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Abstract. Recently, the winter (December–February) haze
pollution over the north central North China Plain (NCP)
has become severe. By treating the year-to-year increment
as the predictand, two new statistical schemes were estab-
lished using the multiple linear regression (MLR) and the
generalized additive model (GAM). By analyzing the asso-
ciated increment of atmospheric circulation, seven leading
predictors were selected to predict the upcoming winter haze
days over the NCP (WHDNCP). After cross validation, the
root mean square error and explained variance of the MLR
(GAM) prediction model was 3.39 (3.38) and 53 % (54 %),
respectively. For the final predicted WHDNCP, both of these
models could capture the interannual and interdecadal trends
and the extremums successfully. Independent prediction tests
for 2014 and 2015 also confirmed the good predictive skill
of the new schemes. The predicted bias of the MLR (GAM)
prediction model in 2014 and 2015 was 0.09 (−0.07) and
−3.33 (−1.01), respectively. Compared to the MLR model,
the GAM model had a higher predictive skill in reproducing
the rapid and continuous increase of WHDNCP after 2010.

1 Introduction

In recent years, the north central North China Plain (NCP;
34–43◦ N, 114–120◦ E) has suffered from increasingly se-
vere winter (December–February) haze pollution (Ding and
Liu, 2014), particularly after persistent heavy fog and haze
in January 2013 (Zhang et al., 2014; Zhao et al., 2014). Af-

ter 2000, the combined effects of a rapid increase in total
energy consumption and the influence of climate change in-
tensified the haze pollution in central north China (Wang
and Chen, 2016). In conditions of heavy and slowly vary-
ing pollutant emissions, the fine particles in the atmosphere
reach their saturation levels easily, and the climate conditions
become another critical contributor of haze. Some new cli-
matic studies should be helpful for diagnosing seasonal pre-
dictors of winter haze days over the NCP (WHDNCP). The
East Asian winter monsoon (EAWM) has a significantly neg-
ative relationship with WHDNCP (Yin et al., 2015a, b; Q. Li
et al., 2015). By weakening EAWM circulations, negative
sea surface temperature (SST) anomalies over the subtrop-
ical western Pacific could significantly intensify WHDNCP
(Yin and Wang, 2016). Furthermore, the decline of preced-
ing autumn (September–November) Arctic sea ice (ASI) has
led to favorable environments for haze with stable atmo-
sphere and greatly intensified haze pollution in eastern China
(Wang et al., 2015). Although recent studies on the changes
in WHDNCP and their associated mechanisms are new and
still insufficient, they support the possibility of seasonal pre-
diction.

The climate variables in east Asia showed obvious charac-
teristics of tropospheric biennial oscillation, based on which
a new interannual increment approach was applied for short-
term climate prediction (Wang et al., 2000, 2012). This new
approach treated the year-to-year increment of a variable,
i.e., the difference between the current and previous year
(DY), as the predictand. Because the DY approach utilized
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the observed information from the previous year and the fea-
tures of biennial oscillation, the interannual variation and
interdecadal trend could be captured well. In addition, the
signals (i.e., variance) of the predictors and predictand were
both amplified (Huang et al., 2014) and thus of benefit to im-
prove the prediction skill. If the predictive objects (Y ), e.g.,
haze days, were cross influenced by socioeconomic factors
and climatic conditions, the predictand could be represented
by Y = YS+YC, where YS and YC were the slowly varying
socioeconomic and climatic components, respectively.

DY= Yt −Yt−1 = (YSt +YCt )− (YSt−1+YCt−1)

= (YSt −YSt−1)+ (YCt −YCt−1) ,

where the subscripts t and t − 1 indicate the current and pre-
vious years, respectively.

