

Supplement of

Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis

Le Cao et al.

Correspondence to: Le Cao (le.cao@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. The original chemical reaction mechanism with an assumption of a 200 m boundary layer. A constant temperature T = 258 K is assumed in the model, and the rate of third-body reactions is estimated as $k = k_{\infty} \times \frac{k_0/k_{\infty}}{(1+k_0/k_{\infty})} \times F_c^{\frac{1}{1+(\log_1(k_0/k_{\infty}))^2}}$ (Atkinson et al., 2006). For Reactions (SR14) and (SR90), the parameter r in the column of k denotes the average radius of the suspended aerosols. D_g is the molecular diffusivity. v_{therm} represents the mean molecular speed of HOBr and BrONO₂ for Reactions (SR14) and (SR90), respectively. γ denotes the uptake coefficient of the gas-phase HOBr or BrONO₂ by the suspended aerosols. $\alpha_{\text{eff},\text{aerosol}}$ is the effective aerosol surface area density. With respect to Reactions (SR15) and (SR92), r_a , r_b and r_c in the column of k represent the aerodynamic resistance, quasilaminar resistance due to molecular diffusion, and surface resistance, respectively. $\alpha_{\text{eff},\text{ice}}$ is the surface area density of the ice-/snow-covered surfaces under the condition of a 200 m boundary layer.

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n} s^{-1}]$	n	
(SR1)	$O_3 + h\nu \rightarrow O(^1D) + O_2$	4.70×10^{-7}	1	Lehrer et al. (2004)
(SR2)	$O(^{1}D) + O_{2} \rightarrow O_{3}$	$3.20 \times 10^{-11} \exp(67/T)$	2	Atkinson et al. (2006)
(SR3)	$\mathcal{O}(^1\mathcal{D}) + \mathcal{N}_2 \rightarrow \mathcal{O}_3 + \mathcal{N}_2$	$1.80 \times 10^{-11} \exp(107/T)$	2	Atkinson et al. (2006)
(SR4)	$\rm O(^1D) + H_2O \rightarrow 2OH$	2.20×10^{-10}	2	Atkinson et al. (2006)
(SR5)	$Br + O_3 \rightarrow BrO + O_2$	$1.70 \times 10^{-11} \exp(-800/T)$	2	Atkinson et al. (2006)
(SR6)	$Br_2 + h\nu \rightarrow 2Br$	0.021	1	Lehrer et al. (2004)
(SR7)	$\operatorname{BrO} + h\nu \xrightarrow{\operatorname{O}_2} \operatorname{Br} + \operatorname{O}_3$	0.014	1	Lehrer et al. (2004)
(SR8)	$BrO + BrO \rightarrow 2Br + O_2$	2.70×10^{-12}	2	Atkinson et al. (2006)
(SR9)	$BrO + BrO \rightarrow Br_2 + O_2$	$2.90 \times 10^{-12} \exp(840/T)$	2	Atkinson et al. (2006)
(SR10) (SP11)	$BrO + HO_2 \rightarrow HOBr + O_2$ $HOBr + bu \rightarrow Br + OH$	$4.5 \times 10 \exp(500/1)$ 3.00×10^{-4}	2	Atkinson et al. (2006)
(SK11)	$HOBI + h\nu \rightarrow BI + OH$	3.00×10	1	Lenier et al. (2004)
(SR12)	$CO + OH(+M) \longrightarrow HO_2 + CO_2(+M)$	$1.44 \times 10^{-10} \left(1 + \frac{1}{4 \times 10^{19}}\right)$	2	Atkinson et al. (2006)
(SK15)	$BI + HO_2 \rightarrow HBI + O_2$	$(r + 4)^{-1}$	Ζ	Atkinson et al. (2006)
(SK14)	$HOBr + HBr \longrightarrow Br_2 + H_2O$	$\left(\frac{1}{D_{\rm g}} + \frac{1}{v_{\rm therm}\gamma}\right) \alpha_{\rm eff, aerosol}$		Cao et al. (2014)
