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Abstract. The northern Eurasian regions and Arctic Ocean
will very likely undergo substantial changes during the next
decades. The Arctic–boreal natural environments play a cru-
cial role in the global climate via albedo change, carbon
sources and sinks as well as atmospheric aerosol production
from biogenic volatile organic compounds. Furthermore, it is
expected that global trade activities, demographic movement,
and use of natural resources will be increasing in the Arctic
regions. There is a need for a novel research approach, which
not only identifies and tackles the relevant multi-disciplinary
research questions, but also is able to make a holistic sys-
tem analysis of the expected feedbacks. In this paper, we in-
troduce the research agenda of the Pan-Eurasian Experiment
(PEEX), a multi-scale, multi-disciplinary and international
program started in 2012 (https://www.atm.helsinki.fi/peex/).

PEEX sets a research approach by which large-scale re-
search topics are investigated from a system perspective and
which aims to fill the key gaps in our understanding of the
feedbacks and interactions between the land–atmosphere–
aquatic–society continuum in the northern Eurasian region.
We introduce here the state of the art for the key topics in
the PEEX research agenda and present the future prospects
of the research, which we see relevant in this context.

1 Introduction

The global environment is changing rapidly due to anthro-
pogenic influences. As a result, we are already facing sev-
eral “grand challenges” in the 21st century (e.g. Smith, 2010;
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Bony et al., 2015; IPCC, 2013; Randers, 2012). Two of these
challenges, climate change and air quality, are strongly in-
fluenced by human activities and their impacts on changing
atmospheric composition, more specifically on the concen-
trations of greenhouse gases (GHG), reactive trace gases, and
aerosol particles. In the future, the Arctic–boreal natural en-
vironment will play a crucial role in the global climate via
albedo changes, carbon sources and sinks as well as aerosol
production from biogenic volatile organic compounds (Ar-
neth et al., 2010, 2014; Ballantyne et al., 2012; Carslaw et
al., 2010; M. Kulmala et al., 2014, 2015).

In order to advance our understanding on interlinked
grand challenges further, we need a research approach that
helps us to construct a holistic scientific understanding of
the feedbacks and interactions within the continuum of
land–atmosphere–aquatic systems and society across dif-
ferent spatial and temporal scales. Therefore, we have es-
tablished the Pan-Eurasian Experiment (PEEX) program
(https://www.atm.helsinki.fi/peex/), which is a multi-scale,
multi-disciplinary research initiative focusing on under-
standing biosphere–ocean–cryosphere–climate–society in-
teractions and feedbacks (Lappalainen et al., 2014; Kulmala
et al., 2015). PEEX fills some of the most critical scien-
tific gaps needed for a holistic understanding of the feed-
back mechanisms characteristic of the northern Eurasian ge-
ographical domain. Boreal forests and peat lands character-
ize the vast land areas of northern Eurasia, with a major part
of them situated inside Russian territory. In addition to nat-
ural environments, the PEEX research program is also in-
terested in different human-influenced environments: from
urban to countryside, from megacities to non-populated re-
mote areas, from areas of dispersed settlements and sparsely-
built environments to heavily industrialized regions. Thus,
the research approach covers the Arctic and boreal regions
situated in northern Eurasia, and also the marine environ-
ments of the Arctic Ocean. PEEX operates in an integra-
tive way using tools from natural and social sciences such
as in situ and satellite observations, laboratory experiments,
multi-scale models, and statistical data analyses, together
with socio-economic analyses. The PEEX research agenda
covers spatial scales from regional to global and temporal
scales and from seconds to decades (Kulmala et al., 2011b).
The scientific results will be used for developing new climate
scenarios on global and regional scales, for constructing reli-
able early warning systems, and for the mitigation and adap-
tation planning of the northern societies in the most efficient
way. PEEX aims to contribute to climate policy concerning
topics important to the Northern Eurasian environment, help-
ing societies build a sustainable future.

2 System perspective approach

Earth (system) sciences (ESS) has emerged as one of the
most rapidly developing scientific fields. The recent growth

of ESS has been facilitated by the importance of understand-
ing the fundamental scientific processes of climate change
and air quality as well as the increasing societal impact of
this research area. The development has mainly taken place
among natural sciences, while the collaboration between
natural and social sciences to tackle climate change issues
has started to emerge relatively slowly. A multi- and cross-
disciplinary approach is thus needed to advance the solution-
oriented understanding of grand challenges and to apply new
knowledge for reliable climate scenario development, miti-
gation, and adaptation as well as early warning system devel-
opment. In addition to enhanced collaboration between dif-
ferent branches of science, there is a need for a next genera-
tion of multi-disciplinary scientists able to connect the scien-
tific issues with an understanding of the societal dimensions
related to the grand challenges.

Climate change can be considered as the main driving
force for system changes and their feedback dynamics, es-
pecially in the Arctic–boreal regions. It has already been es-
timated that the future warming in northern high latitudes
regions will be, on average, larger than that experienced
at lower latitudes (IPCC, 2013, 2014). The climate-change-
driven processes taking place in the Arctic provide a good
example of how important it is to quantify feedback dy-
namics and at the same time study the specific research
topics from the land–atmosphere–hydrosphere–cryosphere–
societal system perspective. For example, the surface radia-
tion balance regulates the melting and freezing of the pack
ice, which in turn is a key climate regulator. Model simu-
lations of Arctic clouds are particularly deficient, impeding
correctly simulated radiative fluxes, which are vital for the
estimation of the snow-/ice-albedo feedback (Vavrus et al.,
2009). Important, yet poorly quantified, players in the Arctic
atmospheric system and climate change are the short-lived
climate forcers (SLCF), such as black carbon and ozone.
The climatic impacts of SLCFs are tightly connected with
cryospheric changes of the land system, and associated with
human activities. Models display diverse and often poor skill
in simulating SLCF abundances both at the surface and ver-
tically through the troposphere at high latitudes (Eckhardt et
al., 2015; Emmons et al., 2015; Monks et al., 2015).

PEEX is setting a research approach where the large-scale
research questions are studied from a system perspective,
and which is also filling the key gaps in our understanding
of the feedbacks and interactions between the land, atmo-
sphere, aquatic, and societal systems in the northern Eurasian
region (Kulmala et al., 2015). We have structured the re-
search agenda so that we have highlighted three thematic re-
search areas per system (Fig. 1). The identification of these
key thematic research areas has been based on a bottom-up
approach by researchers coming from Europe, Russia, and
China, who have participated in PEEX meetings and confer-
ences since 2012. These researchers first introduced a wide
spectrum of specific research topics relevant to the Northern
Eurasian region, which were then evaluated and classified.
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Figure 1. The thematic research areas relevant to the Northern
Eurasian land system include land topic 1 “changing ecosystem pro-
cesses”, land topic 2 “ecosystem structural changes and resilience”
and land topic 3 “risk areas of permafrost thawing”. For the atmo-
spheric system they are atmosphere topic 1 “atmospheric compo-
sition and chemistry”, atmosphere topic 2 “Urban air quality”, are
atmosphere topic 3, “atmospheric circulation and weather”, for the
aquatic system they are aquatic topic 1 “Arctic Ocean in the cli-
mate system”, aquatic topic 2 “maritime ecosystems”, aquatic topic
3 “Lakes and large river systems”, and for the social system they
are society topic 1 “natural resources and anthropogenic activities”,
society topic 2 “natural hazards” and society topic 3 “social trans-
formations”.

This bottom-up process led to the so-called “system-based”
structure with altogether 12 thematic research areas. This ap-
proach will piece by piece lead into a holistic system un-
derstanding, quantifying the dominant feedbacks and inter-
actions between the systems, and providing an understand-
ing of the dynamics of Arctic–boreal biogeochemical cycles
(e.g. water, carbon, nitrogen, phosphorus, sulfur). In our ap-
proach, climate change is the key driver in the dynamics of
the land, atmosphere, aquatic and societal systems (Kulmala
et al., 2015). The large-scale thematic areas of each system
and many of the research highlight topics introduced by the
PEEX research agenda are fundamentally related to climate-
change-driven shifting GHG and SLCF formation processes
and their primary and secondary feedbacks between socioe-
conomic and biogeochemical systems. When studying the
Arctic–boreal feedback loops in a wider context, the PEEX
agenda addresses China as the most crucial source area of
atmospheric pollution, having a significant impact on the
chemical composition of the atmosphere over northern Eura-
sia (Monks et al., 2015). One must keep in mind that solving
air quality–climate interactions is also the key to practical
solutions on local air quality problems in China.

In this paper, we introduce the state of the art of the
selected thematic research areas and summarize the future
research needs at large scale. This introduction acts as a
“White Paper” of the PEEX research community. The the-

matic research areas relevant to the land system are re-
lated to “Changing land ecosystem processes” (Sect. 2.1.1),
“Ecosystem structural changes and resilience” (Sect. 2.1.2),
and “Risk areas of permafrost thawing” (Sect. 2.1.2). In the
land system research agenda, we address the following key
issues: changing boreal forests biomass, Arctic greening, and
permafrost processes. The main research areas of the atmo-
spheric system research are the specific characterization of
the “Atmospheric composition and chemistry” (Sect. 2.2.1),
“Urban air quality” (Sect. 2.2.2.), and the “Atmospheric cir-
culation and weather” (Sect. 2.2.3). In terms of atmospheric
systems, we address oxidants, trace gases, greenhouse gases,
and aerosols as atmospheric key components. We highlight
that future advances in predicting urban air quality and im-
proving weather forecasting are strongly based in atmo-
spheric boundary layer dynamics research (Holtslag et al.,
2013).