Commonly, the difference in pollutant emissions between
current and previous year was very small, resulting in (YSt−
YSt−1)≈ 0, so DY≈ (YCt −YCt−1). To some extent, the
WHDNCP DY reflected the fluctuations caused by climate
variability. After adding the predicted WHDNCP DY to the
observed WHDNCP of the previous year, the interdecadal and
socioeconomic components were contained in the final pre-
diction. In prior studies, the DY approach has been used to
explore the prediction of summer rainfall in China (Fan et al.,
2008), heavy winter snow activity in northeast China (Fan
and Tian, 2013), summer Asian–Pacific Oscillation (Huang
et al., 2014) and winter North Atlantic Oscillation (Tian and
Fan, 2015). Furthermore, some variables cross influenced by
socioeconomic and climatic factors were predicted success-
fully using the DY approach, e.g., rice production in north-
east China (Zhou and Wang, 2014) and the discoloration day
for Cotinus coggygria leaves in Beijing (Yin et al., 2014).
Considering the seriously negative impact of winter haze and
the substantial need to predict WHDNCP, we made it the goal
of this study to apply the DY approach to the seasonal pre-
diction of WHDNCP.

The data and methods employed were introduced in
Sect. 2. Section 3 described the predictors and associated
circulations. We applied the DY approach to build the pre-
diction models for WHDNCP in Sect. 4. In this section, the
statistical models were built based on multiple linear regres-
sion (MLR) and a generalized additive model (GAM). Then,
leave-one-out cross-validation and independent tests were
performed to assess the statistical schemes of WHDNCP pre-
diction.

2 Data sets and methods

Monthly atmospheric data, such as geopotential height and
surface air temperature (SAT), were derived from the Na-
tional Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) global reanalysis
data set with a horizontal resolution of 2.5◦×2.5◦ from 1979
to 2016 (Kalnay et al., 1996). The monthly mean extended

reconstructed SST data sets with a horizontal resolution of
2◦× 2◦ from 1979 to 2016 were obtained from the National
Oceanic and Atmospheric Administration (NOAA) (Smith et
al., 2008). ASI extent was calculated from the ASI concen-
tration data, downloaded from the Hadley Centre with a hori-
zontal resolution of 1◦×1◦ from 1979 to 2016 (Rayner et al.,
2003). The monthly gridded soil moisture data from 1979
to 2016 were downloaded from NOAA’s Climate Prediction
Center, with a horizontal resolution of 0.5◦× 0.5◦ (Huug et
al., 2003). The monthly Antarctic Oscillation (AAO) indices
from 1979 to 2016 were also obtained from the Climate Pre-
diction Center (Mo, 2000).

China ground observations from 39 NCP stations, col-
lected by the National Meteorological Information Center of
China four times per day from 1979 to 2016, were used to
reconstruct the climatic WHD data (Yin and Wang, 2016).
Here, haze was defined as visibility less than a certain thresh-
old and relative humidity less than 90 %. After excluding
other weather phenomena affecting visibility, a day with haze
at any time was defined as a haze day. Site WHD data were
converted into grids after Cressman interpolation (Cressman,
1959), and then the WHDNCP was computed as the mean
value of the gridded data.

In this study, the statistical models were built based on
MLR and GAM methods. The MLR approach, a model-
driven method, was ultimately expressed as a linear combi-
nation ofK predictors (xi) that could generate the least error
for prediction of ŷ (Wilks, 2011). With coefficients βi , inter-
cept β0 and residual ε, the MLR formula could be described
as follows:

ŷ = β0+

K∑
i=1

βixi + ε. (1)

The GAM approach was more advanced and was devel-
oped from MLR and the generalized linear model (Hastie and
Tibshirani, 1990). This method was particularly effective at
handling the complex nonlinear and non-monotonous rela-
tionships between the predictand and the predictors, whose
expressions were replaced by unspecified smooth functions
(s). Similar to the generalized linear model, the dependent
variable in GAM could have different probability distribu-
tions, such as Gaussian, Poisson and binomial, any of which
could be transferred by the link function (g). The GAM was
data driven rather than model driven. The resulting fitted val-
ues did not come from an a priori model that was adopted
by the MLR and generalized linear model. The rationale be-
hind fitting a nonparametric model was that the structure
of data should be examined first to choose an appropriate
smooth function for each predictor; i.e., the GAM allowed
the data to determine the shape of the smooth function (Yee
and Mitchell, 1991). The GAM could be written in the form

g(ŷ)= β0+

K∑
i=1

βis(xi)+ ε. (2)
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Figure 1. The CC between WHDNCP DY and geopotential height
at 500 hPa (Z500) in winter from 1980 to 2013. The white curves
indicate that the CC exceeded the 95 % confidence level. A and C
represent anticyclone and cyclone, respectively.