(SR15)	$HOBr + H^+ + Br^- \xrightarrow{HO} Br_2 + H_2O$	$(r_a + r_b + r_c)^{-1} \alpha_{\text{eff,ice}}$		Cao et al. (2014)
(SR16)	$Br + HCHO \xrightarrow{\bigcirc} HBr + CO + HO_2$	$1.70 \times 10^{-11} \exp(-800/T)$	2	Sander et al. (2003)
(SR17)	$\operatorname{Br}+\operatorname{CH}_3\operatorname{CHO} \xrightarrow{\operatorname{O}_2} \operatorname{HBr}+\operatorname{CH}_3\operatorname{CO}_3$	$1.80 \times 10^{-11} \exp(-460/T)$	2	Atkinson et al. (2006)
(SR18)	$\mathrm{Br}_2 + \mathrm{OH} \to \mathrm{HOBr} + \mathrm{Br}$	$2.0 \times 10^{-11} \exp(240/T)$	2	Atkinson et al. (2006)
(SR19)	$HBr + OH \rightarrow H_2O + Br$	$5.50 \times 10^{-12} \exp(205/T)$	2	Atkinson et al. (2006)
(SR20)	$Br + C_2H_2 \xrightarrow{3C_2} 2CO + 2HO_2 + Br$	4.20×10^{-14}	2	Borken (1996)
(SR21)	$Br + C_2H_2 \xrightarrow{2O_2} 2CO + HO_2 + HBr$	8.92×10^{-14}	2	Borken (1996)
(SR22)	$\mathrm{Br} + \mathrm{C_2H_4} \xrightarrow{3.5\mathrm{O}_2} 2\mathrm{CO} + 2\mathrm{HO_2} + \mathrm{Br} + \mathrm{H_2O}$	2.52×10^{-13}	2	Barnes et al. (1993)
(SR23)	$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{4} \xrightarrow{2.5\mathrm{O}_{2}} 2\mathrm{CO} + \mathrm{HO}_{2} + \mathrm{HBr} + \mathrm{H}_{2}\mathrm{O}$	5.34×10^{-13}	2	Barnes et al. (1993)
(SR24)	$CH_4 + OH \xrightarrow{O_2} CH_3O_2 + H_2O$	$1.85 \times 10^{-12} \exp(-1690/T)$	2	Atkinson et al. (2006)
(SR25)	$\rm BrO+CH_3O_2\rightarrow Br+HCHO+HO_2$	1.60×10^{-12}	2	Aranda et al. (1997)
(SR26)	$\rm BrO+CH_3O_2\rightarrow \rm HOBr+\rm HCHO+0.5O_2$	4.10×10^{-12}	2	Aranda et al. (1997)
(SR27)	$OH + O_3 \rightarrow HO_2 + O_2$	$1.70 \times 10^{-12} \exp(-940/T)$	2	Atkinson et al. (2006)
(SR28)	$OH + HO_2 \rightarrow H_2O + O_2$	$4.80 \times 10^{-11} \exp(250/T)$	2	Atkinson et al. (2006)
(SR29)	$OH + H_2O_2 \rightarrow HO_2 + H_2O_0$	$2.90 \times 10^{-12} \exp(-160/T)$	2	Atkinson et al. (2006)
(SR30)	$OH + OH \longrightarrow H_2O + O_3$	$6.20 \times 10^{-14} (T/298)^{2.6} \exp(945/T)$	2	Atkinson et al. (2006)
(SR31)	$HO_2 + O_3 \rightarrow OH + 2O_2$	$2.03 \times 10^{-13} (T/300)^{4.57} \exp(693/T)$	2	Atkinson et al. (2006)
(SR32)	$ \begin{array}{c} \Pi \cup_2 + \Pi \cup_2 \rightarrow \bigcup_2 + \Pi_2 \bigcup_2 \\ \Gamma H + \Omega H \rightarrow C H + H \Omega \end{array} $	$2.20 \times 10^{-12} \exp(600/T)$	2	Atkinson et al. (2006)
(SR33)	$C_2 H_6 + OH \rightarrow C_2 H_5 + H_2 O$ $C_2 H_4 + O_5 \rightarrow C_2 H_4 + HO_5$	3.80×10^{-15}	2	Atkinson et al. (2000)
(SR35)	$C_{2}H_{5} + O_{2} + O_{2}H_{4} + HO_{2}$ $C_{0}H_{7} + O_{0}(+M) \rightarrow C_{0}H_{7}O_{0}(+M)$	$k_0 = 5.90 \times 10^{-29} (T/300)^{-3.8} [N_2]$	$\frac{2}{2}$	Atkinson et al. (2006)
(5165)	-2 <u>0 + 0.5(+++</u>) + 0.5++ <u>0.5</u> (+++)	$k_{\infty} = 7.80 \times 10^{-12}$ $F_c = 0.58 \exp(-T/1250)$ $+ 0.42 \exp(-T/183)$	-	