The thematic research areas relevant to the Aquatic
System are “the Arctic Ocean in the climate system”
(Sect. 2.3.1), the “Arctic maritime ecosystems” (Sect. 2.3.2),
and the “Lakes, wetland, and large-scale rivers systems”
(Sect. 2.3.3). Under these research areas, we focus on top-
ics like Arctic sea ice changes, marine gross primary pro-
duction, and Arctic pelagic food webs under environmental
changes. Lakes and large-scale river systems have multiple
roles and aspects of the physical environments, starting from
water chemistry and algal blooms, and ending up with carbon
and methane dynamics.

The thematic areas of the societal system have a number
of dimensions, but in the first phase the primary interest lies
on studying the consequences of “Land use and natural re-
sources” (Sect. 2.4.1), on the growing number of “Natural
hazards” (Sect. 2.4.2), and on the “Social transformations”
(Sect. 2.4.3) in the northern Eurasian region. We see topics
like the future Siberian forest area together with fuel balance,
forest fires effecting the carbon and nitrogen balance, and so-
cietal dimensions related to infrastructure degradation as the
most important future research areas. In Sect. 3, we investi-
gate the connections and interlinks between those four sys-
tems.

2.1 Land system – state of the art and future research
needs

2.1.1 Changing land ecosystem processes

In the future, many Arctic–boreal processes will respond sen-
sitively to climate change, affecting ecosystem productivity
and functions. These changes may lead to unprecedented
consequences, e.g. in the magnitude of the ecosystem car-
bon sinks, production of aerosol precursor gases, and surface
albedo. We need first to develop methods for identifying the
land regions and processes that are especially sensitive to cli-
mate change. Only after that are we able to analyse their re-
sponses.
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Boreal forests are one of the largest terrestrial biomes,
and account for around one-third of the Earth’s forested area
(Global Forest Watch, 2002; http://www.globalforestwatch.
org/). Nearly 70 % of all boreal forests are located in the
Siberian region. The forest biomass, soils, and peatlands in
the boreal forest zone together constitute one of the world’s
largest carbon reservoirs (Bolin et al., 2000; Kasischke,
2000; Schepaschenko et al., 2013). Due to their large forest
surface areas and huge stocks of carbon (∼ 320 gigatonnes
of carbon; GtC), the boreal and Arctic ecosystems are sig-
nificant players in the global carbon budget. Furthermore,
permafrost, a dominant feature of Siberian landscapes, stores
around 1700 GtC (Tarnocai et al., 2009). Boreal forests form
the main vegetation zone in the catchment areas of large river
systems, so they are an important part of the global water–
energy–carbon feedbacks.

The forest biomass forms a climate feedback via the
anticipated changes in nutrient availability and tempera-
tures, affecting carbon sequestered into both the aboveground
biomass and soil compartment. The Siberian forests are cur-
rently assumed to be a carbon sink, although with a large
uncertainty range of 0–1 PgC yr−1 (Gurney et al., 2002).
However, these ecosystems are vulnerable to global climate
change in many ways, and the effects on ecosystem prop-
erties and functioning are complicated. While higher ambi-
ent CO2 concentrations and longer growing seasons may in-
crease plant growth and productivity, as well as the storage
of carbon to soil organic matter (e.g. Ciais et al., 2005; Men-
zel et al., 2006), warming affects respiration and ecosystem
water relations in the opposite way (Bauerle et al., 2012; Par-
mentier et al., 2011). Expected acceleration of fire regimes
might also substantially impact the carbon balance in Arctic
and boreal regions (Shvidenko and Schepaschenko, 2013).

One example of the potentially large feedbacks is the crit-
ical role that permafrost plays in supporting the larch forest
ecotone in northern Siberia. The boreal forests in the high
latitudes of Siberia are a vast, rather homogenous ecosystem
dominated by larch. The total area of larch forests is around
260 million ha, or almost one-third of all forests in Russia.
Larch forests survive in the semi-arid climate because of
the unique symbiotic relationship they have with permafrost.
The permafrost provides enough water to support larch dom-
ination, and the larch in turn blocks radiation, protecting the
permafrost from intensive thawing during the summer sea-
son. The anticipated thawing of permafrost could decouple
this relationship, and may cause a strong positive feedback,
intensifying the warming substantially.

The ambient temperature, radiation intensity, vegetation
type, and foliar area are the main constraints for the emission
of biogenic volatile organic compounds (BVOCs) (Laotha-
wornkitkul et al., 2009). This makes BVOC emissions sensi-
tive to both climate and land use changes, via, e.g., increased
ecosystem productivity or the expansion of forests into tun-
dra regions. Although the inhibitory effect of CO2 on the pro-
cess level may be important, Arctic greening may strongly

enhance the production of BVOCs in northern ecosystems
(Arneth et al., 2007; Sun et al., 2013). Open tundra may also
act as a significant source for BVOCs, especially if the snow
cover period changes (Aaltonen et al., 2012; Faubert et al.,
2012). This would lead to negative climate feedbacks involv-
ing either aerosol–cloud or aerosol–carbon cycle interactions
(M. Kulmala et al., 2013, 2014; Paasonen et al., 2013). Linear
trends in the annual maximum normalized difference vegeta-
tion index (NDVI) over 15 years in the northern areas of the
Yamalo-Nenets Autonomous Okrug region in Russia, pro-
vide supporting evidence of the increasing biological activity
and greening, and the potential for enhanced BVOC emis-
sions (Fig. 2).

In summary, even small proportional changes in ecosys-
tem carbon uptake can switch terrestrial ecosystems from a
net carbon sink to a carbon source, with consequent impacts
on atmospheric CO2 concentrations and global temperatures
(e.g. Bala et al., 2013; Bodman et al., 2013, Mukhortova et
al., 2015). This process has already been observed, partic-
ularly in disturbed forests of northern Asia (Shvidenko and
Schepaschenko, 2014). Currently, we do not fully understand
all the factors influencing carbon storage, or the links be-
tween biogeochemical cycles of carbon, water, and nutrients
in a changing climate. However, the changes in these pro-
cesses may be large, and their impacts may either amplify
or decrease climate change, especially in the high northern
latitudes.

2.1.2 Ecosystem structural changes and resilience

The ecosystem structural changes are tightly connected to
adaptation needs, and to the development of effective miti-
gation and adaptation strategies. Predictions concerning the
shifting of vegetation zones are important for estimating
the impacts of the region on future global GHG, BVOC,
and aerosol budgets. Furthermore, natural and anthropogenic
stresses, such as land use changes and biotic and abiotic dis-
turbances, are shaping ecosystems in the Arctic and boreal
regions and have many important feedbacks to climate (see,
e.g., the review by Gauthier et al., 2015). In a warmer cli-
mate, northern ecosystems may become susceptible to insect
outbreaks, drought, devastating forest fires, and other natu-
ral disasters. In addition, human impacts may cause sudden
or gradual changes in ecosystem functioning. The ecosys-
tem resilience is dependent on both the rate and magnitude
of these changes. Recent studies have concluded that current
estimates very likely overestimate the resilience of global
forests and particularly boreal forests (Allen et al., 2015).
In some cases, the changes may lead to system imbalance
and possibly reaching a tipping point, after which the effects
are irreversible. One of the most relevant research topics for
the land system are to determine the structural changes and
tipping points of the ecosystem changes in the northern pan-
Eurasian region.
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Figure 2. Linear trends in the annual maximum normalized dif-
ference vegetation index (NDVI) obtained from analysis of the
MODIS 0.25 km data product for 2000–2014 over the north-western
Siberia region in Russia. The trends are given in the NDVI changes
per 15 years. The yellow colours show the decreasing NDVI, which
corresponds to decreasing biological production; the blue colours
show the increasing NDVI. More detailed analysis of the trends is
given in Esau et al. (2016).

