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Abstract. Due to a current lack of physical measurements
at appropriate spatial and temporal scales, all current global
maps and distributions of fossil fuel carbon dioxide (FFCO2)
emissions use one or more proxies to distribute those emis-
sions. These proxies and distribution schemes introduce ad-
ditional uncertainty into these maps. This paper examines the
uncertainty associated with the magnitude of gridded FFCO2
emissions. This uncertainty is gridded at the same spatial and
temporal scales as the mass magnitude maps. This gridded
uncertainty includes uncertainty contributions from the spa-
tial, temporal, proxy, and magnitude components used to cre-
ate the magnitude map of FFCO2 emissions. Throughout this
process, when assumptions had to be made or expert judg-
ment employed, the general tendency in most cases was to-
ward overestimating or increasing the magnitude of uncer-
tainty. The results of the uncertainty analysis reveal a range
of 4–190 %, with an average of 120 % (2σ ) for populated and
FFCO2-emitting grid spaces over annual timescales. This pa-
per also describes a methodological change specific to the
creation of the Carbon Dioxide Information Analysis Center
(CDIAC) FFCO2 emission maps: the change from a tempo-
rally fixed population proxy to a temporally varying popula-
tion proxy.
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1 Introduction

Prior to about the year 1980, the magnitude of fossil fuel car-
bon dioxide (FFCO2) emissions was the best-known compo-
nent in the global carbon cycle (Andres et al., 2014). Im-
proving on the best estimate of the magnitude of FFCO2
emissions was sufficient then. Since then, improvements in
methodologies, instrumentation, and measurement platforms
have improved estimates of the major components of the
global carbon cycle (e.g., FFCO2, land use, atmospheric
growth, oceanic uptake, and the terrestrial biosphere). This
improvement has now reached the point where uncertainty in
FFCO2 emissions is now an important quantity to character-
ize and understand. While uncertainty for each of the major
components of the global carbon cycle limits detailed under-
standing of these components, uncertainty in FFCO2 emis-
sions also impacts our knowledge of the terrestrial biosphere
component because its global flux is often calculated as the
residual of the other global carbon cycle fluxes. Thus, the
magnitude and uncertainty in FFCO2 directly impact the best
estimates of the global terrestrial biosphere fluxes. Andres et
al. (2014) provided a comprehensive estimate of the uncer-
tainty associated with the global FFCO2 flux. That analysis
highlighted two features of the global FFCO2 flux uncer-
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tainty: (1) in terms of absolute mass, the mass of uncertain
emissions is increasing with time as the total FFCO2 flux is
increasing with time (assuming a constant percentage uncer-
tainty), and (2) in terms of relative mass, the percent uncer-
tainty is increasing with time as more FFCO2 emissions are
coming from nations with less certain emissions.

Even with the improvements mentioned above, it is not
presently possible to directly measure any one component of
the global carbon cycle completely and exclusively at signif-
icant spatial and temporal scales. Due to process interplay
and mixing, direct samples carry the history of global car-
bon cycle processes within them and oftentimes models are
used to deconvolve the effects of these processes on the sam-
ple data. This process can lead to a better understanding of
the global carbon cycle. One approach to increase knowledge
of the global carbon cycle is to sample at finer spatial and
temporal scales to better isolate specific components of the
global carbon cycle.

This paper examines the FFCO2 component of the global
carbon cycle after it is parsed into a grid. Such gridded
FFCO2 data are often incorporated into global carbon cy-
cle and global climate (and/or Earth system) models to better
understand the interplay amongst various components. Par-
alleling early efforts in global carbon cycle science where
the majority of the effort was concentrated on better esti-
mating the component magnitudes (e.g., FFCO2, land use,
atmospheric growth, oceanic uptake, and the terrestrial bio-
sphere), present efforts in gridding FFCO2 emissions are also
concentrated on better estimating the flux in each grid cell.
These gridding efforts are not trivial in terms of time and
data required. Robust estimates of the uncertainty associated
with gridded FFCO2 estimates should have at least two ma-
jor effects: (1) better evaluation of different FFCO2 gridding
methodologies to assess whether they give statistically dif-
ferent distributions, and (2) more importantly, allow for fur-
ther advances in the collective community understanding of
global carbon cycle processes, their interplay, and a charac-
terization of change over space and time.

The transfer of carbon from one reservoir to another over a
given time interval can be called a carbon flux. In this paper,
the carbon flux from the fossil fuel reservoir to the atmo-
spheric reservoir through the processes of combustion will
be examined. More specifically, this paper will pursue a sys-
tematic uncertainty analysis that applies to the carbon flux
gridded mass data products (i.e., maps) presented by Andres
et al. (1996), but also could be applied to other maps such
as those produced by Olivier et al. (2005, EDGAR), Gur-
ney et al. (2009, VULCAN), Rayner et al. (2010, FFDAS),
Oda and Maksyutov (2011, ODIAC), and Wang et al. (2013,
PKU-CO2). This paper does not describe production of un-
certainty maps for other distribution methodologies, as the
creators of those methodologies are in the best informed po-
sition to create such maps. Also, this paper does not compare
the gridded FFCO2 mass maps of Andres et al. (1996) to
these other maps.

All of these map products attempt to capture the transfer
of carbon from the fossil hydrocarbon reservoir to the atmo-
spheric reservoir at varying degrees of spatial and temporal
resolution. Each of these map products incorporates differ-
ent features (i.e., data and schemes) to map FFCO2 emis-
sions in space and time. Since very few measurements exist
to accurately plot FFCO2 emissions in space and time, all of
these map products utilize various proxies to locate FFCO2
emissions on a two-dimensional surface (i.e., a map) for a
given time interval (e.g., a year). These proxies may include
population distributions, power plant locations, road and rail
networks, traffic counts, nighttime lights, etc..

This uncertainty analysis does not apply to maps such
as those produced using satellite observations (e.g., GOSAT
(http://www.gosat.nies.go.jp) or OCO-2 (http://oco.jpl.nasa.
gov/)). Satellites measure burdens (which can lead to the con-
centration of carbon) in the atmosphere that are fundamen-
tally an estimate of the size of a reservoir (i.e., mass of carbon
in the reservoir). Of course, taking the difference between
two such maps could lead to an estimate of the carbon flux.
While portions of the uncertainty analysis presented herein
could be applied to such maps, this paper will not focus on
uncertainty analysis for maps derived from satellite data.

The Carbon Dioxide Information Analysis Center
(CDIAC), Oak Ridge National Laboratory (ORNL), United
States (US), FFCO2 time series (Boden et al., 2015) gives
an estimate of FFCO2 emissions from all nations in the
world at annual time steps using the fundamental methods
of Marland and Rotty (1984). The FFCO2 time series is
updated periodically with each update adding another year
to the time series as well as revising data in previous years.
Over the years, new dimensions to this basic time series
have been produced, including mapping the emissions at
1◦ latitude by 1◦ longitude (Andres et al., 1996), extending
the time series back to the year 1751 (Andres et al., 1999),
describing the time series in terms of stable carbon isotopic
(δ13C) signature (Andres et al., 2000), parsing the time
series from annual to monthly time steps (Andres et al.,
2011), and describing the uncertainty of the total global
FFCO2 emissions (Andres et al., 2014). With the global
FFCO2 emission uncertainty analysis completed, a gridded
uncertainty analysis can be applied to the annual and
monthly maps. This uncertainty analysis will be applied to
the mass maps only. Application to the stable carbon isotopic
signature maps (i.e., annual and monthly) will need to wait
until a separate uncertainty analysis of the δ13C signatures is
completed.