The normalized data sets from 1979 to 2013 were trained
as the basic samples to fit the models, and those from 2014
to 2015 were treated as test data for independent prediction.
Thereafter, the root mean standard error (RMSE), mean ab-
solute error (MAE) and explained variance were calculated
for evaluation by simple fitting and leave-one-out cross vali-
dation.

3 The predictors and associated circulations

To choose the DY predictors, the correlated DY atmospheric
circulations were identified, as shown in Fig. 1. The positive
phase of the east Atlantic/west Russia (EA/WR) and west Pa-
cific (WP; Barnston and Livezey, 1987) patterns and the neg-
ative phase of the Eurasia (EU; Wallace and Gutzler, 1981)
pattern were obvious, and we took the anticyclone circula-
tion over north China as an intermediary that led to a more
stable atmosphere to analyze the associated physical process.
The positive anomaly over the NCP could confine the parti-
cles within a thinner boundary layer by suppressing vertical
movement and, together with the cyclone, they could induce
an easterly to weaken the East Asian jet stream (EAJS), pro-
ducing weaker cold air. Meanwhile, the water vapor trans-
portation was also enhanced by an anomalous southeaster
in the lower troposphere (figure omitted), creating favorable
conditions for more WHDNCP than in the previous year.

The pivotal local anticyclone over the NCP was the most
important contributor; we therefore speculated that pre-
autumn SAT DY around the NCP should be effective to im-
pact WHDNCP DY. There were significantly negative corre-
lations between WHDNCP DY and pre-autumn SAT DY from
the Sea of Japan to the Stanovoy Range (35–65◦ N, 130–
140◦ E), the area mean of which was selected as predictor x1
(Fig. 2). The correlation coefficient (CC) between WHDNCP
DY and predictor x1 was −0.47, exceeding the 99 % con-
fidence level. The features of negative EU and positive WP
pattern could be identified clearly and the anomalous cyclone
over south China and the South China Sea was significant in
the circulations associated with predictor x1 (×−1) (Fig. 3).

Figure 2. The CC between WHDNCP DY and SAT DY in autumn
from 1980 to 2013. The shades indicate that the CC exceeded the
95 % confidence level, and the rectangle represents the selected re-
gion (35–65◦ N, 130–140◦ E) of predictor x1.

Although the associated land–air interaction, especially in
the DY field, was complicated and still unclear, according
to the analysis of Fig. 1, the horizontal and vertical diffusion
of pollutant particles would be restricted efficiently.

The pre-autumn SST anomalies and their associated win-
ter SST of the Pacific could influence WHDNCP significantly
via the air–sea interaction (Yin and Wang, 2016). Figure 4
shows the CC between WHDNCP DY and pre-autumn Pacific
SST DY. The most significant CC distributed around the Gulf
of Alaska (36–56◦ N, 130–170◦W), and the area-averaged
SST DY here was defined as predictor x2, whose CC with
WHDNCP DY was 0.47 (above the 99 % confidence level).
Chen and Wang (2015) found that the severe winter haze
events in north China were closely related with the weaker
and northward EAJS. The positive SST DY around the Gulf
of Alaska could induce an obviously anomalous cyclone over
eastern China and the adjacent ocean, and the stimulated
easterly weakened the core of EAJS. Furthermore, there was
a significantly anomalous southerly at the high latitude that
restricted the cold activities from their source region and in-
tensified the haze pollution over the NCP (Fig. 5).

Prior studies have documented that the triple SST pattern
was a dominant mode of the northern Atlantic SST in autumn
(Czaja and Frankignoul, 1999). When the pre-autumn SST
anomalies were distributed in a “+−+” pattern from south
to north, the subsequent EAWM was stronger, and the sur-
face temperature of north China was lower (Shi, 2014). Xiao
et al. (2015) proved the SST anomalies over the North At-
lantic from summer to the following winter exhibit a signifi-
cant relationship with winter haze days on both decadal and
interannual timescale. Similarly, the CC between WHDNCP
DY and pre-autumn SST DY of the Atlantic was distributed
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Figure 3. The CC between predictor x1 (×−1) and Z500 DY in
winter from 1980 to 2013. The white curves indicate that the CC
exceeded the 95 % confidence level. A and C represent anticyclone
and cyclone, respectively.