Part of the expected ecosystem structural changes is re-
lated to the lengthening of the growing season, which is tak-
ing place the Arctic–boreal regions due to climate change.
This phenomenon, called “Arctic greening”, is due to in-
creased plant biomass growth and advancing tree lines, turn-
ing previously open tundra into shrubland or forest (Myneni
et al., 1997; Xu et al., 2015). However, “browning” as a proxy
of decreased productivity has also been observed during re-
cent decades in many boreal regions (Lloyd and Bunn, 2007),
including vast territories of central Siberia, together with a
general downward trend in basal area increment after the
mid-20th century (Berner et al., 2013) and the overall decline
in green from 2011 to 2014 in Arctic regions (Phoenix and
Bjerke, 2016). Current predictions on the extent and magni-
tude of these processes vary significantly (Tchebakova et al.,
2009; Hickler et al., 2012; Shvidenko et al., 2013a, b). It has
been estimated that the northward shift of bioclimatic zones
in Siberia will be as large as 600 km by the end of this century
(Tchebakova et al., 2009). By taking into account that the
natural migration rate of boreal tree species cannot exceed
200–500 m per year, such a forecast implies major vegetation
changes in huge areas. In addition, we need to have a deeper
understanding of the future role of the browning process and
to re-analyse the previous model predictions of arctic green-

ing: to what extent are they wrong, and why (Phoenix and
Bjerke, 2016)? This has important biophysical consequences
and climatic feedbacks. Changes in vegetation cover can,
e.g., lead to albedo changes and therefore higher net absorp-
tion of radiation in regions covered by forests compared to
open vegetation (Jeong et al., 2011). This modifies the local
heat and vapour fluxes, and affects boundary layer conditions
as well as both local and larger-scale climate (Sellers et al.,
1997).

Northern peatlands contain a significant part of the global
soil organic matter reservoirs (45 % of the world’s soil car-
bon; Post et al., 1982), and comprise one of the world’s
largest GHG sources (in particular CH4) (IPCC, 2013). The
hydrological conditions are a major factor in determining the
functioning of peatlands as carbon source or sink, and the
carbon balance of the vast northern peatlands is extremely
sensitive to human influence, be it through either manage-
ment or climate change. For example, thawing of permafrost
peatlands in tundra regions might change tundra ecosystems
from a stable state into a dynamically changing and alternat-
ing land–water mosaic, with dramatic impacts on their GHG
production (Heikkinen et al., 2004; Repo et al., 2009). To-
day, peatland management activities range from drainage and
peat harvesting to establishing crop plantations and forests.
A complete understanding of the climatic effects of peatland
management remains a challenging question (Maljanen et al.,
2010).

Northern ecosystems are frequently suffering from in-
creased stresses and deterioration. There is seldom a single
and clear cause for forest dieback, but rather the ecosys-
tems are suffering from multiple stresses simultaneously
(e.g. Kurz et al., 2008a, b; Allen et al., 2010). This implies
that a single stress factor may not be very dramatic for the
resilience of the system, but when occurring simultaneously
in combination with others, the system may cross a thresh-
old (i.e. tipping point), and this may have dramatic conse-
quences. Such perturbations and disturbances can include not
only long-term pollutant exposures, but also stochastic events
such as fires, flooding, windstorms, or insect population out-
breaks, and human activities such as deforestation or the in-
troduction of exotic plant or animal species. Disturbances
of sufficient magnitude or duration can profoundly affect an
ecosystem, and may force an ecosystem to reach a thresh-
old beyond which a different regime of processes and struc-
tures predominates. Climate warming, precipitation changes
during growth periods, and permafrost changes will substan-
tially increase water stress, and consequently increase the
risk of mortality for trees. This process has already clearly
intensified over the entire circumpolar boreal belt (Allen et
al., 2010). As a consequence, ecosystems may turn into car-
bon sources rather than sinks (Parmentier et al., 2011).

In the future, boreal forest diebacks may occur due to mass
infections of invasive pathogens or herbivores, such as the
autumnal moth (Epirrita autumnata) or mountain bark beetle
(Dendroctonus ponderosae), which have previously been cli-
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matically controlled by harsh winter conditions. The growth
and life cycles of herbivores or their habitat conditions may
change in such a way that the outbreak frequencies and inten-
sities of previously relatively harmless herbivore populations
increase (Hunter et al., 2014). At the same time as climate is
changing, boreal vegetation is also exposed to increased an-
thropogenic influences by pollutant deposition and land use
changes (Dentener et al., 2006; Bobbink et al., 2010; Savva
and Berninger, 2010). Large industrial complexes may lead
to local forest diebacks, as has been observed in the Kola re-
gion (e.g. Nöjd and Kauppi, 1995; Tikkanen, 1995; Kukkola
et al., 1997) and in some regions of Siberia (Baklanov et al.,
2013). Societal transformations may lead to abandonment
of agricultural land or deterioration of previously managed
forests.

2.1.3 Risk areas of permafrost thawing

The major part of the northern Eurasian geographical region
is covered by continuous permafrost. The fate of permafrost
soils in high latitudes is important for global climate with
regard to all greenhouse gases. Thawing of permafrost will
also substantially alter the hydrological regimes, particularly
in northern Asia, which will lead to increasing water stress
in forests and explosive enlargement of fire extent and sever-
ity as well as post fire successions (Shvidenko et al., 2013b).
These scenarios underline the urgent need for systematic per-
mafrost monitoring, together with GHG measurements in
various ecosystems. The treatment of permafrost conditions
in climate models is still not fully developed (Bala et al.,
2013). The major question is, how fast will the permafrost
thaw proceed and how will it affect ecosystem processes and
ecosystem–atmosphere feedbacks, including hydrology and
greenhouse gas cycling.

Understanding of the feedbacks between carbon and water
cycling, ecosystem functioning, and atmospheric composi-
tion related to permafrost thawing is one of the important top-
ics of the land system study (Heimann and Reichstein, 2008;
Schuur et al., 2009; Arneth et al., 2010). In high-latitude
ecosystems with large, immobile carbon pools in peat and
soil, the future net CO2 and CH4 exchange will depend on
the extent of near-surface permafrost thawing, local thermal
and hydrological regimes, and interactions with the nitro-
gen cycle (Tarnocai et al., 2009). The extra heat produced
during microbial decomposition could accelerate the rate of
change in active-layer depth, potentially triggering a sudden
and rapid loss of carbon stored in carbon-rich Siberian Pleis-
tocene loess (yedoma) soils (Khvorostyanov et al., 2008).

The connection between the climate and the thermal con-
ditions in the subsurface layers (soil and bedrock) is an
important aspect. The warming of the atmosphere will in-
evitably result in the warming of the permafrost layer, and is
easily observed in deep borehole temperature data. However,
the changes depend on the soil and rock type as well as on
the pore filling fluids. As long as the pore fill is still ice, the

climatic changes are reflected mainly in the thickness of the
active layer, and in slow diffusive temperature changes of the
permafrost layer itself. In areas where the ground is domi-
nated by low ground temperatures and thick layers of porous
soil types (e.g. sand, silt, peat), the latent heat of the pore-
filling ice will efficiently “buffer” and retard the final thaw-
ing. This is one of the reasons why relatively old permafrost
exists at shallow depths in high-porosity soils. On the other
hand, quite different conditions prevail in low-porosity areas,
e.g. in crystalline rock areas.

The permafrost dynamics affect methane fluxes in many
ways. Hot spots such as mud ponds emitting large amounts
of CH4 may form when permafrost mires thaw. In contrast,
lakes have occasionally disappeared as a result of the in-
tensification of soil water percolation (Smith et al., 2005).
The rapid loss of summer ice, together with increasing tem-
perature and melting ice deposits, results in coastal erosion,
physical destruction of the surface in hilly areas, activation of
old carbon and elevated CO2 and CH4 emissions from sea-
bottom sediments (Vonk et al., 2012). High methane emis-
sions have been observed from the East Siberian Arctic Shelf
(Shakhova et al., 2010).

2.2 Atmospheric system – state-of-the-art and future
research needs

2.2.1 Atmospheric composition and chemistry

Atmospheric composition plays a central role in the north-
ern Eurasian climate system. In addition to greenhouse gases
and their biogeochemical cycling discussed in more detail in
Sect. 3.2, key compounds in this regard are ozone and other
oxidants, carbon monoxide, numerous organic compounds as
well as different types of aerosols and their precursors (SO2
will be discussed in Sect. 3.5). At the moment, there is a se-
rious gap in our knowledge on tropospheric composition and
chemistry over Russia and China, with particularly few ob-
servation programs being active over Siberia (Crutzen et al.,
1998; Ramonet et al., 2002; Paris et al., 2008; Kozlova et al.,
2008; Uttal et al., 2015, Paris et al., 2010a, b; Sasakawa et al.,
2010; Chi et al., 2013; Saeki et al., 2013; Ding et al., 2013a,
b; Berchet et al., 2015; Heimann et al., 2014).

There is thus an urgent need for harmonized, coordinated
and comprehensive greenhouse gas, trace gas, and aerosol
in situ observations over northern Eurasia and China (long-
term transport aspect) comparable to European and circum-
polar data observations. In Fig. 3 we illustrate the geograph-
ical coverage of the ground stations that will be part of the
coordinated, coherent, and hierarchic observation network in
the northern Eurasian region and in China.