The gridded uncertainty maps will be generated for the
years 1950 to the present (i.e., 2013), which is the temporal
range of the current global uncertainty analysis (Andres et
al., 2014), which, in turn, is temporally limited by the avail-
ability of energy data from the United Nations upon which
FFCO2 emission calculations are based (Andres et al., 2012).
As new data become available from the United Nations, the
global uncertainty analysis can be updated and extended, and

Atmos. Chem. Phys., 16, 14979–14995, 2016 www.atmos-chem-phys.net/16/14979/2016/

http://www.gosat.nies.go.jp
http://oco.jpl.nasa.gov/
http://oco.jpl.nasa.gov/


R. J. Andres et al.: Gridded uncertainty in fossil fuel carbon dioxide emission maps 14981

the gridded uncertainty maps can also be updated and ex-
tended. The initial year of the gridded uncertainty maps is
limited by the beginning of the global uncertainty analysis,
which begins with the year 1950.

As was done with the global uncertainty estimates (An-
dres et al., 2014), 2σ uncertainties will be used throughout
this paper. The ±2σ interval is equal to the 95 % confidence
interval around the central estimate. This interval was chosen
to more strongly convey the message of the probable range
of FFCO2 emissions. Additionally, final FFCO2 map uncer-
tainties are generally reported to two significant digits, the
limits of their precision and accuracy. Additional digits may
be reported and used for component uncertainties, but these
were rounded for final FFCO2 map uncertainty presentation.
Andres et al. (2014) contains additional information about
potential asymmetry of uncertainty about the central estimate
at various spatial and temporal scales. As with the Andres et
al. (2014) global assessment, uncertainty in this paper will be
assumed to be symmetric about the central estimate since de-
tailed information pertinent to the spatial and temporal scales
considered herein is lacking. However, note that in the case of
large uncertainties, it is not plausible to have negative FFCO2
emissions, which can be mathematically calculated from the
mean minus a relatively large standard deviation.

The original intent of this paper was to document the un-
certainty in the existing and past CDIAC FFCO2 mass maps.
However, in completing the calculations necessary for this
paper, it became obvious that the population proxy on which
the CDIAC maps rely could be easily and greatly improved.
Therefore, this paper also includes a description of the new
population proxies that the CDIAC maps now utilize.

Figure 1 is a graphical representation that further clarifies
exactly what this paper attempts to accomplish. In Fig. 1, the
FFCO2 emissions from a hypothetical country are mapped.
The total mass of emissions is identical in the four panels (in
this paper, the uncertainty on the country total is not being
examined), only the distribution methodology has changed.
These different methodologies might represent different spa-
tial proxies (e.g., the CDIAC population proxy), a bottom-
up inventory approach (e.g., the VULCAN approach), or
a hybrid approach (e.g., point sources and spatial proxies,
e.g., ODIAC). Deciding which mapped distribution is best is
made difficult by the lack of physical samples of FFCO2 at
the spatial and temporal scales of interest. While two such
maps can be superimposed and subjected to spatial analy-
ses such as differencing, one gains little insight into an over-
all superior mapping methodology. This paper aims to sup-
plement the CDIAC maps with similar spatial and tempo-
ral scale maps that represent the uncertainty in each map
grid cell location. This should facilitate the determination
of whether different emission maps are statistically differ-
ent. More importantly, this should aid those who use these
FFCO2 mass maps to better understand, model, and display
the data by explicitly showing the uncertainty inherent in the
maps.

Figure 1. Hypothetical FFCO2 mass maps for a hypothetical coun-
try. The total mass of emissions is identical in the four panels; only
the spatial distribution has changed between the panels. This paper
aims to aid in the evaluation of such maps by supplying gridded un-
certainty information at the same spatial and temporal scales as the
emission maps. The scale is in arbitrary units.

2 A brief review of the CDIAC mapping process

The procedure for creating the CDIAC maps of FFCO2 emis-
sions has remained remarkably stable since first published
by Andres et al. (1996). The most notable changes since that
publication have been the update and revision of data under-
lying the CDIAC FFCO2 emissions time series and the mod-
ification of the baseline geography map to account for the
creation of new political units (e.g., the unification of Ger-
many in 1990 or the breakup of the Soviet Union in 1991).
Figure 2 shows the basic FFCO2 mass emissions map cre-
ation process. The tabular FFCO2 emission data, by nation,
are mapped to regions of the world using a 1◦ latitude by
1◦ longitude (1◦× 1◦) map of geography (attributing grid
cells to a single country). The population distribution within
a country, also at 1◦× 1◦ scale, is used as a proxy to pro-
portionately distribute the national FFCO2 emissions across
the grid cells comprising each country. In the initial maps,
FFCO2 emission data and geography data were updated on
an annual basis while population remained fixed with time.
Later, a monthly series of maps was produced where FFCO2
emissions data reflected monthly totals as reported in An-
dres et al. (2011), geography was updated on an annual ba-
sis (i.e., new political units were only incorporated at annual
timescales in agreement with the tabular FFCO2 data), and
population still remained fixed over time. As noted in An-
dres et al. (1996), the advantage of using a fixed population
throughout the time series of maps is that changes in magni-
tude shown in subsequent maps for a particular grid cell are
due solely to magnitude changes in national FFCO2 emis-
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Figure 2. Basic CDIAC map creation process. The tabular FFCO2 emission data are mapped to regions of the world by the 1◦ latitude by 1◦

longitude (1◦× 1◦) map of geography with within-country FFCO2 distribution provided by the 1◦× 1◦ population distribution.

sions. The change in population proxies introduced in this
paper is a departure from this former practice as now changes
in magnitude shown in subsequent maps for a particular grid
cell are due to a convolution of national FFCO2 emission
changes and population density changes.

3 The new population proxy

Prior to this publication, CDIAC used a temporally fixed
population proxy to distribute FFCO2 emissions within each
country for all years (Andres et al., 1996). While working
through the issues associated with this paper, it became clear
that methodological improvements to the mapping process
would improve the quality of both the magnitude maps and
the uncertainty maps. The fixed population map originally
reported in Andres et al. (1996) is still utilized for the years
1751–1989 since no better alternative has been identified
for these years. Annually varying Global Population of the
World (GPWv3, CIESIN and CIAT, 2005) maps are now
used for the years 1990–1997. Annually varying LandScan
(Dobson et al., 2000) maps are now used for years 1998–
2013 and are intended to be used for future years. The two
new population data sets are not identical. GPWv3 estimates
nighttime population (where people are at night) while Land-
Scan estimates daytime population (where people are dur-
ing the day). This change in population data sets does induce
some variability in the results, but most populated grid cells
are less than 10 % different between daytime and nighttime
relative populations.

GPWv3 has three base years: 1990, 1995, and 2000. The
original 2.5 min data (approximately 5 km at the equator)
were aggregated to the 1◦ spatial resolution of the CDIAC
1◦× 1◦ maps. Data for 1991–1994 and 1996–1999 were in-
terpolated from the base years. Table 1 compares the annu-
ally varying GPWv3 population maps to the CDIAC 1◦× 1◦

geography and fixed population maps. Of the populated cells
on the GPWv3 map, 5 % fall into cells labeled as water on

Table 1. Comparison of the year 1997 GPWv3 population map with
CDIAC geography and fixed population maps. The number of wa-
ter cells is less than 70 % of the total because 4550 ocean cells sur-
rounding Antarctica are labeled as the Antarctic Fisheries, a United-
Nations-named unit used to track energy consumption of Southern
Ocean fishing fleets. CDIAC considers these Antarctic Fisheries
cells as pseudo land cells (i.e., subject to emitting FFCO2). The
year 2010 LandScan population map has a similar comparison to
the CDIAC geography map (within 3 % in all categories) and pop-
ulation map (within 4 % in all categories). CDIAC, GPWv3, and
LandScan population maps all have land cells that are not popu-
lated.

