

Supplement of

Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China

Qinyi Li et al.

Correspondence to: T. Wang (cetwang@polyu.edu.hk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. Mass fraction of elements in sea salt and dust

-		In sea salt	In dust
-	Na	0.307	0.024
	Cl	0.550	-
	Ca	0.012	0.039
	Κ	0.011	0.021
	Mg	0.036	0.022

Table S2. The Cl initiated gaseous chemistry for RACM_ESRL mechanism.

110.	Reactions	Kate
RS01	Cl ₂ +hv=2.0 Cl	Photolysis rate of Cl ₂
RS02	HOC1+hv=HO+C1	Photolysis rate of HOCl
RS03	ClNO ₂ +hv=Cl+NO ₂	Photolysis rate of ClNO ₂
RS04	FMCl+hv=Cl+CO+HO ₂	Photolysis rate of FMCl
RS05	HO+HCl=Cl+H ₂ O	(6.58D-13*EXP(58.0/TEMP)* (TEMP/300.0)**(1.16)) ^a
RS06	$O_3+Cl=ClO\{+O_2\}$	(2.3D-11*EXP(-200.0/TEMP))
RS07	$ClO+ClO=0.3 Cl_2+1.4 Cl_{+O_2}$	1.63D-14
RS08	NO+ClO=Cl+NO ₂	(6.4D-12*EXP(290.0/TEMP))
RS09	$ClO+HO_2=HOCl\{+O_2\}$	(2.7D-12*EXP(220.0/TEMP))
RS10	NO ₂ +Cl=ClNO ₂	K _{RS10} ^b
RS11	$CH_4+Cl=HCl+MO_2$	(6.6D-12*EXP(-1240.0/TEMP))
RS12	ETH+Cl=HCl+0.991 ALD+XO ₂ +HO ₂	(8.3D-11*EXP(-100.0/TEMP))
RS13	HC3+Cl=HCl+XO ₂ +0.11 HO ₂ +0.11 ALD	5.0D-11
RS14	HC5+Cl=HCl+XO ₂ +0.11 HO ₂ +0.11 ALD	5.0D-11
RS15	HC8+Cl=HCl+XO ₂ +0.11 HO ₂ +0.11 ALD	5.0D-11
RS16	ETE+Cl=FMCl+2.0 XO ₂ +HO ₂ +HCHO	1.07D-10
RS17	OLT+Cl=FMCl+ALD+2.0 XO ₂ +HO ₂	2.5D-10
RS18	OLI+Cl=0.3 HCl+0.7 FMCl+ALD+0.3 OLT + 0 1 HC3+0 1 HC5+0 1 HC8+1 7 XO ₂ +HO ₂	3.5D-10
RS19	ISO+Cl=0.15HCl+XO ₂ +HO ₂ +0.85FMCl+ISOP	4.3D-10
RS20	FMCl+HO=Cl+CO+H ₂ O	5.0D-13
RS21	HCHO+Cl=HCl+HO ₂ +CO	(8.2D-11*EXP(-34.0/TEMP))
RS22	ALD+Cl=HCl+ACO ₃	1.05D-10
RS23	TOL+Cl=HCl+XO ₂ +0.88 HO ₂	6.1D-11
RS24	XYL+Cl=HCl+XO ₂ +0.84 HO ₂	1.2D-10

^a TEMP is air temperature. ^b $K_{RS10} = \frac{K_0[M]}{\left(1 + \frac{K_0[M]}{K_{\infty}}\right)} F^Z K_0 = 1.8 \times 10^{-31} \left(\frac{T}{300}\right)^{-2.0} K_{\infty} = 1.0 \times 10^{-10} \left(\frac{T}{300}\right)^{-1.0} F = 0.6.$ $Z = \frac{1.0}{1.0 + (\log_{10}\left(\frac{K_0[M]}{K_{\infty}}\right))^{2.0}}$. [M] is the atmospheric pressure in molecules cm⁻³.

- 1 -

- 2 -

Figure S1. Hourly observed and simulated (Base case and HET+Cl case) (a) $PM_{2.5}$, (b) NO_2 , and (c) O_3 concentrations during the entire simulation period at the monitoring stations and at TMS, and (d) surface area density and (e) nitrate concentration at TMS.

- 3 -

Figure S2. Average simulated ratio of surface area to volume (m⁻¹) for the particles within the PBL

Figure S3. Hourly concentrations of observed and simulated (a) N_2O_5 and (b) $CINO_2$ concentrations at TMS site.

- 4 -

Figure S4. The average simulated yield of ClNO₂ within the PBL during the simulation period.

Figure S5. Vertical distributions of NO (ppb) average mixing ratios during the study period in the domain intercepting PRD and along the prevailing wind from Base case

Figure S6. Vertical distributions of chloride (µg m⁻³) average concentrations during the study period in the domain intercepting PRD and along the prevailing wind from Base case

Figure S7. Boundary layer height in southern China at 06:00 Dec 2, LT, as simulated in WRF-Chem

- 6 -

Figure S8. Horizontal distributions of average daily-maximum concentrations of (a) NO (ppb), (c) NO₂ (ppb), (e) total nitrate (µg m⁻³) and (g) O₃ (ppb) during the study period within the PBL from Base case; the average impacts of N₂O₅ uptake and Cl activation on daily-maximum concentration of (b) NO (ppb), (d) NO₂ (ppb), (f) total nitrate (µg m⁻³) and (h) O₃ (ppb) during the simulation period in the horizontal domain within the PBL.

Figure S9. Hourly results of ClNO₂ concentrations from simulations with original, half and twice RCEI emission

- 8 -