Main pollutants

Little is known about whether and how the regional ozone
budget in northern pan-Eurasia differs from that in the rest of
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Figure 3. Map showing the existing ACTRIS (aerosols, clouds,
and trace gases research infrastructure network) and ICOS (Inte-
grated Carbon Observations System) stations in Europe (blue), sta-
tions making atmospheric and/or ecosystem measurements in Rus-
sia (red), INTERACT (International Network for Terrestrial Re-
search and Monitoring in the Arctic) stations in Russia (light blue),
and China Flux stations in China (yellow). However, all of these
stations need certain upgrades.

the Northern Hemisphere (Ding et al., 2008; Berchet et al.,
2013). Arctic tropospheric ozone is significantly influenced
by long-range import of ozone and precursors from mid-
latitude sources as well as by boreal wildfires (Ding et al.,
2009; Wespes et al., 2012; Paris et al., 2010b; Vivchar et al.,
2009). The role of biomass burning emissions in the ozone
budget in high latitudes remains controversial. While most
studies suggest significant ozone production in boreal smoke
plumes (e.g. Paris et al., 2010b; Parrington et al., 2013; Jol-
leys et al., 2015), some observations from individual plumes
suggest that O3 production in boreal wildfire plumes may
be weaker, or even turn into net destruction, compared to
fire plumes at lower latitudes (Liang et al., 2011; Jaffe and
Wigder, 2012). Recent modelling work has suggested that
boreal fires produce a substantial large-scale enhancement
in summertime ozone at high latitudes, which appears to be
highly sensitive to differences in partitioning of reactive ni-
trogen among models (Arnold et al., 2015). The boreal bio-
sphere, on the other hand, provides a large sink for tropo-
spheric ozone (Paris et al., 2010b; Parrington et al., 2013).
Given their importance for air quality and global greenhouse
gas budget, more atmospheric measurements of O3, its pre-
cursors and other pollutants over Siberia are needed (see
Elansky et al., 2012). This is particularly the case in light
of increasing local Arctic sources of ozone precursors (NOx ,
VOCs, volatile organic compounds) from, e.g., shipping and
fossil fuel resource extraction (Roiger et al., 2015). Such data
sets would be particularly useful for the evaluation of atmo-
spheric chemistry models and satellite products.

The changes in the abundance of anthropogenic aerosols
and their precursors in northern Eurasia have been extensive
during the last decades (Granier et al., 2011), and this has
almost certainly contributed to the very different regional
warming patterns over these areas (e.g. Shindell and Falu-
vegi, 2009). The main anthropogenic aerosols in this context
are primary carbonaceous particles, consisting of organic and
black carbon as well as secondary sulfate particles produced
during the atmospheric transport of sulfur dioxide. These
species, as well as nitrate, have also been found to domi-
nate the aerosol composition at the Zotino Tall Tower Obser-
vation Facility (ZOTTO) site in central Siberia (Mikhailov
et al., 2015a, b; Ryshkevich et al., 2015). These aerosols
cause large perturbations to the regional radiation budget
downwind of major source areas in the northern Eurasian re-
gion, and the resulting changes in cloud properties and atmo-
spheric circulation patterns may be important even far away
from these sources (Koch and Del Genio, 2010; Persad et
al., 2012). In the snow-covered parts of Eurasia, long-range
transported aerosols containing black carbon and deposited
onto snow tend to enhance the spring and early-summer melt-
ing of the snow, with concomitant warming over this region
(Flanner et al., 2009; Goldenson et al., 2012; Meinander et
al., 2013; Atlaskina et al., 2015).

The most important natural aerosol type over large parts of
Eurasia is secondary organic aerosol originating from atmo-
spheric oxidation of BVOCs emitted by boreal forests and
possibly other ecosystems. Studies conducted in the Scan-
dinavian part of the boreal zone indicate that new particle
formation associated with BVOC emissions is the dominant
source of aerosol particles and cloud condensation nuclei
during summer time (Mäkelä et al., 1997; Kulmala et al.,
2001; Tunved et al., 2006; Asmi et al., 2011; Hirsikko et
al., 2011). The production of secondary organic aerosols as-
sociated with BVOC emissions has been estimated to in-
duce large direct and indirect radiative effects over the bo-
real forest zone (Spracklen et al., 2008; Tunved et al., 2006;
Lihavainen et al., 2009, 2015; Scott et al., 2014). The few
continuous measurement data sets from Siberia suggest sim-
ilarities in the frequency and seasonal pattern of new par-
ticle formation events between Siberia and Nordic stations
(Dal Maso et al., 2007; Arshinov et al., 2012; Asmi et
al., 2016). Measurements conducted at the ZOTTO site in
central Siberia have shown that biogenic secondary organic
aerosols reach high concentrations in summer and dominate
the aerosol composition during this season (Mikhailov et al.,
2015a, b; Ryshkevich et al., 2015). At this site, however, new
particle formation events are seen much less frequently than
at the Nordic stations (Heintzenberg et al., 2011). At present,
relatively little is known about the overall contribution of bio-
genic emissions to aerosol number or mass concentrations, or
to the cloud condensation nuclei budget, in northern Eurasia.

Other important natural aerosol types in northern Eurasia
are sea spray, mineral dust, and primary biogenic aerosol par-
ticles. Sea spray aerosol makes an important contribution to
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the atmospheric aerosol over the Arctic Ocean and its coastal
areas (Zábori et al., 2012, 2013), and influences cloud proper-
ties over these regions (Tjernström et al., 2014). The climatic
effects of sea spray are expected to change in the future as
a result of changes in the sea ice cover and ocean temper-
atures (Struthers et al., 2011). Mineral dust particles affect
regional climate and air quality over large regions in Asia,
especially during periods of high winds and moderate pre-
cipitation. Mineral dust and primary biological aerosol par-
ticles (PBAPs) particles are also effective ice nuclei (Hoose
and Möhler, 2012), and have the potential to influence radia-
tive and other properties of mixed-phase cold clouds in the
Arctic–boreal regions. Over northern Eurasia, PBAPs typi-
cally contribute more than 20 % of PM2.5 (fine particulate
matter with a diameter of 2.5 µm or less) organic aerosol
mass concentrations (Heald and Spracklen, 2009) and 25 %
of supermicron aerosol number concentrations (Spracklen
and Heald, 2014). Ice nucleation, in general, is one of the
key microphysical processes in the atmosphere that remain
ill understood. However, a novel theoretical approach (Laak-
sonen, 2015; Laaksonen and Malila, 2016) has been shown
to be superior to older theories in the case of water nucleation
on solid surfaces, and it may open a completely new avenue
in the studies of atmospheric ice formation.

Satellites provide information about spatial distributions
of the column-integrated concentrations of aerosols (An-
dreae, 2009) and various trace gases including ozone and its
precursors (Burrows et al., 2011). These atmospheric con-
stituents are generally retrieved using passive instruments,
which have good sensitivity near the surface. However, re-
trieving information on the near-surface concentrations of
pollutants requires assumptions on their vertical distribu-
tions. For instance, the retrieval of tropospheric ozone from
satellite observations requires corrections for the high con-
centrations in the upper troposphere and lower stratosphere.
For aerosols, which can only be retrieved in clear-sky con-
ditions, the situation may be complicated when disconnected
layers are present with different types of aerosols. A solu-
tion may be the retrieval of aerosol vertical variation or the
height of the aerosol layer using, e.g., active instruments
(lidars), or retrieval using spectrally resolved observations
in the oxygen A-band (e.g. Hollstein and Fisher, 2014), or
instruments providing multiple viewing algorithms such as
MISR (Nelson et al., 2013) or AATSR (Virtanen et al., 2014).
Another complication for aerosols may be the vertical vari-
ation of the physical and chemical properties, which renders
it difficult to obtain closure between column and ground-
based in situ measurements (Zieger et al., 2015, and refer-
ences cited therein). Nevertheless, good progress has been
made in aerosol retrieval, and column-integrated aerosol
measurements (aerosol optical depth, AOD) from satellites
and ground-based observations compare favourably (e.g. de
Leeuw et al., 2015; Kolmonen et al., 2015). Measurements
of trace gases from space using wavelengths in the thermal
infrared suffer from low sensitivity in the lower troposphere

(Pommier et al., 2010). All these factors may render the com-
parison against local ground-based in situ observations diffi-
cult, although a possible way out could be the use of chemi-
cal transport models constrained by the satellite column mea-
surements (e.g. de Laat et al., 2009; Stavrakou et al., 2012,
2014), possibly together with sub-orbital airborne measure-
ments of relevant species. Satellite-measured AOD has been
successfully applied to obtain information on ground-based
aerosol mass concentrations (PM2.5) (Xu et al., 2015; van
Donkelaar et al., 2015). In addition, the use of multiple satel-
lite instruments, with different characteristics, is proposed to
obtain more accurate information on the transport of aerosols
and trace gases and their vertical distribution (e.g. Naeger et
al., 2016). Recently, a technique has been demonstrated that
makes it possible to derive CCN (cloud condensation nuclei)
concentrations at cloud base using remote sensing of cloud
properties (Rosenfeld et al., 2016).

Large-scale pollutant transport and sources

Of particular interest is the pollutant transport to Arctic areas,
where they can influence the radiation budget and climate in
various ways (Stohl, 2006; Warneke et al., 2009; Meinan-
der et al., 2013; Eckhardt et al., 2015). Model simulations
suggest that European emissions dominate Arctic pollutant
burdens near the surface, with sources from North America
and Asia more important in the mid- and upper troposphere
(Monks et al., 2015). The impact and influence of China and
its polluted megacities on Arctic and boreal areas is a topic
of key importance, given recent and rapid Chinese industri-
alization. Inter-continental pollution transport has also be-
come of increased concern due to its potential influence on
regional air quality. The pollutant export from North America
and Asia has been characterized by intensive field campaigns
(Fehsenfeld et al., 2006; Singh et al., 2006), but long-term re-
search approaches are lacking.