CDIAC GPWv3 # Grid % Grid
map map cells cells

Land Population 15 089 23
Land No population 5029 8
Water Population 3252 5
Water No population 41 430 64

Population Population 9885 15
Population No population 4575 7
No population Population 8456 13
No population No population 41 884 65

the CDIAC map; this 5 % of cells contains less than 5 % of
the GPWv3 global population and are excluded from further
analysis. Of the populated cells on the GPWv3 map, 13 %
fall into unpopulated cells on the CDIAC map; these 13 % of
cells contain less than 6 % of the GPWv3 global population.

LandScan has maps for the years 1998 to 2012, except
for 1999. As with the GPWv3 data, the original 30 s (a dis-
tance unit, approximately 1 km at the equator) data were ag-
gregated to the 1◦ spatial resolution of the CDIAC 1◦× 1◦

maps. Data for 1999 were interpolated from 1998 and 2000.
LandScan has a similar comparison to the CDIAC fixed pop-
ulation map (within 4 % in all categories) as the GPWv3 data
(Table 1).
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Figure 3. Tabular FFCO2 uncertainty assessment example. The plot is for the year 2010 and its key shows the annual uncertainty as a
fraction. In parentheses, the monthly uncertainty is shown as a fraction. The two quantities shown have the same spatial extent; they differ
only in magnitude. Different years would show slightly different spatial patterns as countries emerge or disappear from the FFCO2 tabular
data.

The main effect of the new annually varying population
maps used for the years 1990 to present is the appearance of
FFCO2 emissions in grid cells that previously showed zero
population and thus zero emissions. This spread in FFCO2
emissions for a given country is accompanied by a lower-
ing of the average FFCO2 emission per grid cell (i.e., the
same FFCO2 emission distributed amongst more grid cells).
The new population maps also lead to some speckling in
some map areas that previously appeared more homogeneous
in FFCO2 emission magnitude. Finally, the new population
maps increase the range of FFCO2 emissions displayed at
both the lower and higher ends of emissions. Overall, the
maps line up well with each other in geographic extent be-
cause the same underlying 1◦× 1◦ geography map is used,
regardless of the population map used.

4 Uncertainty calculations

All three of the basic input data (i.e., tabular FFCO2 data, ge-
ography map, and population map) contribute uncertainty to
the final gridded FFCO2 mass emissions 1◦× 1◦ map. Each
of these inputs will be examined in turn, both in terms of the
specific uncertainty they contribute as a data input, as well
as the general uncertainty they contribute in their functional
role of creating a final gridded FFCO2 mass map.

4.1 FFCO2 tabular data

The underlying FFCO2 tabular data contribute uncertainty to
the final gridded FFCO2 mass map. In the case of the CDIAC
FFCO2 mass maps, these data are the tabular FFCO2 esti-
mates CDIAC reports for each country of the world, but the
discussion here can be applied to all national FFCO2 emis-
sions estimates.

The basic methodology to create the tabular CDIAC
FFCO2 data is given in Marland and Rotty (1984). An-
dres et al. (2012) expand upon this methodology and com-
pare it to three other global FFCO2 tabular data sets. An-
dres et al. (2014) describe a systematic uncertainty assess-
ment of the CDIAC FFCO2 tabular data. No such similar un-
certainty assessment has been published for the three other
global FFCO2 tabular data sets. The uncertainty in the tabu-
lar FFCO2 data is important as it provides the quantity that is
eventually mapped. If the tabular FFCO2 data are uncertain,
then the FFCO2 emissions distribution is uncertain.

Figure 3 displays the uncertainty assigned to different
countries as described in Andres et al. (2014). The assign-
ment was based upon grouping countries into seven differ-
ent qualitative classes (Andres et al., 1996) based on similar
energy and statistical infrastructures, which were later quan-
tified in Andres et al. (2014). The quantification consisted
of determining uncertainties for two of the classes and then
doing a linear fit through the rest of the classes. Andres et
al. (2014) describe the strengths and weaknesses of this ap-
proach. As in Andres et al. (2014), the national FFCO2 un-
certainty estimates used in this analysis remain fixed with
time. Future versions of this work could utilize changing na-
tional FFCO2 uncertainty estimates, but the existence of sup-
porting data to rigorously support changing uncertainty esti-
mates are lacking at this time.

Andres et al. (2011) parse the annual FFCO2 data into
monthly FFCO2 data. The uncertainty associated with this
parsing is also described in Andres et al. (2011). The method
for calculating the monthly tabular uncertainty is indepen-
dent of the annual uncertainty magnitude. Thus, the magni-
tude of the monthly tabular FFCO2 uncertainty is equal to
the square root of the sum of the squares of the annual and
monthly uncertainties. The annual uncertainty is variable and
belongs to one of seven classes as seen in the above para-
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graph. The monthly uncertainty is constant and at 2σ equals
12.8 % (Andres et al., 2011).

Both the tabular FFCO2 data and the national uncertain-
ties used in this analysis are for apparent consumption data.
Apparent consumption allows for the estimate of national
FFCO2 emissions through the accounting of production, im-
ports, exports, etc., and thus allows the association of these
FFCO2 emissions to geography. Andres et al. (2012) discuss
the strengths and weaknesses of apparent consumption ver-
sus production data. Production data are unsuitable for use in
this analysis because their spatial domain is global (in terms
of fuel consumption) and the focus here is on the uncertainty
of 1◦× 1◦ mapped FFCO2 emissions.

Figure 3 shows an example of the national FFCO2 uncer-
tainty assessment results. There are 64 uncertainty assess-
ments completed for the annual 1950–2013 time series, each
map reflecting the mix of countries that existed in a partic-
ular year. Another 64 uncertainty assessments occur for the
monthly 1950–2013 time series. The next section discusses
the role geography plays in more detail.

4.2 Geography map

The underlying geography map contributes uncertainty to the
final gridded FFCO2 mass map. In the case of the CDIAC
FFCO2 mass maps, this geography map is a 1◦× 1◦ raster
map, but the discussion here can be applied to all FFCO2
distribution mechanisms.

The CDIAC geography map is a 1◦× 1◦ raster of world
political units. Raster implies that the world is depicted in
a regular grid pattern with the underlying geography rep-
resented by a single value in the grid (Fig. 4). This distin-
guishes it from other possible spatial representations such as
mixed raster where the grid cell may contain more than one
geography value and vector where polygons instead of grids
are used to represent an area. A raster map was chosen for the
CDIAC FFCO2 mass maps because of its relative simplic-
ity, full global coverage, and ease with which its results can
be implemented into models (e.g., carbon cycle models). A
drawback of the raster map is its distortion of the surface area
of the Earth (Table 2), which appears as square grid cells in
the traditional CDIAC representation of its FFCO2 gridded
data.

While Fig. 4 is simple in concept, it is illustrative of
uncertainty inherent in raster maps of geography. Many of
these sources of uncertainty arise because of map scale. For
example, the Northwest Angle is territory of the contigu-
ous US that lies entirely north of 49◦ latitude, the north-
ern border observed for the western portion of the con-
tiguous US. This part of the state of Minnesota is more
than 1500 km2 in area, has a population greater than 100,
and has roads, an airport, a school, businesses, and cus-
toms and immigration control. However, on the CDIAC
1◦× 1◦ geography map, this area appears as Canada be-
cause of its small area relative to the more dominant area

Figure 4. Raster representation. The left figure shows two hypo-
thetical regions labeled A (purple) and B (yellow). The right figure
shows the raster version of this geography where the dominant spa-
tial region in each grid cell on the left becomes the value of the
grid cell on the right. Other potential representations include mixed
raster and vector (see text for description).