Reaction Number	Reaction	k [(molec. cm ⁻³) ¹⁻ⁿ s ⁻¹]	Order n	Reference
(SR36)	$\mathrm{C_2H_4} + \mathrm{OH}(+\mathrm{M}) \xrightarrow{1.5\mathrm{O}_2} \mathrm{CH_3O_2} + \mathrm{CO} + \mathrm{H_2O}(+\mathrm{M})$	$k_0 = 8.60 \times 10^{-29} (T/300)^{-3.1} [N_2]$ $k_{\infty} = 9.00 \times 10^{-12} (T/300)^{-0.85}$ $F_c = 0.48$	2	Atkinson et al. (2006)
(SR37)	$\mathrm{C_2H_4} + \mathrm{O_3} \rightarrow \mathrm{HCHO} + \mathrm{CO} + \mathrm{H_2O}$	4.33×10^{-19}	2	Sander et al. (1997)
(SR38)	$C_2H_2 + OH(+M) \xrightarrow{1.5O_2} HCHO + CO + HO_2(+M)$	$\begin{split} k_0 &= 5.00 \times 10^{-30} (T/300)^{-1.5} [\mathrm{N}_2] \\ k_\infty &= 1.00 \times 10^{-12} \\ F_c &= 0.37 \end{split}$	2	Atkinson et al. (2006)
(SR39)	$\mathrm{C_3H_8} + \mathrm{OH} \xrightarrow{\mathrm{2O_2}} \mathrm{C_2H_5O_2} + \mathrm{CO} + \mathrm{2H_2O}$	$7.60 \times 10^{-12} \exp(-585/T)$	2	Atkinson et al. (2006)
(SR40)	$\mathrm{HCHO} + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	$5.40 \times 10^{-12} \exp(135/T)$	2	Atkinson et al. (2006)
(SR41) (SR42) (SR43) (SR44) (SR45) (SR46) (SR47) (SR48)	$\begin{array}{c} \mathrm{CH}_{3}\mathrm{CHO} + \mathrm{OH} \xrightarrow{\mathrm{O}_{2}} \mathrm{CH}_{3}\mathrm{CO}_{3} + \mathrm{H}_{2}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{HO}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{O}_{2}\mathrm{H} + \mathrm{O}_{2} \\ \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{HO}_{2} \rightarrow \mathrm{HCHO} + \mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2} \\ \mathrm{CH}_{3}\mathrm{OOH} + \mathrm{OH} \rightarrow \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{H}_{2}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{OOH} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{OH} + \mathrm{H}_{2}\mathrm{O} \\ \mathrm{CH}_{3}\mathrm{OOH} + \mathrm{Br} \rightarrow \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{HBr} \\ \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{OH} + \mathrm{HCHO} + \mathrm{O}_{2} \\ \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{OH} + \mathrm{HCHO} + \mathrm{O}_{2} \\ \mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2} \xrightarrow{\mathrm{O}_{2}} 2\mathrm{HCHO} + 2\mathrm{HO}_{2} \end{array}$	$\begin{array}{l} 4.40 \times 10^{-12} \exp(365/T) \\ 3.42 \times 10^{-13} \exp(780/T) \\ 3.79 \times 10^{-14} \exp(780/T) \\ 1.90 \times 10^{-12} \exp(190/T) \\ 1.00 \times 10^{-12} \exp(190/T) \\ 2.66 \times 10^{-12} \exp(-1610/T) \\ 6.71 \times 10^{-14} \exp(365/T) \\ 3.29 \times 10^{-14} \exp(365/T) \end{array}$	2 2 2 2 2 2 2 2 2 2 2	Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006) Mallard et al. (1993) Atkinson et al. (2006)
(SR49)	$CH_3OH + OH \xrightarrow{O_2} HCHO + HO_2 + H_2O$	$2.42 \times 10^{-12} \exp(-345/T)$	2	Atkinson et al. (2006)