Emissions from forest fires (van der Werf et al., 2006;
Sofiev et al., 2013) and from agricultural fires in southern
Siberia, Kazakhstan, and Ukraine (Korontzi et al., 2006) in
spring and summer are large sources of trace gases such as
carbon monoxide (Nédélec et al., 2005; Konovalov et al.,
2014) as well as aerosol particles (Konovalov et al., 2015).
Aerosols emitted by forest fires are of particular interest,
since the strength of this source type depends on both cli-
mate change and human behaviour (Pechony and Shindell,
2010), and since particles emitted by these fires have po-
tentially large radiative effects over Eurasia (Randerson et
al., 2006). We need comprehensive top-down emissions es-
timates, using inverse modelling constrained by satellite ob-
servations, in order to provide quantitative information on the
source strength of aerosols and trace gases emitted by open
fires.

Air pollution in monsoon Asia has two main character-
istics. First, the total pollutant emission rate from fossil fuel
combustion sources is very high, leading to a high concentra-
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tion of primary and secondary pollutants in Asia, especially
in eastern China and northern India. Observations show that
Asia is the only region where the concentrations of key pol-
lutants, such as nitrogen oxides (Richter et al., 2005; Mi-
jling et al., 2013) and their end-product ozone (Ding et al.,
2008; Wang et al., 2009; Verstraeten et al., 2015), are still in-
creasing. Second, in addition to the anthropogenic fossil fuel
combustion pollutants, monsoon Asia is also influenced by
intensive pollution from seasonal biomass burning and dust
storms. For example, intensive forest burning activities often
take place in south Asia during spring and in Siberia during
summer, whereas intensive anthropogenic burning of agri-
cultural straw takes place in the north and east China plains.
Dust storms frequently occur in the Taklimakan and Gobi
deserts in north-west China, and this dust is often transported
over eastern China, southern China, the Pacific Ocean and
even the entire globe (Nie et al., 2014). After mixing with
other anthropogenic pollutants, biomass burning and mineral
dust aerosols have been found to cause complex interactions
in the climate system (Ding et al., 2013a; Nie et al., 2014).

2.2.2 Urban air quality

The northern Eurasian urban environments are characterized
by cities with strong anthropogenic emissions from local
industry, traffic, and housing in Russia and China, and by
megacity regions with alarming air quality levels like those
of Moscow and Beijing. Bad air quality has serious health
effects and damages ecosystems. In Beijing, for example,
concentrations of atmospheric fine particles have been found
to be more than 10 times higher than the safe level recom-
mended by the World Health Organization (WHO) (Zheng et
al., 2015). Furthermore, atmospheric pollutants and oxidants
play a central role in climate change dynamics via their direct
and indirect effects on global albedo and radiative transfer.
A deeper understanding of the unpredicted chemical reac-
tions between pollutants and identification of the most rele-
vant feedbacks between air quality and climate at northern
high latitudes and in China is the most urgent task helping
us to find practical solutions for more healthy air (Kulmala,
2015).

In Siberian cities, the air quality is strongly linked to cli-
matic conditions typical for Siberia. Stable atmospheric strat-
ification and temperature inversions are predominant weather
patterns for more than half of the year. This contributes to
the accumulation of different pollutants in the lowest layers
of the atmosphere, thus increasing their impact on ecosys-
tems and humans. In addition to the severe climatic condi-
tions, human impacts on the environment in industrial areas
and large cities continue to increase. In winter time, shallow
and stably stratified planetary boundary layers (PBL) typi-
cal for northern Scandinavia and Siberia are especially sen-
sitive to even weak impacts and, therefore, deserve partic-
ular attention, especially in the conditions of environmental
and climate change (Zilitinkevich and Esau, 2009; Esau et

al., 2012; Davy and Esau, 2014; Wolf et al., 2014; Wolf and
Esau, 2014). Unstably stratified PBLs interact with the free
atmosphere mainly through turbulent ventilation at the PBL
upper boundary (Zilitinkevich, 2012). This mechanism, still
insufficiently understood and poorly modelled, controls the
development of convective clouds, as well as dispersion and
deposition of aerosols and gases, which are essential features
of heat waves and other extreme weather events.

The worst air pollution episodes are usually associated
with stagnant weather conditions with a shallow PBL, which
promotes the accumulation of intensively emitted pollutants
near the surface. The lower PBL is also influenced by the
heavy pollution itself through its direct or indirect effects on
solar radiation and hence the surface sensible heat flux (e.g.
Ding et al., 2013b). The boundary layer–air pollution feed-
back will decrease the height of the PBL and result in an
even more polluted PBL (Ding et al., 2013b; Wang et al.,
2014; Petäjä et al., 2016). Therefore, considering the com-
plex land-surface types (city clusters surrounded by agricul-
tural areas) and pollution sources, improving our understand-
ing of the associated feedbacks is very important for fore-
casting extreme air pollution episodes and for long-term pol-
icymaking. In order to understand this topic, more vertical
measurements using aircraft, balloons, and remote sensing
techniques, as well as advanced numerical models including
all relevant processes and their couplings, are needed.

Planetary boundary layers are subject to diurnal variations,
absorb surface emissions, control microclimate, air pollu-
tion, extreme colds, and heat waves, and are sensitive to
human impacts. Very stable stratification in the atmosphere
above the PBL prevents the compounds produced by the sur-
face fluxes or surface emissions from efficiently penetrat-
ing from the PBL into the free atmosphere. This means that
the PBL height and turbulent fluxes through the PBL up-
per boundary control local features of climate and extreme
weather events, such as the heat waves associated with con-
vection, or the strongly stable stratification events trigger-
ing the air pollution (Zilitinkevich et al., 2015). This con-
cept (equally relevant to the hydrosphere) illustrates the im-
portance of modelling and monitoring the atmospheric PBL
height, which varies from dozens to thousands of metres (Zil-
itinkevich, 1991; Zilitinkevich et al., 2007; Zilitinkevich and
Esau, 2009). To carry out a comprehensive inventory of the
PBL height over northern Eurasia is urgently needed.

2.2.3 Atmospheric circulation and weather

The ongoing environmental change and its amplification in
northern Eurasia pose special challenges to the prediction
of weather-related hazards, and also to long-term impacts.
A key question is how the atmospheric dynamics (synoptic
scale weather, boundary layer characteristics) will change in
Arctic and boreal regions. The recent changes in the Arctic
sea ice have been much more rapid than models and scientists
anticipated about 10 years ago. The role of the Arctic Ocean
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in the climate system and sea ice changes have affected mid-
latitude weather and climate, with central and eastern Eura-
sia among the regions with strongest effects (Vihma, 2014;
Overland et al., 2015) (see Sect. 2.3.1).

Atmospheric dynamics

The reliability of weather forecasts, and the extension of the
time range of useful forecasts is needed for minimizing eco-
nomic and human losses from extreme weather and extreme
weather-related natural hazards. In Europe, this range is cur-
rently on average about 8–9 days (Bauer et al., 2015), which
allows reliable early warnings to be issued for weather-
related hazards, such as windstorms and extreme precipita-
tion events with flash floods. The time range of useful fore-
casts has typically increased by a day per decade over the past
three decades (Uppala et al., 2005). In the northern Eurasian
region, improved predictions can be used, for instance, for
better prediction of thermal comfort conditions in northern
cities (Konstantinov et al., 2014). A strong urban heat island
effect has already been observed in urban areas of the Arctic
with complex spatial and temporal structures (Konstantinov
et al., 2015).

Understanding of PBL processes is particularly important
for improving the weather predictions. The representation of
boundary layer clouds, and their further coupling to convec-
tion in stable conditions is not currently well understood.
Quantification of the behaviour of the PBL over the northern
Eurasian region is needed in analyses of spatial and temporal
distribution of the surface fluxes, in predictions of microcli-
mate and extreme weather events, and in modelling clouds
and air quality.

The development of diagnostic and modelling methods
for aero-electric structures is important for a study of both
convective and electric processes in the lower troposphere
(Shatalina et al., 2005, 2007). Convection in the PBL leads
to the formation of aero-electric structures, manifested in
ground-based measurements as short-period electric-field
pulsations with periods from several seconds to several hun-
dreds of seconds (Anisimov et al., 1999, 2002). The sizes of
such structures are determined by the characteristic variation
scales of aerodynamic and electrodynamics parameters of the
atmosphere, including the PBL and surface-layer height as
well as by the inhomogeneities in the ground (water) sur-
face. Formed as a result of convective processes and the cap-
ture of positive and negative charged particles (both ions and
aerosols) by convective elements (cells), aero-electric struc-
tures move with the airflow along the Earth’s surface. The
further evolution of convective cells results, in particular, in
cloud formation.