Table 2. Selected latitudes and the length dimensions of 1◦ in as-
sociated raster cells. The values shown are symmetric about the
equator. CDIAC locates its raster borders on 1◦ lines of latitude
and longitude. Other maps may center their raster cells on these
lines and are thus offset from the CDIAC grid by 0.5◦. Calcula-
tions based on WGS84 ellipsoid data from http://earth-info.nga.mil/
GandG/coordsys/csatfaq/math.html.

Latitude East–west North–south
distance distance

(km) (km)

75 29 112
60 56 111
45 79 111
30 96 111
15 108 111
0 111 111

of Canada in its grid cell. Another uncertainty example in-
volves surveying errors. While Colorado in the US was orig-
inally defined along lines of latitude and longitude, sur-
vey errors resulted in several kinks along its borders, which
have been codified into law (http://mathtourist.blogspot.com/
2007/08/rectangular-states-and-kinky-borders.html). On the
Colorado–New Mexico border, this kink is approximately
2 km – too small to be seen in the CDIAC 1◦× 1◦ geogra-
phy map, but of concern for finer scale maps.

While the two examples above are largely a function of
map scale, political issues also affect map geography. For ex-
ample, China and India disagree on the location of their bor-
der at multiple locations. Thus, on maps produced by each
respective nation, the border shifts by more than 1◦ in lati-
tude and/or longitude in some locations. This affects entire
villages and towns and thus the FFCO2 infrastructure. Such
geographic uncertainty is not limited to this example, and
there are or have been similar disputes on every continent.

Atmos. Chem. Phys., 16, 14979–14995, 2016 www.atmos-chem-phys.net/16/14979/2016/
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Figure 5. Spatial rescaling issues. The blue area represents ocean
and the green area represents land. A hypothetical rescaling from 1
to 5 km is shown. Note that cell C in the finer scale resolution has
been recoded to ocean in the coarser resolution. In rescaling FFCO2
mass maps, this recoding is often accompanied by the movement of
FFCO2 from cell C to cell D.

Dependent on location, these disputes have varying impact
on the FFCO2 emissions distributions.

A final geography uncertainty arises from spatial rescaling
as shown in Fig. 5. Here, a finer spatial scale map is rescaled
to a coarser grid. A common outcome of this procedure is to
name the left coarser grid cell ocean, name the right coarser
grid cell land, and move the carbon that was in that left grid
cell to the right grid cell. This movement accommodates not
having FFCO2 being emitted from an ocean grid cell and
maintaining full FFCO2 accounting.

Geography contributes uncertainty to the final FFCO2
mass map. Since the identity of an interior grid cell of a large
homogeneous political unit is unambiguous (e.g., the geo-
graphic center of a country greater than or equal to 3 by 3
grid cells in size), the uncertainty is concentrated around the
borders and may be due to map scale issues, political issues,
or rescaling, as the examples above illustrated. As the exact
map scale changes, the nature of the uncertainty may change,
but it does not disappear. The uncertainty in the geography
map is important because the map is used to locate the tabu-
lar FFCO2 data. If the geography map is uncertain, then the
FFCO2 emissions distribution is uncertain.

To assess uncertainty due to the geography map, the al-
gorithm shown in Fig. 6 was used. The central grid cell A
is assessed for uncertainty based upon the values of the sur-
rounding eight grid cells. The simplest case is if all surround-
ing eight cells are of the same value as the central cell. In this
case, geography lends 0 % uncertainty to the identity of the
central cell. This is the most common case (63.6 %) in the
CDIAC geography 1◦× 1◦ maps.

This simple approach does exclude enclaves, territories
that are completely surrounded by other territories, which
could be problematic in some locations. For example, the
Spanish town of Llívia, for political and historical reasons,
is completely surrounded by French territory. On the CDIAC
1◦× 1◦ map, this specific example is ignored due to map
scale, but on a 1 km scale map it should not be ignored.
For the CDIAC geography 1◦× 1◦ map, enclaves (includ-
ing small island nations) and other small-area political units

1

A

3

8

6

2

7

4

5

Similar cells Uncertainty % of total
0/8 100 % 0.4
1/8 87.5 % 0.6
2/8 75 % 1.4
3/8 62.5 % 3.1
4/8 50 % 6.0
5/8 37.5 % 11.4
6/8 25 % 6.3
7/8 12.5 % 7.2
8/8 0 % 63.6

Figure 6. Geography map uncertainty is assessed by a 3× 3 mov-
ing window. The central grid cell A is assessed for uncertainty based
upon the values of the surrounding eight grid cells. If no surround-
ing cells equal the value of the central cell, then the uncertainty on
the central cell is 100 %. After assessment of one cell, the 3× 3
window moves to assess the next cell until all cells are assessed.
The accompanying table gives cell matches, resulting uncertainties,
and percentage of land cells that fit each uncertainty.

were not ignored if their occurrence only appeared in one
grid cell on the entire global map. Then, the spatial domi-
nance of the grid cell was ignored so that the small-area po-
litical unit would be represented and its associated tabular
FFCO2 not lost from the final mapped product.

On the other end of the spectrum, if no surrounding cells
equal the value of the central cell (e.g., a small island nation),
then the uncertainty on the central cell is 100 %. An example
of this situation can be seen in Fig. 4 where there is ambigu-
ity in all of the eight surrounding cells as to whether the cen-
tral cell value encroaches on the territory of the surrounding
cells. A worst case scenario for the CDIAC 1◦× 1◦ FFCO2
mass maps, leading to a 100 % uncertainty contribution by
the geography map, is shown in Fig. 4 if the island is com-
pletely uninhabited except for a capital city existing in one
of the surrounding cells. In this case the island population
would be moved to the central cell, the only cell containing
area for this country. Thus, the result would be FFCO2 emis-
sions located in a cell one grid cell removed from its true lo-
cation. This is the least common case (0.4 %) in the CDIAC
geography 1◦× 1◦ maps.

Intermediate between these two end member cases dis-
cussed are all other border configurations. The accompany-
ing table in Fig. 6 gives cell matches and resulting uncertain-
ties. After assessment of one cell, the 3× 3 window moves
to assess the next cell until all cells are assessed. Special at-
tention is paid to top and bottom row cells as well as to those
on the eastern and western margins of the global map. For
top and bottom row cells, since there is no reported FFCO2
occupying these cells, the uncertainty assessment is trivial.
For eastern and western margins, the cells were treated as
if the map were continuous across these margins. The final
column in the table in Fig. 6 gives the percent of land cells
that have the associated uncertainty for the entire 1950–2011
time series. Distributions for individual years do not change
markedly from the distribution shown.

www.atmos-chem-phys.net/16/14979/2016/ Atmos. Chem. Phys., 16, 14979–14995, 2016



14986 R. J. Andres et al.: Gridded uncertainty in fossil fuel carbon dioxide emission maps

Figure 7. Geography map uncertainty assessment examples. The top plot is for the year 1950 and its key shows the uncertainty as a fraction.
The bottom plot shows the 1950–2011 differences. A difference plot was shown because only 749 cells (about 1 % of 64 800 total cells)
changed value between 1950 and 2011.

Figure 7 shows an example of the geography map uncer-
tainty assessment results. There are 64 uncertainty assess-
ments completed for the 1950–2013 time series, each map re-
flecting the mix of countries that existed in a particular year.
The difference plot is shown in Fig. 7 to highlight some of the
changes over time, most notably in Africa, Europe, and Asia.
There are no differences between geography map uncertainty
for annual and monthly FFCO2 time series.