(SR50) (SR51)	$C_2H_5O_2 + C_2H_5O_2 \rightarrow C_2H_5O + C_2H_5O + O_2$ $C_2H_2O_2 + O_2O_2 \rightarrow CH_2O_2 + HO_2O_2 + O_2O_2O_2 + O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O_2O$	6.40×10^{-14} 7 44 × 10 ⁻¹⁵	2	Atkinson et al. (2006) Sander et al. (1997)
(SR51)	$C_2H_5O + O_2 \rightarrow CH_3OHO + HO_2$ $C_2H_5O + O_2 \rightarrow CH_2O_2 + HCHO$	7.44×10^{-17} 7.51×10^{-17}	2	Sander et al. (1997)
(SR53)	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH + O_2$	$3.80 \times 10^{-13} \exp(900/T)$	2	Atkinson et al. (2006)
(SR54)	$\tilde{C_2H_5OOH} + \tilde{OH} \rightarrow \tilde{C_2H_5O_2} + H_2O$	8.21×10^{-12}	2	Sander et al. (1997)
(SR55)	$\mathrm{C_2H_5OOH} + \mathrm{Br} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{HBr}$	5.19×10^{-15}	2	Sander et al. (1997)
(SR56)	$OH+OH(+M) \longrightarrow H_2O_2(+M)$	$\begin{aligned} k_0 &= 6.90 \times 10^{-31} (T/300)^{-0.8} [\mathrm{N}_2] \\ k_\infty &= 2.60 \times 10^{-11} \\ F_c &= 0.50 \end{aligned}$	2	Atkinson et al. (2006)
(SR57)	$\rm H_2O_2 + h\nu \mathop{\rightarrow} 2OH$	2.00×10^{-6}	1	Lehrer et al. (2004)
(SR58)	$HCHO + h\nu \xrightarrow{2O_2} 2HO_2 + CO$	5.50×10^{-6}	1	Lehrer et al. (2004)
(SR59)	$\mathrm{HCHO} + h\nu \rightarrow \mathrm{H}_2 + \mathrm{CO}$	9.60×10^{-6}	1	Lehrer et al. (2004)
(SR60)	$\mathrm{C_2H_4O} + h\nu \mathop{\rightarrow} \mathrm{CH_3O_2} + \mathrm{CO} + \mathrm{HO_2}$	6.90×10^{-7}	1	Lehrer et al. (2004)
(SR61)	$\mathrm{CH}_3\mathrm{O}_2\mathrm{H} + h\nu \to \mathrm{OH} + \mathrm{HCHO} + \mathrm{HO}_2$	1.20×10^{-6}	1	Lehrer et al. (2004)
(SR62)	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O}_{2}\mathrm{H}+h\nu\rightarrow\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{O}+\mathrm{O}\mathrm{H}$	1.20×10^{-5}	1	Lehrer et al. (2004)
(SR63) (SR64) (SR65)	$NO + O_3 \rightarrow NO_2 + O_2$ $NO + HO_2 \rightarrow NO_2 + OH$ $NO + O_2 \rightarrow NO_2 + OH$	$1.40 \times 10^{-12} \exp(-1310/T)$ $3.60 \times 10^{-12} \exp(270/T)$ $1.40 \times 10^{-13} \exp(-2470/T)$	2 2 2	Atkinson et al. (2006) Atkinson et al. (2006)
(SR03) (SR66)	$NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_2 + OH(\pm M) \rightarrow HNO_2(\pm M)$	$1.40 \times 10 \exp(-2470/T)$ $h_{0} = 3.30 \times 10^{-30} (T/300)^{-3.0} [N]$	2	Atkinson et al. (2006)
(SR67) (SR68)	$NO_2 + OI(+M) \rightarrow IINO_3(+M)$ $NO + NO_3 \rightarrow 2NO_2$ $HONO + OH \rightarrow NO_2 + H_1O_2$	$k_0 = 3.30 \times 10^{-11} (T/500) [N_2]$ $k_{\infty} = 4.10 \times 10^{-11}$ $F_c = 0.40$ $1.80 \times 10^{-11} \exp(110/T)$ $2.50 \times 10^{-12} \exp(260/T)$	2 2 2	Atkinson et al. (2006) Atkinson et al. (2006)
(SR60)	$HO_1 + NO_2 (+M) \rightarrow HNO_2 (+M)$	$k_0 = 1.80 \times 10^{-31} (T/300)^{-3.2} [N]$	2	Atkinson et al. (2000)
(3809)	$\operatorname{HO}_2 + \operatorname{HO}_2(+\operatorname{M}) \to \operatorname{HHO}_4(+\operatorname{M})$	$ k_{\infty} = 4.70 \times 10^{-12} $ $ k_{\infty} = 4.70 \times 10^{-12} $ $ F_c = 0.60 $	2	Aikiiison et al. (2000)