Global electric circuit

The global electric circuit (GEC) is an important factor con-
necting the solar activity and upper atmospheric processes

with the Earth’s environment, including the biosphere and
climate (Dolezalek et al., 1976; Singh et al., 2004). Thun-
derstorm activity maintains this circuit, whose appearance
is dependent on atmospheric conductance variations over a
wide altitude range. The anthropogenic impact on the GEC
through aviation, forest fires, and electromagnetic pollution
has been noted with great concern, and the importance of
lightning activity in climate processes has been recognized.
The GEC forms for two reasons: the continuous operation of
ionization sources, which provides an exponential growth of
the conductivity in the lower atmosphere, and the continuous
operation of thunderstorm generators, providing a high rate
of electrical energy generation and dissipation in the tropo-
sphere. Therefore, the GEC is influenced by both geophysi-
cal and meteorological factors, and can serve as a convenient
framework for the analysis of possible inter-connections be-
tween atmospheric electrical phenomena and climate pro-
cesses. Further exploration of the GEC as part of the climate
system studies, specifically its effect on the balance between
the Earth’s ionosphere and global circuit, requires accurate
modelling of the GEC stationary state and its dynamics (Ma-
reev, 2010). Special attention should be paid to the observa-
tions and modelling of generators (thunderstorms, electrified
shower clouds, mesoscale convective systems) in the global
circuit.

2.3 Aquatic system – state of the art and future
research needs

2.3.1 The Arctic Ocean in the climate system

The essential processes related to the interaction between the
Arctic ocean and other components of the Earth system in-
clude the air–sea exchange of momentum, heat, and matter
(e.g. moisture, aerosol, trace gases, CO2, and CH4) as well
as the dynamics and thermodynamics of sea ice. The most
dramatic change in the Arctic Ocean has been the rapid de-
cline of the sea ice cover. Since the early the 1980s, the Arc-
tic sea ice extent has decreased by roughly 50 % in summer
and autumn (Cavalieri and Parkinson, 2012), while the win-
ter sea ice thickness in the central Arctic has decreased by
approximately 50 % (Kwok and Rothrock, 2009). Arctic sea
ice changes have serious teleconnections. Despite the warm-
ing climate, wintertime cold spells in East Asia have become
more frequent, stronger and longer lasting in this century
compared with the 1990s (Kim et al., 2014). It also seems
that the strong decline of the Arctic sea ice has favoured at-
mospheric pressure patterns that generate cold-air outbreaks
from the Arctic to East Asia (Mori et al., 2014; Kug et al.,
2015; Overland et al., 2015). The reasons for and the future
evolution of the sea ice decline, as well as its effects on the
ocean, atmosphere and surrounding continents are among the
current topics of study on the Arctic climate system. Other
major issues include the role of the ocean in the Arctic am-
plification of climate change, greenhouse gas exchange be-
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tween the ocean, sea ice, and atmosphere as well as aerosol
budgets in the marine Arctic (Smedsrud et al., 2013). The
key question here is related to the changes of sea ice extent
and thickness, and to the terrestrial snow cover change.

Many of the processes considered to be responsible for the
Arctic amplification of climate warming are related to the
ocean and sea ice (Döscher et al., 2014). Among these, the
snow-/ice-albedo feedback has received the most attention
(e.g. Flanner et al., 2011). This feedback is strongest when
sea ice is replaced by open water, but it starts to play a sig-
nificant role already in spring when the snowmelt on top of
sea ice begins. This is because of the large albedo difference
between dry snow (albedo about 0.85) and wet, melting, bare
ice (albedo about 0.40). More work is needed to understand
quantitatively the reduction of snow/ice albedo during the
melting season, including the effects of melt ponds and pol-
lutants in the snow. Other amplification mechanisms related
to the ocean include increased heat transports from lower lat-
itudes to the Arctic (Polyakov et al., 2010; Döscher et al.,
2014) and fall–winter energy loss from the ocean (Screen
and Simmonds, 2010). Furthermore, the melting of sea ice
strongly affects evaporation, and hence the water vapour and
cloud radiative feedbacks (Sedlar et al., 2011), and the PBL
thickness, which controls the sensitivity of the air tempera-
ture to heat input into the PBL (Esau et al., 2012; Davy and
Esau, 2016). The relative importance of the mechanisms af-
fecting the Arctic amplification of climate warming are not
yet well known (see also Pithan and Mauritsen, 2014; Cohen
et al., 2014).

The rapid decline of the Arctic sea ice cover has tremen-
dous effects on navigation and exploration of natural re-
sources. To be able to predict the future evolution of the sea
ice cover, the first priority is to better understand the reasons,
including the role of black carbon (see Bond et al., 2013),
behind the past and ongoing sea ice evolution. Several pro-
cesses have contributed to the decline of Arctic sea ice cover,
but the role of these processes needs better quantification
(Smedsrud et al., 2013; Vihma et al., 2014). Further studies
are needed on the impacts of changes in cloud cover and ra-
diative forcing (Kay et al., 2008), atmospheric heat transport
(Kapsch et al., 2013) and oceanic heat transport (Döscher et
al., 2014). In addition, as the ice thickness has decreased,
the sea ice cover becomes increasingly sensitive to the ice-
albedo feedback (Perovich et al., 2008). Other issues calling
for more attention include the reasons for the earlier onset of
the spring melt (Maksimovich and Vihma, 2012), changes in
the phase of precipitation (Screen and Simmonds, 2012), and
large-scale interaction between the sea ice extent, sea surface
temperature distribution, and atmospheric dynamics (cyclo-
genesis, cyclolysis, and cyclone tracks) as discussed, e.g. by
Outten et al. (2013).

In addition to thermodynamic processes, another factor af-
fecting the sea ice cover in the Arctic is the drift of sea ice.
The momentum flux from the atmosphere to the ice is the
main driver of sea-ice drift, which is poorly represented in

climate models (Rampal et al., 2011). This currently hinders
a realistic representation of sea-ice drift patterns in large-
scale climate models. Furthermore, the progressively thin-
ning ice pack is becoming increasingly sensitive to wind
forcing (Vihma et al., 2012). In the future, research has to
address the main processes that determine the momentum
transfer from the atmosphere to the sea ice, including the ef-
fects of atmospheric stratification and sea ice roughness.

To understand better the links between the Arctic Ocean
and terrestrial Eurasia, there is a particular need to study the
effects of Arctic sea ice decline on Eurasian weather and cli-
mate (Sect. 2.2.3) Another poorly studied problem related to
the Arctic Ocean is the role of sea ice as a source of aerosol
precursors, and in the gas exchange between the ocean and
atmosphere (Parmentier et al., 2013). Preliminary results of
field studies at the drifting stations North Pole 35 and 36
(Makshtas et al., 2011) showed that the shrinking sea ice
cover could be the reason for increasing CO2 uptake from
the atmosphere over the annual cycle, and for the growth of
the seasonal amplitude of CO2 concentrations in the Arctic.

Climate models project that air temperatures and precipi-
tation will increase over the Arctic Ocean, and that this may
have important effects on the structure of sea ice. Increased
snow load on a thinner ice may in the future cause flooding
of seawater on ice in the Arctic, which results in the forma-
tion of snow ice. Increased snowmelt and rain, on the other
hand, results in increased percolation of water to the snow–
ice interface, where it re-freezes, forming super-imposed ice
(Cheng et al., 2008). Snow ice and super-imposed ice have
granular structures, and differ thermodynamically and me-
chanically from the sea ice that currently prevails in the Arc-
tic.

The changes in the Arctic Ocean have opened some, al-
beit limited, possibilities for seasonal prediction. These are
mostly related to the large heat capacity of the ocean: if there
is little sea ice in the late summer and early autumn, this tends
to cause large heat and moisture fluxes to the atmosphere,
favouring warm, cloudy weather in late autumn and early
winter (Liu et al., 2011; Stroeve et al., 2012). On the other
hand, the reduction of the sea ice thickness may decrease
the possibilities for seasonal forecasting of ice conditions in
the most favourable navigation season in late summer–early
autumn. This is because a thin ice is very sensitive to un-
predictable anomalies in the atmospheric forcing. For exam-
ple, in August 2012 a single storm caused a reduction of the
sea ice extent by approximately 1 million km2. The reduced
sea ice extent in the winter months has significant impacts
on convective clouds. Observations revealed a gradually in-
creasing frequency of the convective cloud fields over Nor-
wegian and Barents seas (Chernokulsky and Mokhov, 2012;
Esau and Chernokulsky, 2015). The unusually strong atmo-
spheric convection and weaker virtual potential temperature
inversions create favourable conditions for the extreme Arc-
tic cold outbreaks and meso-scale cyclones known as polar
lows (Kolstad et al., 2009).
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It is vital to enhance routine observations, data assimila-
tion techniques and prediction models in order to properly
monitor the physical state of the environment. Longer-term
impacts of the reduced ice cover are largely unknown, be-
cause the scientific community has had only little time to cre-
ate new knowledge on essential climate variables across the
domain (see Sect. 2.3.1). To improve preparedness, new ob-
servational evidence is therefore needed to reduce uncertain-
ties in the system dynamics both on short and longer time-
scales.