Figure 4. The CC between WHDNCP DY and Pacific SST DY in
autumn from 1980 to 2013. The shades indicate that the CC ex-
ceeded the 95 % confidence level, and the rectangle represents the
selected region (36–56◦ N, 130–170◦W) of predictor x2.

in a “−+−” pattern (Fig. 6). The area-averaged SST DY
of the northern center was defined as predictor x3, whose
CC with WHDNCP DY was −0.50, passing the 99 % con-
fidence test. The most obvious DY atmospheric circulations
related to predictor x3 (×−1) were the positive WP pattern,
whose south center linked with a subtropical high (Fig. 7).
The continental high and marine low was both weakened by
the anomalous geopotential height from the lower to the mid-
dle layer that led to weaker EAWM and weaker cold air. The
pressure gradient over the east coast of China also resulted
in significant southerly anomalies, indicating smaller surface
wind and more moisture and resulting in more WHDNCP.

ASI decreased dramatically with significant variance and
was a significant contributor influencing WHD in eastern
China (Wang et al., 2015; Wang and Chen, 2016). The CC
between pre-autumn ASI DY and WHDNCP DY was cal-
culated (Fig. 8) and was significantly positive around the
Beaufort Sea (73–78◦ N, 130–165◦W). The area-averaged
extent of ASI DY of the Beaufort Sea was selected as the
fourth predictor (x4), and its CC with WHDNCP DY was

Figure 5. The CC between predictor x2 and wind vector DY at
200 hPa in winter from 1980 to 2013. The shades indicate that the
CC between the zonal wind DY and x2 exceeded the 95 % confi-
dence level.

Figure 6. The CC between WHDNCP DY and Atlantic SST DY in
autumn from 1980 to 2013. The shades indicate that the CC ex-
ceeded the 95 % confidence level, and the rectangle represents the
selected region (50–70◦ N, 30–65◦W) of predictor x3.

0.37 (above a 95 % confidence level). A positive center of
geopotential height at 500 hPa was located over the Central
Siberian and Mongolian plateaus, and negative centers were
distributed zonally from southern China to the subtropical
Pacific (Fig. 9). Thus, the EAJS was weakened by the in-
duced easterly and shifted northward, which illustrated less
cold activities over the NCP (Yang et al., 2002) and generated
more haze days.

Following SST, the soil moisture was another impor-
tant factor for seasonal prediction (Guo et al., 2007). The
WHDNCP was closely correlated with the moisture condi-
tions due to the hygroscopicity of the atmospheric particles
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Figure 7. The CC between predictor x3 (×−1) and Z500 DY
(shade)/850 hPa wind DY (arrows) in winter from 1980 to 2013.
The dots indicate that the CC with meridional wind exceeded the
95 % confidence level. A and C represent anticyclone and cyclone,
respectively.

Figure 8. The CC between WHDNCP DY and ASI DY in autumn
from 1980 to 2013. The shades indicate that the CC exceeded the
95 % confidence level, and the box represents the selected region
(73–78◦ N, 130–165◦W) of predictor x4.

(Yin et al., 2015a). Thus, the questions with respect to soil
moisture were whether pre-summer or autumn soil moisture
would be effective for seasonal prediction of WHDNCP DY.
The area-averaged pre-autumn soil moisture DY of the Bo-
hai Economic Rim (35–42◦ N, 117–127◦ E), defined as pre-
dictor x5, showed a significantly negative correlation with
WHDNCP DY, i.e., the CC was −0.59, exceeding a 99 %
confidence test (Fig. 10). The CC between predictor x5 and
geopotential height at 500 hPa was distributed in a similar
way as in Fig. 1. The positive EA/WR and WP phases and the
negative EU phase was obvious and led to more WHDNCP
than in the previous year (Fig. 11). Being specific to local
circulations, the cyclone over south China and the anticy-

Figure 9. The CC between predictor x4 and Z500 DY in winter
from 1980 to 2013. The white curves indicate that the CC exceeded
the 95 % confidence level.