Geography map uncertainty can expand internally within
nations as individual states or provinces have local FFCO2
emissions mapped. This has not been implemented to date in
CDIAC 1◦× 1◦ maps, but other mapped FFCO2 emissions
distributions may need to incorporate such effects. The next
section discusses in more detail the role the population proxy
plays.

4.3 Population map

The underlying distribution proxy contributes uncertainty to
the final gridded FFCO2 mass map. In the case of the CDIAC
FFCO2 mass maps, this proxy is a population distribution
map, but the discussion here can be applied to all distribution
mechanisms.

CDIAC distributes FFCO2 emissions within a country in
direct proportion to the population distribution. In effect, the

CDIAC methodology assumes that each country has fixed
per capita FFCO2 emissions across all its territory. While
not the best assumption, it was considered the best avail-
able option at the time the CDIAC 1◦× 1◦ maps were first
created in 1993. Today, producers of other FFCO2 emissions
distributions have taken advantage of newer data sets, includ-
ing updated population distributions, power plant locations,
road and rail networks, traffic counts, etc., to act as proxies
for FFCO2 emissions distribution (e.g., Olivier et al., 2005;
Gurney et al., 2009; Rayner et al., 2010; Oda and Maksyutov,
2011; Wang et al., 2013).

The uncertainty in the population map is important be-
cause the map is used to perform the within-country FFCO2
emissions distribution. If the population map is uncertain,
then the FFCO2 emissions distribution is uncertain. Two
issues are of concern here. First, how accurately does the
population proxy mirror FFCO2 emissions? Second, since
CDIAC uses a fixed population proxy for some years, how
has the within-country population distribution changed with
time? Both of these issues will be examined in turn.

To address the first concern, the robustness of the
population–FFCO2 emissions relationship, the FFCO2 emis-
sions per grid population need to be examined. The CDIAC
1◦× 1◦ map data can not be used for this assessment be-
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Figure 8. The population–FFCO2 emissions relationship. Upper panel: independent data sets of population and FFCO2 emissions are ag-
gregated to 1◦ resolution and spatially matched. Dropped from the figure are three data points that had positive FFCO2 emissions and zero
population and 67 data points where positive FFCO2 occurred in cells subject to population from an adjacent country. These cells may in-
clude adjacent country population but not the FFCO2 emissions attributable to that population, thus degrading the desired population–FFCO2
emissions relationship. In addition to the 849 data points, a linear fit and 95 % confidence interval are shown. Middle panel: same data as
seen above except on linear axes. Monte Carlo analyses provided a constrained linear fit and 95 % confidence interval with the constraint that
the total mass of the system is constant and using a robust estimate of the data distribution. Lower panel: population–FFCO2 emissions 2σ
relationships extracted from the Monte Carlo analyses. Extraction is dashed where extrapolated.

cause, by definition, a linear regression between population
and FFCO2 emissions results in an r2 value of one, perfect
correlation for data from one country. While this same re-
gression could be applied to the global CDIAC data, result-

ing in an r2 value of 0.55, that test is not truly applicable
because it does not accurately reflect the CDIAC distribution
algorithm.
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Since the CDIAC data are unsuitable to test the popula-
tion proxy uncertainty, and since there are insufficient ac-
tual measurements of FFCO2 emission rates at the appropri-
ate spatial and temporal scales, independent population and
FFCO2 emission distributions will be used to assess the pop-
ulation proxy uncertainty. The population distribution used
is the global 30 min (spatial scale) LandScan data product;
it was produced without consideration of FFCO2 emissions.
The FFCO2 distribution used is the 1/10◦ Vulcan data prod-
uct for the contiguous 48 US states (Gurney et al., 2009); it
was produced with minimal use of population data (via cen-
sus data and not LandScan data, although LandScan has roots
to census data). The Vulcan data product is the most expan-
sive (in terms of spatial coverage) that relies least heavily
on population for its FFCO2 emission distribution. Figure 8
shows the results of this assessment.

The upper panel of Fig. 8 shows the relationship between
the independent data sets of LandScan population and Vulcan
FFCO2 emissions for the contiguous US for the year 2002,
the baseline map of the Vulcan emissions. The data axes have
been transformed into natural log scales to allow for easy
extraction of basic statistical parameters (i.e., the linear fit
and 95 % confidence interval). The middle panel shows these
same data and statistical parameters on linear scales. The
spread of data around the linear fit shows the nonlinearity,
and thus the nonuniform per capita relationship, of the data.
The initial 2σ confidence interval on the linear scale is not
ideal for constraining uncertainty on the population–FFCO2
emissions relationship.

To reduce the initial 2σ confidence interval on the linear
scale (and thus the effect of data outliers), a Monte Carlo
analysis (MC) was performed. Input into the MC included
two pieces of information. First, a reduced version of the
original input data set was created by excluding data points
that existed outside of ±2σ , reducing the 849 point data set
to 793 data points. A linear fit and standard deviation were
calculated from the 793 points. Second, the total carbon of
the system is constant. The MC proceeded then by selecting
one of the original 849 populations, calculating the reduced
version regression fit FFCO2 emission for that population,
and adjusting that FFCO2 emission by the reduced version
standard deviation multiplied by a randomly selected stan-
dard deviation interval from a normal curve. After repeating
the MC process for all 849 populations, if the sum of car-
bon from all 849 populations was not equal to the input car-
bon, the MC run was discarded. If the sum was equal, the
MC results were kept and the MC process was repeated un-
til 1000 successful runs (i.e., constant carbon achieved) were
completed. From the 1000 MC runs, then an average FFCO2
emission and 2σ interval were calculated at each population.
Testing revealed that 1000 MC runs was sufficient for the av-
erage and 2σ interval to stabilize.

The lower panel of Fig. 8 shows this population–FFCO2
emissions 2σ relationship in percentage units. Since the 2σ
intervals in the upper and middle panels are not symmetrical

about the best fit lines, the lower panel shows the maximum
and minimum value of the 2σ interval. Values for the maxi-
mum 2σ distance were derived from the −2 σ curve at low
population values and from the+2σ curve at high population
values. Values for the minimum 2σ distance were derived
from the +2σ curve at low population values and from the
−2σ curve at high population values. The relationships are
dashed for populations not included in the LandScan popula-
tion input data set.

The lower panel of Fig. 8 also shows the average 2σ
distance. Lacking further guidance as to the nature of the
population–FFCO2 emissions relationship, the average is
used to describe the relationship. Note that the use of the
maximum or minimum curves would result in different un-
certainties to be calculated and these may be more appro-
priate than the average. Future study and data may guide a
more appropriate choice. The results from the lower panel of
Fig. 8 are also extrapolated from the contiguous US to the en-
tire world for the uncertainty analysis. Future study and data
may also provide a more robust relationship.

It is not expected that the exact population–FFCO2 emis-
sions relationship shown in the lower panel of Fig. 8 will
hold at 0.25, 0.1, and 0.01◦ spatial resolution, resolutions
being utilized by other groups today. Likewise, it is not
expected that the exact population–FFCO2 emissions rela-
tionship shown in the lower panel of Fig. 8 will be useful
for other maps that use proxies in addition to population
to distribute FFCO2 emissions because these other proxies
will change the population–FFCO2 relationship. The results
shown in Fig. 8 are specific to 1◦ resolution using population
as the sole distribution proxy.