2.3.2 Arctic marine ecosystem

The ice cover of the Arctic Ocean is undergoing fast changes,
including a decline of summer ice extent and ice thickness
(see Sect. 2.3.1). This results in a significant increase of the
ice-free sea surface in the vegetation season, and an increase
in the duration of the growing season itself. The key topic of
future research is the joint effect of Arctic warming, ocean
freshening, pollution load, and acidification on the Arctic
marine ecosystem, primary production, and carbon cycle.

New ice-free areas of the Arctic Ocean could result in a
pronounced growth of the annual gross primary production
(GPP), increased phytoplankton biomass, and a loss of ice-
rich algae communities associated with the low ice sheet sur-
face (Bluhm et al., 2011). Progressive increase of oil and nat-
ural gas drilling and transportation over the shelf areas will
be escalating the environmental changes of the Arctic ma-
rine ecosystems. Furthermore, there is a risk of irreversible
changes in marine Arctic productivity and key biogeochem-
ical cycles, and the potential for CO2 absorption by marine
ecosystem. Processes involving the Arctic may also affect ad-
jacent boreal areas.

We do not know how the climatically induced increase
in GPP and phytoplankton biomass will influence the pro-
ductivity of higher trophic levels of the Arctic ecosystem.
In typical Arctic ecosystems, the most important consumers
are large-sized herbivorous copepods, which have life cycles
synchronized with the temperature as well as the seasonal al-
gae dynamics (Kosobokova, 2012). Another important con-
sumer community are the small-sized herbivorous copepods,
which are important especially in shelf ecosystems. An in-
crease in the phytoplankton production in fall, together with
an increase in the sea temperature, may influence the popula-
tions of small-sized copepods, and increase their role in mass
and energy flow in the ecosystems. Our current understand-
ing of the role of small copepods in the Arctic ecosystems is
limited (Arashkevich et al., 2010). An increase in surface wa-
ter temperature may “open the Arctic doors” for new species,
and change the Arctic pelagic food webs, energy flows, and
biodiversity.

Increases in the Arctic sea temperature may lead to pop-
ulations from neighbouring regions penetrating the Arctic
ecosystem, changing the structure and functioning of na-
tive ecosystems. For example, a 1.5 ◦C water temperature in-

crease in the Bering Sea during the mid-1970s allowed the
Alaskan Pollock to penetrate the Arctic ecosystem, and oc-
cupy a place as a keystone species for several years, sup-
porting one of the world’s largest regional fish harvests
(Shuntov et al., 2007). The Bering Sea ecosystem is very
rich compared to the Arctic ecosystems. Currently, we are
not aware of food sources sufficient for supporting massive
invader populations even in case of climate-induced changes
in ecosystems. However, the appearance of aggressive new
species even in low numbers may dramatically impact the
sensitive Arctic ecosystems and have effects on the future
regulation of international fisheries in the Arctic.

We have only recently begun to understand the processes
that regulate freshwater–marine ecosystem interactions in es-
tuarine zones (Flint, 2010). The mechanisms determining the
impact of riverine waters over the Arctic shelves and the cen-
tral deep basin, and their dependence on specific climatic
forces, are still poorly understood. In order to determine the
impact of riverine waters, it is important to locate new flag-
ship stations or permanent observation points in the estuaries
of large Siberian rivers. The changing riverine discharge to
the Arctic shelves may amplify the impact of climate warm-
ing on the Arctic marine ecosystems. Degradation of per-
mafrost, soil erosion, changes in snow cover and summer
precipitation may all lead to changes in flood timing, and also
to an increase in the amount of fresh water and materials of
terrestrial origin, including organic matter and nutrients, an-
nually delivered to the Arctic shelves, and further to the Arc-
tic basin (Gustafsson et al., 2011). Human-driven land use
changes to drainage basins and associated river systems have
the potential to increase the speed of delivery of pollutants to
the Arctic sea.

2.3.3 Lakes, wetlands, and large-scale river systems

In the last decade, the combined effects of air pollution and
climate warming on fresh-water systems have received in-
creasing attention (Skjelkvåle and Wright, 1998; Schindler,
2001; Alcamo et al., 2002; Sanderson et al., 2006; Feucht-
mayr et al., 2009; Sereda et al., 2011). It is important to un-
derstand the future role of Arctic–boreal lakes, wetlands, and
large river systems, including thermokarst lakes and running
waters of all size, in biogeochemical cycles, and how these
changes affect livelihoods, agriculture, forestry, and indus-
try. The water chemistry of lakes without any direct pollu-
tion sources in the catchment area can be expected to re-
flect regional characteristics of water chemistry, as well as
global anthropogenic processes, such as climate change and
long-range air pollution (Müller et al., 1998; Moiseenko et
al., 2001; Battarbee et al., 2005). The current ground-based
streamflow-gauging network over the northern Eurasian re-
gion does not provide adequate spatial coverage for many
scientific and water management applications, including the
verification of the land-surface run-off contribution to the
recipients of intra-continental run-off. Special field labo-
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ratories, with joint observation and modelling capabilities
in hydrometeorology, sedimentology, and geochemistry are
needed to understand the spreading of tracers and pollutants
as part of current and future global environmental fluxes.

The gradient in water chemistry from the tundra to the
steppe zones in Siberia can provide insight into the po-
tential effects of climate change on water chemistry. In
the last century, long-range trans-boundary air pollution led
to changes in the geochemical cycles of sulfur, nitrogen,
metals, and other compounds in many parts of the world
(Schlesinger, 1997; Vitousek et al., 1997a, b; Kvaeven et al.,
2001; Skjelkvåle et al., 2001). Environmental pollution prob-
lems also include the waterborne spreading of nutrients and
pesticides from local agricultural areas, heavy metals often
originating from mining areas, and other elements and chem-
icals, such as persistent organic pollutants from urban and in-
dustrial areas. Shifts in downstream loads cause changes in
river and delta dynamics. One example of important study
area is the Selenga River basin, which is located in the cen-
tre of Eurasia, extends from northern Mongolia into southern
Siberia (Russia), and has its outlet at Lake Baikal. The Se-
lenga River basin and Lake Baikal are located in the upstream
part of the Yenisei River system, which discharges into the
Arctic Ocean. Lake Baikal has the largest lake volume in the
world at about 23 000 km3 (comprising 20 % of all unfrozen
freshwater in the world), hosts a unique ecosystem (Granina,
1997), and is an important regional water resource (Garmaev
and Khristoforov, 2010; Brunello et al., 2006). There are nu-
merous industries and agricultural activities within the Se-
lenga River basin, which affect the water quality of the lake
and its tributaries. Mining is well-developed in the region
(e.g. Karpoff and Roscoe, 2005; Byambaa and Todo, 2011),
and heavy metals accumulate in biota and in sediments of
the Selenga River delta and Lake Baikal (Boyle et al., 1998;
Rudneva et al., 2005; Khazheeva et al., 2008).

In addition to water chemistry, the role of aquatic systems
as a net sink or source for atmospheric CO2 is presently un-
der debate. When precipitation or other processes transport
large volumes of organic matter from land into nearby lakes
and streams, the carbon of this matter effectively disappears
from the carbon budget of the terrestrial ecosystem (Huotari
et al., 2011). The enhanced decomposition of soil organic
matter may significantly affect the transport of terrestrial car-
bon to rivers, estuaries, and the coastal ocean. The contribu-
tion of this process to the global and regional carbon bud-
gets is unknown. Thus, the biological processes taking place
in the terrestrial ecosystem (e.g. photosynthesis, respiration,
and decomposition) and in the aquatic ecosystem are inter-
linked. The observed higher temperature response of aquatic
ecosystems compared to terrestrial ecosystems indicates that
a substantial part of the carbon respired or emitted from the
aquatic system must be of terrestrial origin (Yvon-Durocher
et al., 2012). Long-term measurements carried out during all
seasons in the littoral zone of Lake Baikal showed that max-
imum CO2 sink and emission rates are observed in August

and December (during the pre-ice period), respectively, and
the total CO2 flux from the atmosphere into the littoral zone
of Lake Baikal was estimated to be 3–5 g CO2 m−2 (Domy-
sheva et al., 2013).

The Siberian lakes situated in tundra and forest–tundra
zones are in general poorly studied. In their natural state,
their productivity is low, but their ecosystems are highly sen-
sitive to external influences. Profuse blooming of cyanobac-
teria is usually associated with urban and industrial effluents
and nutrient run-off. An assessment is needed of the impact
of climate change in the northern Eurasian region on eu-
trophication, accompanied by blooms of cyanobacteria. Be-
sides, the northern Eurasian region is characterized by thaw
lakes, which comprise 90 % of the lakes in the Russian per-
mafrost zone (Romanovsky et al., 2002). These lakes, which
are formed in melting permafrost, have long been known to
emit CH4. The latest observations of the lakes in the per-
mafrost zone of northern Siberia indicate that they are re-
leasing much more CH4 into the atmosphere than previously
thought. Rather than being emitted in a constant flow, 95 % of
CH4 comes from random bubbling in disperse locations. In
coming decades, this could become a more significant factor
in global climate change (Walter et al., 2006).