Figure 10. The CC between WHDNCP DY and soil moisture DY
in autumn from 1980 to 2013. The shades indicate that the CC ex-
ceeded the 95 % confidence level, and the rectangle represents the
selected region (35–42◦ N, 117–127◦ E) of predictor x5.

clone over the NCP and the west Pacific stimulated signif-
icant southeasters between them (figure omitted) that trans-
ported more moisture but decelerated the surface wind in the
NCP. As shown in Fig. 12, the pre-summer soil moisture DY
in the east of Mongolia (48–52◦ N, 115–125◦ E) also had
a close relationship with WHDNCP and with WHDNCP DY.
The area-averaged soil moisture DY in the east of Mongo-
lia was defined as predictor x6, whose CC with WHDNCP
DY was 0.41 (above a 95 % confidence level). The negative
EU pattern could be recognized from the associated atmo-
spheric circulation with predictor x6 (Fig. 13). The anoma-
lous geopotential height was distributed zonally at high lat-
itude indicating that the meridional circulations that trans-
ported cold air were weak. The positive high over the NCP
could confine the vertical motion and the vertical diffusion
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Figure 11. The CC between predictor x5 (×−1) and Z500 DY in
winter from 1980 to 2013. The white curves indicate that the CC
exceeded the 95 % confidence level. A and C represent anticyclone
and cyclone, respectively.

Figure 12. The CC between WHDNCP DY and soil moisture DY
in summer from 1980 to 2013. The shades indicate that the CC ex-
ceeded the 95 % confidence level, and the rectangle represents the
selected region (48–52◦ N, 115–125◦ E) of predictor x6.

of atmospheric particles and intensify the haze pollution over
the NCP.

Recently, some studies documented that AAO could affect
the east Asian climate through cross-equatorial flow, e.g., the
Somali jet stream (Fan and Wang, 2004, 2006, 2007a, b). Af-
ter the late 1990s, global sea level pressure and geopotential
height at 300 hPa in boreal January were characterized by the
concurrence of the Aleutian Low and the negative phase of
the AAO (F. Li et al., 2015). We investigated the relationship
between WHDNCP DY and geopotential height at 850 hPa in
the Southern Hemisphere and found that the distribution was
remarkably similar to that of the negative phase of the AAO
(Fig. 14). Furthermore, the CC between the September–
October AAO DY and WHDNCP DY was −0.54, exceeding
a 99 % confidence test. As shown in Fig. 15, the positive
phases of the EA/WR and WP patterns were closely corre-
lated with the negative phase of AAO and were responsible
for more WHDNCP than in the previous year. The anomalous

Figure 13. The CC between predictor x6 and Z500 DY in winter
from 1980 to 2013. The white curves indicate that the CC exceeded
the 95 % confidence level. A and C represent anticyclone and cy-
clone, respectively.

Figure 14. The CC between WHDNCP DY and September–October
Z850 DY from 1980 to 2013. The white curves indicate that the CC
exceeded the 95 % confidence level.

anticyclone over the NCP and adjacent ocean not only led to
stable atmosphere but also resulted in small wind and high
humidity. Hence, the September–October mean AAO index
was selected as the last predictor (x7) to forecast the interan-
nual increment of WHDNCP.

4 The prediction models and validations

In total, seven DY predictors (x1–x7) were chosen to build
the seasonal prediction model (SPM) for WHDNCP DY.
Among the predictors were 21 types of pair combinations,
of which only 5 pairs presented significant linear correla-
tion. Thus, the multicollinearity would not be a problem
when modeling with the MLR approach. Although the lin-
ear correlation between the predictand and each predictor
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Figure 15. The CC between predictor x7 (×−1) and Z500 DY in
winter from 1980 to 2013. The white curves indicate that the CC
exceeded the 95 % confidence level.

was significant, the nonlinear interaction would also affect
the WHDNCP and should be taken into account. In this
section, seasonal prediction models were established using
MLR (SPMMLR) and GAM (SPMGAM) and validated in de-
tail.

The WHDNCP DY showed obvious features of biennial os-
cillation (Fig. 16), illustrating the DY approach was suitable
for its prediction. The SPMMLR of WHDNCP DY was as fol-
lows: DY×10=−2.774x1+2.582x2−1.631x3+2.528x4−

2.229x5+ 2.555x6− 1.812x7. After leave-one-out cross val-
idation, the RMSECV of SPMMLR was 3.39 days, and the
CC between fitted and observed WHDNCP DY was 0.73, ac-
counting for 53 % of the total variance (Table 1). The per-
centage of the same sign (i.e., meaning the mathematical sign
of the fitted and observed WHDNCP DY was the same) was
79.4 %. The SPMMLR showed good ability to predict the neg-
ative and minimum WHDNCP DY but did not adequately cap-
ture the continuous positive value after 2011 (Fig. 16a). The
fitted WHDNCP DY from 2011 to 2013 varied similarly with
the one before 2010 and did not reflect the rapid rising trend
after 2010. As an independent prediction test, the predicted
bias, i.e., the predicted value minus the measurement, in 2014
was 0.09, illustrating good performance, but the bias in 2015
was larger, i.e., −3.33.