The large uncertainty bounds on the carbon–population re-
lationship are hypothesized to be due to large point sources
incorporated in some 1◦× 1◦ grid cells and not others. In
these cells, FFCO2 emissions are decoupled from popu-
lation. Support for this comes from Singer et al. (2014),
who showed a relatively flat per capita FFCO2 relation-
ship, as compared to the relationship derived here. Singer et
al. (2014) derived this flat per capita by taking state level
emissions, subtracting emissions from large point sources in
each state, and then calculating per capita emissions. The ro-
bust 2σ interval used in the constrained fit of Fig. 8 poten-
tially removes some, but not all, of these large point source
1◦× 1◦ grid cells. While the process used here could be iter-
ated to achieve results similar to Singer et al. (2014), that has
not been pursued at the present time since that effort would
not be representative of the CDIAC FFCO2 mapping pro-
cess.

The middle panel of Fig. 8 also shows some qualities of
the population–FFCO2 emissions relationship. First, there
are no negative populations. Second, there are no negative
FFCO2 emissions. Third, by definition, the CDIAC FFCO2
mass map locates no FFCO2 emissions where there is zero
population. Fourth, positive FFCO2 emissions are associated
with positive populations. The effect of adding more than
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Figure 9. Population map uncertainty assessment example. The plot is for the year 2011 and its key shows the annual uncertainty as a fraction
where 1.75 is 175 % uncertainty. This map was generated by the average relationship seen in the lower panel of Fig. 8.

one proxy to distribute FFCO2 emissions is to take FFCO2
from one cell and place it in another cell. The result of this
redistribution procedure can increase or decrease the slope
of the population–FFCO2 emissions relationship as well as
increase or decrease the 2σ distance at a given population.
The addition of more than one distribution proxy is what
Singer et al. (2014) utilized, which resulted in a relatively flat
per capita FFCO2 relationship for non-point source FFCO2
emissions.

Figure 9 shows an example of the population map uncer-
tainty assessment results. There are 64 uncertainty assess-
ments completed for the 1950–2013 time series, with each
map reflecting the population that existed in a particular year
for the given set of countries. These maps were generated
by the average relationship seen in the lower panel of Fig. 8.
For countries that only occupy one grid cell, their uncertainty
was set to zero since the relationship derived in Fig. 8 is not
applicable. There are no differences between population map
uncertainties for annual and monthly FFCO2 time series.

Figure 9 shows that the majority of the land mass is cov-
ered in uncertainties greater than 100 %. This could be used
as evidence to argue against using population as a distribu-
tion proxy, assuming a better alternative can be found.

To address the second concern, population changes with
time, it is assumed that the annually varying population maps
used for the years 1990 to present capture relative changes
and are thus not a concern. However, the pre-1990 years
use a fixed population map and this may be of concern. An-
nual maps of GPWv3 and LandScan were used to assess the
changes in relative population density within each country on
an annual basis. The final result of this assessment was that
population changes with time induce little uncertainty into
the overall FFCO2 distribution globally when a fixed popu-
lation proxy is utilized. In specific 1◦× 1◦ cells, the change
can appear dramatic when a cell goes from having zero popu-
lation to being populated. However, the vast majority of pop-
ulated cells do not show this change in any given year. The

average populated 1◦× 1◦ cell shows less than a 0.1 % uncer-
tainty introduced over 10 years, which is far smaller than the
other uncertainties examined in the paper. Thus, uncertain-
ties introduced by population changes with time are not con-
sidered further in this paper. The next section combines the
uncertainty maps from the three components just discussed.

4.4 FFCO2 map uncertainty

Figure 10 shows the uncertainty by combining two compo-
nents: FFCO2 tabular data and geography. This intermedi-
ary step is shown because it demonstrates the order of un-
certainty (ranging from < 10 to 102 %) that will be associ-
ated with all gridded FFCO2 data products that have roots
similar to the CDIAC data product. This particular presenta-
tion ignores the within-country distribution proxy, only bor-
ders and national FFCO2 magnitude are included. The two-
component uncertainty shown is the square root of the sum
of the squares of the individual components (i.e., Figs. 3 and
7) as each component is independent of the other. Figure 10
does not show many changes temporally (only 809 of 64 800
cells change values from the years 1950 to 2011), but there
is much spatial variability within a given year.

Figure 11 shows the uncertainty by combining all three
components: FFCO2 tabular data, geography, and popu-
lation. This particular presentation includes the within-
country distribution proxy, and uncertainties associated with
this proxy increase the maximum uncertainty from 102 %
(Fig. 10) to 193 %. Other gridded FFCO2 data products will
have a different distribution proxy and thus a different ab-
solute uncertainty value. The three-component uncertainty
shown is the square root of the sum of the squares of the
individual components (i.e., Figs. 3, 7 and 9), as each com-
ponent is independent of the other. Both of the years Fig. 11
maps, 1950 and 2011, encompass the entire < 20 to < 200 %
uncertainty range and show much spatial variability in their
respective years. The 2011 map also shows more speckling
of uncertainty values in areas that appear more homogeneous
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Figure 10. Two-component 2σ uncertainty derived from FFCO2
tabular data and geography.

in the year 1950 due to the inclusion of the annually varying
population proxy.

Thus, this gridded product (i.e., Fig. 11) incorporates all
known and deemed-significant uncertainty from the spatial
resolution, temporal resolution, and underlying FFCO2 es-
timation process. For the years 1950–2013, 64 such maps
exist. It is expected that future releases of the annual and
monthly CDIAC 1◦× 1◦ FFCO2 mass maps will be accom-
panied by similarly spatially and temporally scaled 1◦× 1◦

uncertainty maps.
The 193 % maximum 2σ uncertainty occurs regardless of

whether the old fixed population proxy or the new annually
varying population proxy is used. This is because the peak in
the carbon–population relationship occurs at relatively low
population values, around 172 000 people per 1◦ grid cell
(Fig. 8, lower panel). This is far removed from the maximum
populated grid cells, which the annually varying population
proxy better captures.

For the 2011 1◦× 1◦ uncertainty map, of the 25 095 cells
that have a non-zero uncertainty associated with them, 22 %
of these are dominated by uncertainty contributed by the
FFCO2 tabular data (Fig. 3), 27 % of these are dominated by
uncertainty contributed by geography (Fig. 7), and 51 % are
dominated by uncertainty contributed by population (Fig. 9).
Tabular FFCO2 data dominate uncertainty in areas of low
to no population. Geography dominates uncertainty around
borders shared with water bodies. Population dominates un-
certainty in the rest of the populated world.

Figure 11. Three-component 2σ uncertainty.

4.5 Other sources of uncertainty

Not explicitly considered here are autocorrelations of uncer-
tainty in the combined spatiotemporal domain. For example,
if the local power plant is shut down for maintenance, other
power plants located on the same electrical grid may increase
electricity production, and hence FFCO2 emissions, to main-
tain overall grid power levels for an electricity demand that
is independent of the local power plant maintenance sched-
ule. In actual cases of this scenario, of which the authors are
aware, the relatively coarse CDIAC 1◦× 1◦ annual scale map
was partially insensitive to this maintenance. That is because
some of the power plants that increased electricity production
were located in the same 1◦× 1◦ cell as the local power plant,
and thus the FFCO2 emissions were still accurately captured
in that cell. The uncertainty assessment presented here is un-
affected by this maintenance and redistribution of power gen-
eration. However, some of the power plants that increased
electricity production were located outside the local power
plant 1◦× 1◦ cell. The uncertainty assessment presented here
fails to capture that event. This type of spatiotemporal prob-
lem, and the autocorrelations it contains, is only exacerbated
as one goes to finer spatial and/or temporal scales. This type
of spatiotemporal problem and others similar to it are diffi-
cult to capture in FFCO2 flux maps and uncertainty assess-
ments due to their sporadic nature. Reliable global databases
of their occurrences are presently unknown in the emissions
inventory sciences. Yet, their effect is real, especially since
the community moves ever closer to the goal of comparing
inventories to model output and to measurements, whether in
a scientific, regulatory, or treaty compliance environment.
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Figure 12. CDIAC experience regarding resolution and uncertainty. Here, the focus is on spatial resolution, but CDIAC also noticed a similar
relationship in temporal scales going from annual to monthly to daily to hourly. The uncertainty on urban scale maps is largely unknown at
present.