(SR70)	$\mathrm{HNO}_4(+\mathrm{M}) \mathop{\rightarrow} \mathrm{NO}_2 + \mathrm{HO}_2(+\mathrm{M})$	$k_0 = 4.10 \times 10^{-5} \exp(-10650/T) [N_2]$ $k_{\infty} = 4.80 \times 10^{15} \exp(-11170/T)$ $F_c = 0.60$	1	Atkinson et al. (2006)

Reaction	Reaction	k	Order	Reference
Number		$[(molec. cm^{-3})^{1-n}s^{-1}]$	n	
(SR71) (SR72)	$\label{eq:HNO4} \begin{split} \mathrm{HNO}_4 + \mathrm{OH} &\rightarrow \mathrm{NO}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{O}_2 \\ \mathrm{NO} + \mathrm{OH}(+\mathrm{M}) &\rightarrow \mathrm{HONO}(+\mathrm{M}) \end{split}$	$3.20 \times 10^{-13} \exp(690/T)$ $k_0 = 7.40 \times 10^{-31} (T/300)^{-2.4} [N_2]$ $k_{\infty} = 3.30 \times 10^{-11} (T/300)^{-0.3}$ $F_{\gamma} = 0.81$	2 2	Atkinson et al. (2006) Atkinson et al. (2006)
(SR73) (SR74)	$OH + NO_3 \rightarrow NO_2 + HO_2$ $HNO_3 + h\nu \rightarrow NO_2 + OH$	2.00×10^{-11} 4.40×10^{-8}	2 1	Atkinson et al. (2006) Lehrer et al. (2004)
(SR75)	$NO_2 + h\nu \xrightarrow{O_2} NO + O_3$	3.50×10^{-3}	1	Lehrer et al. (2004)
(SR76) (SR77)	$ \begin{array}{c} \mathrm{NO}_3 + h\nu \xrightarrow{\mathrm{O}_2} \mathrm{NO}_2 + \mathrm{O}_3 \\ \mathrm{NO}_3 + h\nu \to \mathrm{NO} + \mathrm{O}_2 \end{array} $	$\begin{array}{c} 1.40 \times 10^{-1} \\ 1.70 \times 10^{-2} \end{array}$	1 1	Lehrer et al. (2004) Lehrer et al. (2004)
(SR78)	$\mathrm{NO} + \mathrm{CH}_3\mathrm{O}_2 \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{NO}_2$	$2.30 \times 10^{-12} \exp(360/T)$	2	Atkinson et al. (2006)
(SR79)	$NO_3 + CH_3OH \xrightarrow{O_2} HCHO + HO_2 + HNO_3$	$9.40 \times 10^{-13} \exp(-2650/T)$	2	Atkinson et al. (2006)
(SR80)	$NO_3 + HCHO \xrightarrow{O_2} CO + HO_2 + HNO_3$	5.60×10^{-16}	2	Atkinson et al. (2006)
(SR81)	$NO + C_2H_5O_2 \xrightarrow{O_2} CH_3CHO + NO_2 + HO_2$	$2.60 \times 10^{-12} \exp(380/T)$	2	Atkinson et al. (2006)
(SR82) (SR83)	$\begin{array}{l} \mathrm{NO} + \mathrm{CH}_3\mathrm{CO}_3 \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{O}_2 + \mathrm{NO}_2 + \mathrm{CO}_2 \\ \mathrm{NO}_2 + \mathrm{CH}_3\mathrm{CO}_3(+\mathrm{M}) \rightarrow \mathrm{PAN}(+\mathrm{M}) \end{array}$	$7.50 \times 10^{-12} \exp(290/T)$ $k_0 = 2.70 \times 10^{-28} (T/300)^{-7.1} [N_2]$ $k_{\infty} = 1.20 \times 10^{-11} (T/300)^{-0.9}$ $F_c = 0.30$	2 2	Atkinson et al. (2006) Atkinson et al. (2006)
(SR84)	$\rm Br+NO_2(+M)\rightarrow BrNO_2(+M)$	$k_0 = 4.20 \times 10^{-31} (T/300)^{-2.4} [N_2]$ $k_{\infty} = 2.70 \times 10^{-11}$ $F_c = 0.55$	2	Atkinson et al. (2006)
(SR85)	$\rm Br+NO_3\to BrO+NO_2$	1.60×10^{-11}	2	Atkinson et al. (2006)
(SR86)	$\rm BrO+NO_2(+M)\rightarrow BrONO_2(+M)$	$\begin{aligned} k_0 &= 4.70 \times 10^{-31} (T/300)^{-3.1} [\mathrm{N}_2] \\ k_\infty &= 1.80 \times 10^{-11} \\ F_c &= 0.40 \end{aligned}$	2	Atkinson et al. (2006)