We also applied the GAM approach to build a pre-
diction model that would contain the nonlinear relation-
ship with smooth functions. The SPMGAM of WHDNCP
DY was as follows: DY×10=−2.164s(x1)+2.036s(x2)−

1.721x3+2.588s(x4)−2.157s(x5)+2.187x6−2.506x7. Dur-
ing the simple fitting, the SPMGAM performed very well. The
RMSE was 1.56 days, and the CC between the fitted and
observed WHDNCP DY was 0.95. The SPMGAM could fit
the minimum (in 2003) and maximum (in 2013), and show
the trend well, indicating an advantage to process the non-
linear relationship. After cross validation, the performance
of SPMGAM decreased dramatically, meaning that its sta-
bility was worse than that of SPMMLR. The RMSECV of
SPMGAM was 3.38 days and the CC between fitted and ob-
served WHDNCP DY was 0.74, accounting for 54 % of the
total variance (Table 1). The percentage of the same sign
of SPMGAM results was 73.5 %, which was close to the re-

Figure 16. The temporal variation of measured (black) WHDNCP
DY, MLR (red, a) and GAM (red, b) cross-validation fitted
WHDNCP DY from 1980 to 2013. The results for 2014 and 2015
represent the measured (black square) and predicted (red hollow
circle) WHDNCP DY.

Table 1. The RMSE, MAE, CC and explained variance (EV) of
MLR and GAM models, and predicted bias for 2014 and 2015. The
subscripts S and CV indicated simple and cross-validation fitting.

MLRs MLRCV GAMs GAMCV

RMSE 2.39 3.39 1.56 3.38
MAE 1.75 2.37 1.10 2.58
CC 0.87 0.72 0.95 0.74
EV 76 % 53 % 90 % 54 %
Bias14 0.09 −0.07
Bias15 −3.33 −1.01

sult from SPMMLR. The SPMGAM also showed good abil-
ity to predict the negative and minimum WHDNCP DY and
better performance to fit the maximum in 2013 (Fig. 16b).
The predicted bias in 2014 and 2015 was −0.07 and −1.01,
respectively, and the results were slightly better than those
from SPMMLR. The CC between the bias of SPMMLR and
SPMGAM from 1980 to 2013 was 0.83 (above a 99.99 % con-
fidence level). If the SPMMLR performed well in some years,
the SPMGAM also showed good ability in these years, and
vice versa. We speculated that the reason was that some use-
ful factors were not diagnosed and included here.

After adding the predicted WHDNCP DY to the observed
information in the previous year, the predicted WHDNCP in
the current year was obtained. For example, the predicted
WHDNCP DY in 2012 was added to the measured WHDNCP
in 2011, and the result was the final predicted WHDNCP in
2012. In Fig. 17, the simulated WHDNCP anomaly was fit-
ted by cross validation from 1980 to 2013 and predicted in
2014 and 2015. For SPMMLR and SPMGAM, the CC between
the original (detrended) observed and simulative WHDNCP
was 0.89 (0.87) and 0.90 (0.88), respectively. Both of these
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Table 2. The predictors and their meaning. CC indicates the correlation coefficient between predictor and WHDNCP DY from 1980 to 2013.