5 Discussion

Uncertainty generated by using the population map dom-
inates the gridded FFCO2 uncertainty. Population is one
proxy used to distribute FFCO2 emissions that has detail
in both time and space. Many of the proxies used by other
map distribution algorithms lack this detail in time and space.
Population was also the only useful global proxy available in
1996 when the CDIAC 1◦× 1◦ maps were first published.
Many of the proxies used by other map distribution algo-
rithms came into being after 1996. Finally, national popu-
lations directly use energy and emit FFCO2 in many sectors
of the economy. Other map distribution algorithms attempt
to improve this relationship by parsing portions of FFCO2
emissions not directly related to national populations (e.g.,
electricity power plant emissions) and using other proxies to
distribute these non-population-related FFCO2 emissions.

The linear fit that CDIAC employs for FFCO2 emissions
distribution (i.e., the population map) comes with the cost of
introducing uncertainty due to the lack of a one-to-one re-
lationship. However, this is true with other proxies because
they also lack the one-to-one relationship. It is important to
remember why these proxies are utilized: a lack of actual
measurements of FFCO2 emission rates at the appropriate
spatial and temporal scales. Here, a compromise is intro-
duced into the mapping process: distribution proxies with
their associated uncertainties are balanced against computa-
tion and data gathering costs. In general, for full global cov-
erage, finer spatial and temporal resolution proxies introduce
more uncertainty than coarser spatial and temporal resolu-
tion proxies. This higher uncertainty is often rooted in less
certain data in all grid cells due to the lack of resources to
appropriately monitor all grid cells at the desired spatial and

temporal resolutions. This intermingling of spatial and tem-
poral resolution is key. Most high-spatial-resolution proxies
are sampled for only short temporal durations or limited spa-
tial extents. Most high-temporal-resolution proxies are sam-
pled for limited spatial extents or limited temporal durations.
Figure 12 is a summary of the CDIAC experience regarding
resolution and uncertainty. As spatial scales decrease, uncer-
tainty increases. Much effort is now being directed into pro-
ducing urban scale maps, but their uncertainty at present is
largely unknown.

Realizing this simplicity–efficiency compromise and
resolution–uncertainty experience, investigation of alterna-
tive FFCO2 distribution strategies may be worthwhile if
they can achieve a lower overall uncertainty. CDIAC has
supported many such alternative distribution efforts in the
broader community in the past and expects to continue to
do so in the future. These alternative distribution strategies
need also to be investigated not only for their initial year of
implementation (where most effort is applied), but also in an
honest evaluation of their application across different spatial
and temporal horizons. For example, in the spatial domain,
is the quality of the proxy used to map FFCO2 emissions at
0.1◦ resolution truly understood (leading to reported 2σ un-
certainties as low as 36 %, originally reported by Wang et
al., 2013 as an R90 value of 30 %)? Likewise, in the tempo-
ral domain, is the quality of the proxy used to map FFCO2
emissions at hourly resolution truly understood (leading to
reported 2σ uncertainties as low as −15 to 20 %, as reported
for Hestia by Cambaliza et al., 2014)? One advantage of the
1◦× 1◦, population-based, simplistic, linear fit is that it can
be applied from emission year 1751 to the present with a
good assessment of the uncertainty associated with it.
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Table 3. Comparison of INFLUX airplane-based results, Hestia, and the CDIAC 1◦× 1◦ map. All values reported in Tg C. Reported in
parentheses are 1σ and 2σ mass ranges. Cambaliza et al. (2014) report airplane-based results for 1 March, 29 April, and 1 June 2011 of
11 000, 7500, and 26 000 mol s−1, respectively. Unit conversion equate these values to 4.2, 2.8, and 9.8 Tg C yr−1. The 5.6 Tg C average is
reported above. For monthly samples, a similar unit conversion was completed. For both annual and monthly cases, the Cambaliza et al. and
Hestia results were scaled up to the temporal resolution of the CDIAC data.

CDIAC Cambaliza et al. (2014) Hestia

Annual 7.7 (1.7–14, 0–20) 5.6 (2.8–8.4, 0.0–11) 4.4 (4.1–4.9, 3.8–5.3)
March 0.68 (0.1–1.2, 0–1.7) 0.35 (0.18–0.53, 0.0–0.71) 0.39 (0.36–0.43, 0.33–0.47)
April 0.61 (0.1–1.1, 0–1.6) 0.23 (0.12–0.35, 0.0–0.47) 0.33 (0.31–0.37, 0.28–0.40)
June 0.62 (0.1–1.1, 0–1.6) 0.81 (0.40–1.2, 0.0–1.6) 0.38 (0.35–0.42, 0.32–0.45)

Table 4. This work versus alternative formulation of the gridded
map uncertainty at annual timescales. Minimum, average, maxi-
mum, and standard deviation (SD) of three-component 2σ uncer-
tainty for populated and FFCO2-emitting grid spaces. All values in
percent. See text for parameters of the alternative formulation.

Minimum Average Maximum SD

This work 4.0 120 190 51
Alternative 4.0 65 94 22
formulation

While there is lack of actual measurements of FFCO2
emission rates at the appropriate spatial and temporal scales
of the CDIAC 1◦× 1◦ maps, a sampling effort that partially
approaches these scales occurred in Indianapolis, US, dur-
ing the Indianapolis Flux Experiment (INFLUX). Cambal-
iza et al. (2014) report on airplane-obtained CO2 flux mea-
surements for three dates in 2011. Their measurements show
“considerable day-to-day variability” and include all CO2
fluxes, not just FFCO2. However, with reason, they assume
their results are mostly sensitive to FFCO2. Table 3 compares
their results to the CDIAC 1◦× 1◦ map grid cell that con-
tains Indianapolis. While there are still mismatches in tem-
poral and spatial scales (and potentially CO2 sources), the
results are within the 1σ uncertainty bounds of each other at
annual timescales. At monthly timescales, the comparison is
not so favorable: all of the Cambaliza et al. (2014) results fall
within the CDIAC 1σ uncertainty; only one CDIAC month
falls within the Cambaliza et al. (2014) 1σ uncertainty, one
CDIAC month falls within the Cambaliza et al. (2014) 2σ
uncertainty, and the other month falls outside the Cambaliza
et al. (2014) 2σ uncertainty.

INFLUX was also aided by a bottom-up inventory, Hes-
tia (Gurney et al., 2012), which is a detailed building-by-
building, street-by-street, hourly FFCO2 emissions inven-
tory, downscaled from VULCAN. Cambaliza et al. (2014)
report Hestia inventory values for the same dates (Table 3).
While there are still mismatches in temporal and spatial
scales at both annual and monthly timescales, the Hestia re-
sults fall within the CDIAC 1σ uncertainty and the CDIAC

results do not fall within the Hestia 2σ uncertainty. Similarly,
the Cambaliza et al. (2014) data and Hestia results also do not
always fall within each others’ 1 or 2σ uncertainty bounds.

