with mean zero and variance 1.
Atmospheric concentrations are firstly simulated at resolu-
tion L0= 30 km; the fluxes f ′

{L}
∗,n are downscaled to L0×L0

resolution (f ′{L0}
∗,n ). For each 30 km× 30 km grid cell i, the

mean atmospheric CH4 concentration c′{L0}
i,n is calculated as

c′
{L0}
i,n = I if

′{L0}
∗,n , (D2)

where f {L0}
∗,n is the N × 1 array of CH4 fluxes and I i is the

N × 1 influence function array for grid cell i. We derive
I i using an LPDM (Uliasz, 1994). The influence function
derivation (i.e., the column sensitivity to the surface fluxes)
is described in Lauvaux and Davis (2014). The influence
function was computed for an averaged column observation
in the model of the simulation domain, for every hour of
March 2007. The inverse calculation of surface fluxes re-
quires the use of the adjoint of the transport at the mesoscale

(∼ 2000 km). Here, we only simulated the fraction of the
column influenced by surface fluxes. We assume boundary
conditions are well constrained by satellite and surface net-
work measurements; therefore, only the first 6 km of the col-
umn was described by the particles released backward in the
model.

To simulate total column CH4 retrieval influence func-
tions, we incorporate a mean GOSAT CH4 retrieved aver-
aging kernel (Parker et al., 2011) for the Amazon River basin
region (Fig. A1). To minimize the computational cost of sim-
ulating atmospheric transport, we (i) derive the influence
function for the center of the domain (I 0; lat= 4.9◦ S and
long= 63.8◦W) and (ii) we derive Ii by spatially translat-
ing I 0 to grid cell i latitude and longitude coordinates. Fi-
nally, we derive meanL×L resolution concentrations used in
Eq. (C1), (c′{L}∗,n), based on the spatial aggregation of L0×L0

resolution concentrations c′
{L0}
∗,n .

To assess the viability of our approach, we simulate
March 2007 L0×L0 atmospheric concentrations – based
on f {L0,0}, where for i = 1−N , f {L0,0}

i = 12 mg m−2 day−1

– throughout the Amazon River basin domain using
(a) Eq. (D2) and (b) WRF CH4 atmospheric transport model.
In the WRF model, f {L0,0} was coupled to the atmospheric
model through the chemistry modules (WRF-Chem) for pas-
sive tracers, as described in Lauvaux et al. (2012). The
physics configuration of the model used Mellor–Yamada–
Nakanishi–Niino scheme for the planetary boundary layer
(Nakanishi and Niino, 2004), the NOAH land surface model
(Pan and Mahrt, 1987), the WSM-5 microphysics scheme
(Hong et al., 2004) and the Kain–Fritsch cumulus parame-
terization (Kain, 2004). The meteorological driver data from
the Global Forecasting System (FNL) analysis products at
1◦× 1◦ resolution were used at the boundaries of the sim-
ulation domain. The simulation domain spans 120× 100
L0×L0 grid points and 60 vertical levels to describe the
atmospheric column up to 50 hPa. The atmospheric column
was extracted from the surface to the top of the modeled at-
mosphere, which represents about 90 % of the total air mass.
A dilution factor of 0.9 was used to compensate for the par-
tial model column.

The LPDM approach emulates the large-scale WRF CH4
enhancement (r2

= 0.85 see Fig. D1); the smoothing effect
is due to the use of a single footprint throughout the entire
domain. Mean CH4 concentrations based on our approach
(Eq. D2) and WRF are 15.23 and 17.42 CH4 ppb respectively.
The gradient of CH4 between the northeastern and south-
western subregions for our approach (Eq. D2) and WRF are
13.14 and 17.24 CH4 ppb respectively; the delineation of the
northeastern and southwestern domain is shown in Fig. D1.
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Figure D1. March 2007 simulations of atmospheric CH4 concentration enhancements – based on 12 mg m−2 day−1 fluxes throughout the
Amazon basin – derived using the WRF atmospheric transport model (a) and the LPDM influence function approach (b). The dashed line
denotes our delineation of “northeast Amazon basin” and “southwest Amazon basin” regions (see Appendix C).
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