Predictors Meaning CC

x1 Pre-autumn SAT DY from the Sea of Japan to Stanovoy Range −0.47
x2 Pre-autumn SST DY around Gulf of Alaska 0.47
x3 Pre-autumn SST DY to the south of Greenland −0.50
x4 Pre-autumn ASI extent DY of the Beaufort Sea 0.37
x5 Pre-autumn soil moisture DY of the Bohai Economic Rim −0.59
x6 Pre-summer soil moisture DY in the east of Mongolia 0.41
x7 September–October AAO index DY −0.54
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Figure 17. The temporal variation of measured (black) WHDNCP
anomaly from 1980 to 2015, MLR (blue) and GAM (red) simulative
WHDNCP anomaly, which was composed of cross fitted series from
1980 to 2013 and predicted values in 2014 and 2015.

prediction models could capture the interannual and inter-
decadal trend and the extremums. The percentage of the
same sign of the anomalies from the two models was 100 %,
meaning these two models could predict the sign of the
WHDNCP anomaly successfully. The SPMGAM could sim-
ulate the abrupt rising trend in 2010 better than SPMMLR,
which was important for the prediction of recent years.

5 Conclusions and discussions

In this paper, we treated the WHDNCP DY as the predic-
tand and built two prediction models using the MLR and
GAM approach. In the DY atmospheric circulation, the pos-
itive phases of the EA/WR and WP patterns and the nega-
tive phase of the EU pattern intensified the haze pollution
by inducing positive anomalies over the NCP and the Sea
of Japan. Finally, seven leading predictors were selected and
were listed in Table 2.

After cross validation, the RMSECV and explained vari-
ance of SPMMLR (SPMGAM) was 3.39 (3.38) and 53 %
(54 %). The percentage of the same sign of these two pre-
diction models was also similar, i.e., more than 73 %. The
WHDNCP DY increased rapidly and persistently after 2010,
and the SPMGAM could capture this trend better. For the fi-
nal predicted WHDNCP, both of these two prediction models
could capture the interannual and interdecadal trends and the
extremums. The percentage of the same sign of the anomalies
from two models was 100 %, and the SPMGAM simulated the
abrupt increase in 2010 better than SPMMLR. The predicted

bias of SPMMLR (SPMGAM) in 2014 and 2015 was 0.09
(−0.07) and−3.33 (−1.01), respectively. Both of these mod-
els performed well in the independent tests, but the biases of
SPMGAM were slightly smaller. The consistency of these two
models might indicate that, after including plentiful predic-
tors, the linear relationship dominated the WHDNCP DY pre-
diction. Actually, the studies about the associated physical
mechanism, i.e., how the external forcings influenced haze
pollution, were new and still insufficient. In this paper, the
underlying physical process was presented mostly from the
way that the associated circulations impacted the WHDNCP
DY. Thus, the physical mechanisms via which the external
forcings stimulated such anomalous circulations were wor-
thy of further study.

Although these two statistical models performed well
during most of the past 3 decades and could predict the
WHDNCP in 2014 and 2015 with small biases, they showed
disadvantages when simulating the rapid rising trend after
2010. The large abrupt change was a common challenge to
the statistical models, including the DY approach, so the nu-
merical model should be introduced into the prediction of
haze pollution. At the same time, if the SPMMLR performed
well in some years, the SPMGAM also showed good ability
in these years, and vice versa. One possible reason could
be that some useful factors, most notably the human activ-
ities, were not included here. There was no doubt that the
human activities, especially the energy consumption, were
the fundamental drivers for the increase of haze pollution. In
this paper, we simply assumed that the difference in pollu-
tant emissions between current and previous years was very
small and that the socioeconomic component of WHDNCP
varied slowly. This assumption could support the seasonal
prediction of haze days in most of the years but was still a
compromise. In certain years, especially the recent years, this
pollutant emission proportion varied rapidly, which needed
to be taken into account. The preceding autumn energy con-
sumption should be a good choice but is difficult to measure,
and its DY could be introduced into the developed models
directly to improve the predictive skill.
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6 Data availability

Atmospheric data are available from the NCEP/NCAR
data archive: http://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.html (NCEP/NCAR, 2016). SST
data are downloaded from http://www.esrl.noaa.gov/
psd/data/gridded/data.noaa.ersst.v4.html (NOAA, 2016).
ASI concentration data can be downloaded from the
Hadley Centre: http://www.metoffice.gov.uk/hadobs/hadisst/
(HadISST, 2016). The monthly gridded soil moisture data
(CPC, 2016a) and the AAO indices (CPC, 2016b) can
be downloaded from NOAA’s Climate Prediction Center:
http://www.cpc.ncep.noaa.gov/products. The ground ob-
servations are from the website http://data.cma.cn/ (CMA,
2016).
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