Singer et al. (2014) show that for the contiguous US, when
large point sources are removed from the CDIAC 1◦× 1◦

maps and separately placed with their emissions, the remain-
ing FFCO2 emissions show relative constancy on a per capita
basis. If this result can be verified elsewhere and if a robust
large point source database can be developed at appropriate
spatial and temporal scales, this may lead to better global
maps of FFCO2 emissions. While current large point source
databases have known spatial deficiencies (e.g., Oda and
Maksyutov, 2011; Nassar et al., 2013; Woodard et al., 2015),
these spatial deficiencies can be overcome with additional
geolocation efforts. Current large point source databases are
usually based on a certain point in time and offer little to
no temporal information. This temporal information is cru-
cial for appropriately assigning magnitudes to FFCO2 emis-
sions from these locations. Magnitude variations can occur
on all temporal scales from minutes to years as energy de-
mand changes, new units are installed, and old units are unin-
stalled or shut down for maintenance. The uncertainty associ-
ated with these temporal variations is unquantified at present.

A commonly observed human tendency is to underesti-
mate the uncertainties in our work. Going into this grid-
ded uncertainty assessment, when asked about the quality of
the CDIAC 1◦× 1◦ FFCO2 mass magnitude maps, the an-
swer was about 70 % correct (30 % uncertainty). This was
based on some data, anecdotal evidence, and our own in-
complete knowledge of the population proxy. This assess-
ment has greatly altered that answer, and our previous answer
was a factor of 2 too small. Throughout this assessment pro-
cess, when assumptions had to be made or expert judgment
employed, the general tendency in most cases was toward
purposefully overestimating or increasing the magnitude of
uncertainty. Table 4 presents the results of an alternative for-
mulation of the gridded map uncertainty. Built into this alter-
native formulation are reduced geography map and reduced
population map uncertainties. For the geography map, uncer-
tainties are reduced by 50 % over those shown in Fig. 6. This
is not as aggressive as the 1/10 of a grid cell (∼ 10 % uncer-
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tainty) of Hogue et al. (2016), but does allow for locations to
be located to within one-half of a 1◦ grid cell. While there
are examples of 1◦ uncertainty (e.g., see Sect. 4.2 geography
map), these examples are an isolated few and may represent
the outliers beyond 2σ . For the population map, uncertainties
are reduced to the minimum line of Fig. 8. FFCO2 emissions
tabular data remain unchanged since no viable alternative
assumption exists. The alternative formulation to the grid-
ded map uncertainty results is roughly a halving of the aver-
age, maximum and standard deviation values from the values
originally reported in this work. The minimum value remains
the same. The alternative formulation is simply the result of
different assumptions and decisions being made during the
uncertainty assessment process. At present, it is neither bet-
ter nor worse than the uncertainties presented in Fig. 11. The
alternative formulation is simply different from the main line
of investigation that led to Fig. 11. What the alternative for-
mulation really highlights is the need for additional work in
this area and the need for physical sampling of FFCO2 emis-
sions at appropriate spatial and temporal scales.

Table 4 also shows the average 2σ uncertainty value at
120 % for the work presented here. This is only slightly
higher than the average 1σ uncertainty value of 50 % (2σ
100 %) presented by Rayner et al. (2010) for FFDAS at 0.25◦

resolution. These larger values are expected since the treat-
ment here is more comprehensive than that of Rayner et
al. (2010), incorporating non-zero uncertainty for the pop-
ulation component, a more diverse and wider range of un-
certainties for the FFCO2 tabular data, not clipping higher
uncertainty values (200 % 1σ in the Rayner et al., 2010 as-
sessment), and utilizing many more Monte Carlo simulations
in realization of the FFCO2 distribution results (1000 vs. 25).

The uncertainty bounds presented here (e.g., Fig. 11) are
large. That may argue for a new approach to mapping FFCO2
emissions globally. The multi-proxy approach initially ap-
pears promising because large fractions of FFCO2 emissions
can be geolocated with much less spatial uncertainty than
the population proxy provides. However, the databases com-
monly used to provide the geolocation usually fail to pro-
vide temporal information, making temporal uncertainty in-
crease, sometimes substantially. Studies like INFLUX also
initially appear promising with their high spatial and tem-
poral resolutions often accompanied by lower uncertainties
than those offered here (e.g., Fig. 11). However, INFLUX
was a multi-million dollar campaign that gave good informa-
tion on one grid cell out of 64 800 (temporally, different data
streams lasted days to years). This approach is too expensive
for global application with current resources. Satellites could
offer high spatial and temporal resolution. However, current
technology only senses field-of-view CO2, including the net
effects of all sources and sinks on a parcel of air. Models are
then needed to tease out the FFCO2 component.

Going forward, there may be multiple opportunities to
improve FFCO2 mass maps by incorporating new data and
proxies that were previously unavailable. Besides population,

few proxies currently in use have reliable histories longer
than a few decades, and thus there may not be many ways
to improve the historical record of emissions and their global
distribution. Looking forward, existing and new technologies
and techniques may provide continuous and detailed space
and time data from which to better estimate and map FFCO2
emissions.

Hanging over all of these approaches to mapping FFCO2
emissions are planned, existing, and committed national and
international agreements to limit future FFCO2 emissions.
How these will be measured, reported, and verified (MRV)
remains to be seen. This MRV task becomes only more
daunting when uncertainties are used in the MRV process,
in addition to the central best estimate of FFCO2 (and other)
fluxes affecting the atmosphere (and climate) in which we
live.

6 Conclusions

This paper provides (1) the first, gridded, comprehensive
uncertainty estimates of global FFCO2 emissions, (2) a
methodology that can be applied to other global FFCO2 mass
maps, (3) a reminder to the community that FFCO2 has un-
certainty both in tabular mass totals and in map-distributed
masses, (4) a beginning for the broader community to sta-
tistically compare different FFCO2 distribution maps (once
uncertainty evaluations are completed on the other maps)
to help determine better FFCO2 distribution algorithms, and
(5) the basis for an improved understanding of the global car-
bon cycle and its components by providing an uncertainty
estimate for the CDIAC FFCO2 mass maps that can then be
propagated into the rest of the global carbon cycle.

While more detailed proxies (in space, time, or num-
ber) may lead to more visually appealing representations
of FFCO2 emissions, that increased detail often brings in-
creased uncertainty, thus obscuring the perceived increase
in detail. The alternative formulation presented in Table 4
shows how easy it is to achieve lower reported uncertain-
ties. While uncertainty is large at the per grid cell basis,
Fig. 12 suggests that uncertainty decreases with aggregation
to larger grid cells. While the exact map distribution mech-
anism used here – per capita FFCO2 emissions by coun-
try – largely determines the uncertainty associated with the
CDIAC 1◦× 1◦ maps, other map distribution mechanisms
likely follow a similar pattern: increasing uncertainty with
decreasing spatial (and temporal) scale(s).

Finally, the difficulties encountered during this work
should not be taken as deterrents to pursuing this line of re-
search. Rather, they should be embraced as challenges to be
overcome by new methods and measurements. While grid-
ded FFCO2 uncertainty maps are not scientifically revolu-
tionary, they will lead to new understanding of the carbon
cycle and the climatic system - much in the same way pi-
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oneering efforts in quantifying global and national FFCO2
emissions led to new carbon and climate understanding.

7 Data availability

The data for this paper are available at the CDIAC website
(http://cdiac.esd.ornl.gov/trends/emis/meth_reg.html, An-
dres and Boden, 2016a, b). FFCO2 emissions data are also
currently available there (Boden et al., 2016). At the time
of ACPD submission, the authors were in the process of
updating the emissions data to the year 2013 (from 2011).
That update is now complete and FFCO2 emission data and
uncertainty maps up to the year 2013 are available from the
CDIAC web site.
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