(SR87)	$BrO + NO \rightarrow Br + NO_2$	$8.70 \times 10^{-12} \exp(260/T)$	2	Atkinson et al. (2006)
(SR88)	$BrONO_2 + h\nu \rightarrow NO_2 + BrO$	3.40×10^{-4}	1	Lehrer et al. (2004)
(SR89)	$BrNO_2 + h\nu \rightarrow NO_2 + Br$	9.30×10^{-5}	1	Lehrer et al. (2004)
(SR90)	$\operatorname{BrONO}_2 + \operatorname{H}_2 \operatorname{O} \overset{\operatorname{aerosol}}{\longrightarrow} \operatorname{HOBr} + \operatorname{HNO}_3$	$\left(\frac{r}{D_{\rm g}} + \frac{4}{v_{\rm therm}\gamma}\right)^{-1} \alpha_{\rm eff,aerosol}$		Cao et al. (2014)
(SR91)	$\mathrm{PAN} + h\nu \rightarrow \mathrm{NO}_2 + \mathrm{CH}_3 \mathrm{CO}_3$	6.79×10^{-7}	1	Fishman and Carney (1984)
(SR92)	$\operatorname{BrONO}_2 + \operatorname{H}_2 O \xrightarrow{\operatorname{ice}} \operatorname{HOBr} + \operatorname{HNO}_3$	$(r_a + r_b + r_c)^{-1} \alpha_{\rm eff,ice}$		Cao et al. (2014)

References

- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The BrO + Ch₃O₂ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, doi:10.1029/ 97GL02686, 1997.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry, Tech. rep., IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, Cambridge, UK, available at: http://www.iupac-kinetic.ch.cam.ac.uk/ (last access: 26 November 2016), 2006.
- Barnes, I., Becker, K., and Overath, R.: Oxidation of organic sulfur compounds, in: The Tropospheric Chemistry of Ozone in the Polar Regions, edited by Niki, H. and Becker, K., vol. 7, pp. 371–383, Springer Berlin Heidelberg, doi:10.1007/ 978-3-642-78211-4_27, 1993.
- Borken, J.: Ozonabbau durch Halogene in der arktischen Grenzschicht, Ph.D. thesis, Heidelberg University, 1996.
- Cao, L., Sihler, H., Platt, U., and Gutheil, E.: Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere, Atmos. Chem. Phys., 14, 3771– 3787, doi:10.5194/acp-14-3771-2014, 2014.
- Fishman, J. and Carney, T. A.: A one-dimensional photochemical model of the troposphere with planetary boundary-layer parameterization, J. Atmos. Chem., 1, 351–376, 1984.
- Lehrer, E., Hönninger, G., and Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere, Atmos. Chem. Phys., 4, 2427– 2440, doi:10.5194/acp-4-2427-2004, 2004.
- Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST chemical kinetics database: version 5.0, Tech. rep., National Institute of Standards and Technology, Gaithersburg, 1993.
- Sander, R., Vogt, R., Harris, G. W., and Crutzen, P. J.: Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring, Tellus B, 49, 522–532, doi:10.1034/j.1600-0889.49.issue5.8.x, 1997.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., Molina, M. J., and Finlayson-Pitts, B. J.: Chemical kinetics and photochemical data for use in atmospheric studies, Tech. rep., JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.