One direct consequence of climate change is the explosive
reproduction of toxic cyanobacteria (Nodularia, Microcys-
tis, Anabaena, Aphanizomenon, Planktothrix) and diatoms
(Pseudo-nitzschia) (Moore et al., 2008; Paerl and Huisman,
2009). These blooms occur in ponds, lakes, reservoirs, and
bays of the sea. Cyanobacteria and diatoms excrete espe-
cially dangerous carcinogens and neurotoxins into the wa-
ter. The toxicity of some cyanotoxins exceeds the toxicity of
currently banned warfare agents. Antidotes to these toxins do
not exist at the moment.

Water conservation has received an increasing attention
in China, and multiple new projects have been initiated re-
cently. Especially the construction of water transfer, reser-
voir, and irrigation schemes have received much attention,
because the central and western regions of China are suf-
fering from water shortages. These projects are expected to
improve water usage and security, especially for agricultural
activities, and to provide sufficient water resources for lo-
cal societies. In China, the river systems are dominated by
rivers flowing from the Tibetan plateau to the Pacific Ocean.
The Yangtze is the longest river in China, and flows from
the Tibetan plateau to Shanghai. The Yellow river is the sec-
ond longest in China, and it is characterized by seasonal
flooding, which causes great economic and societal losses.
The Amur River forms the northern border with Russia. The
Haihe River flows through Beijing to Tianjin, and is under
heavy stress from the highly populated and industrialized
capital metropolitan region. Only one river from China flows
to the Arctic Ocean: the Ertix River, which flows to the north
through Kazakhstan, across Siberian Russia, finally joining
the Ob River, which flows to the Arctic Ocean.
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2.4 Social system – state-of-the-art and future research
needs

2.4.1 Land use and natural resources

The fundamental large-scale task is to estimate how human
actions such as land use changes, energy production, the use
of natural resources, changes in energy efficiency, and the use
of renewable energy sources will influence the environments
and societies of the northern Eurasian region. For example,
the industrial development of Siberia should be considered
as one of most important drivers of future land use and land
cover changes in Russia. Siberia is a treasure chest of natural
resources of Russia, containing 85 % of its prospected gas re-
serves, 75 % of its coal reserves, and 65 % of its oil reserves.
Siberia has more than 75 % of Russia’s lignite, 95 % of its
lead, approximately 90 % of its molybdenum, platinum, and
platinoids, 80 % of its diamonds, 75 % of its gold, and 70 %
of its nickel and copper (Korytnyi, 2009).

During the 20th century, a considerable transformation of
landscapes in the tundra and taiga zones in northern Eurasia
has occurred as a result of various industrial, socio-economic
and demographic processes, leading to the industrial devel-
opment of previously untouched territories (Bergen et al.,
2013). This has led to a decrease in the rural population
and, mostly after the 1990s, to decrease in agricultural ac-
tivities. There has also been a significant reduction in agri-
cultural land use, and its partial replacement by zonal for-
est ecosystems (Lyuri et al., 2010). According to recent esti-
mates, the total area of abandoned agricultural land in Rus-
sia in the 1990s to 2010s is at about 57 million ha, of which
18 million ha have been restored by forests and 6 million ha
of this are located in Asian Russia (Schepaschenko et al.,
2015). As a result, these areas have become active accu-
mulators of atmospheric CO2 (Kalinina et al., 2009). These
new forests (substituting resources) could form the basis for
sustainable development in these regions, in case relevant
management programs for the forests re-established on aban-
doned lands are going to be implemented.

The dynamics of land cover, particularly forests, have been
documented since 1961 when the results of the first complete
inventory of Russian forests were published. According to
official statistics, the area of forests in Asian Russia increased
by around 80 million ha during 1961–2009, mostly before the
middle of the 1990s. This large increase is explained by im-
proved quality of forest inventories in remote territories, nat-
ural reforestation, mostly during the Soviet era as a result of
forest fire suppression, and encroaching forest vegetation in
previously non-forested land. Based on official statistics, the
area of cultivated agricultural land in the region decreased
by around 10 million ha between 1990 and 2009. After the
year 2000, the forested area in Siberia decreased, mostly due
to fire and the impacts of industrial transformations in high
latitudes (Shvidenko and Schepaschenko, 2014). A critical
decrease in the forest area has also been observed in the most

populated areas with intensive forest harvesting particularly
in the southern part of Siberia and the Far East. For example,
in the Krasnoyarsk Krai, the total area of forests decreased
by 5 %, while that of mature coniferous forests decreased
by 25 %. Overall, the typical processes in these regions are
a dramatic decline in the quality of forests, unsustainable
use of forest resources, and insufficient governance and for-
est management in the region, including frequent occurrence
of illegal logging, natural, and human-induced disturbances
(Shvidenko et al., 2013a).

Future land use and land cover changes will crucially de-
pend on how successfully the strategy of sustainable devel-
opment of northern territories is developed and implemented.
An effective system for the adaptation of boreal forests to
global change needs to be developed and implemented in the
region. An “ecologization” of the current practices of indus-
trial development of previously untouched territories would
allow a substantial decrease in the physical destruction of
landscapes, and halt the decline of surrounding ecosystems
due to air pollution and water and soil contamination (Koti-
lainen et al., 2008).

The expected changes in the climate and environment will
have multiple and complicated impacts on ecosystems, with
consequent land cover changes. The alteration of fire regimes
and the thawing of permafrost will intensify the process of
“green desertification” in large areas. Climate warming will
have multiple effects on soil–vegetation–snow interactions.
For example, in a warmer climate, mosses and other vege-
tation grow faster, providing a better thermal insulation of
the permafrost in summer, and better feeding conditions for
reindeer. However, snow can also more easily accumulate on
thicker vegetation, thus protecting the deeper soil from cool-
ing during the winter (Tishkov, 2012).

Both north and east Russia possess abundant mineral re-
sources (Korytnyi, 2009). The resource orientation of north-
ern and eastern Russia’s economy, which has not changed
for centuries, increased in the post-Soviet period, and has
been influenced primarily by the product market. It is also
expected that the natural resource development sector will
continue to dominate the economy in the majority of these
territories for the next decades.

A crucial factor in greenhouse gas emission dynamics is
the fuel balance. In Russia, features of the fuel balance have
led to an increased pollution. On average, specific emissions
in the northern and eastern cities of Russia, where coal ac-
counts for most of the power generation, are 3 times higher
than in cities where power is generated mainly from gas or
fuel oil (Bondur, 2011a). The geographical location, undevel-
oped infrastructure, harsh climate, and coal burning are the
main reasons for increased levels of anthropogenic pollution
in these areas (Bondur and Vorobev, 2015; Bondur, 2014). In
small towns, low-capacity boiler rooms are the main source
of emissions. Usually, the lack of financial resources leads to
the use of low-quality coal and obsolete boilers. In the steppe
zone of Asian Russia, Mongolia, Kazakhstan, and Burya-
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tia, the main source of emissions is the burning of harvest
residues.

The dynamics of GHG emissions in Russia are largely
determined by the economic conditions of production. The
economic crisis in 1990–1998 slowed down environmental
degradation to some extent: emissions generally decreased
by 40 %. However, the underlying environmental problems
not only remained unresolved, but significantly deepened,
and turned into systemic problems. The most polluting in-
dustries were more resistant to the decline in production.
Technological degradation took place, cleaning systems were
eliminated, and production shifted to part-time, leading to
inefficient capacity utilization. Significant amounts of pollu-
tion continued to be emitted from the domestic sector. Emis-
sions decreased in most regions of the country, and in 83 % of
the cities, but much more slowly than production. As a result,
the specific emissions (per product cost at comparable prices)
had grown by the end of the 1990s in all categories of cities,
except cities with more than 1 million inhabitants (Bityukova
et al., 2010). All this can cause negative impacts on ecosys-
tems. For example, there are about 2 million ha of techno-
genic deserts around Norilsk. Norilsk is probably the biggest
smelter in the world, and produces more than 2 million t of
pollutants per year (Groisman et al., 2013).

2.4.2 Natural hazards

Extreme weather and fire occurrence

The frequency and intensity of weather extremes have in-
creased substantially during the last decades in Europe, Rus-
sia, and China. Further acceleration is expected in the fu-
ture (IPCC, 2013). The evolving impacts, risks, and costs
of weather extremes on population, environment, transport,
and industry have so far not been properly assessed in the
northern latitudes of Eurasia. New knowledge is needed for
improving the forecasting of extreme weather events, for un-
derstanding the effect of wildfires on radiative forcing and
atmospheric composition in the region, for estimating the im-
pacts of weather extremes on major biogeochemical cycles,
and for understanding the effects of disturbances in forests on
the emissions of BVOC and VON (volatile organic nitrogen)
(Bondur, 2011b, 2015; Bondur and Ginsburg, 2016). How do
changes in the physical, chemical and biological state of the
different ecosystems and the inland, water, and coastal ar-
eas affect the economies and societies in the region, and vice
versa?

The number of large hydrometeorological events in Rus-
sia that cause substantial economic and social losses has in-
creased by more a factor of 2 from 2001 to 2013 (State Re-
port, 2011). The main hazards are related to atmospheric
processes on various temporal and spatial scales, including
strong winds, floods and landslides caused by heavy precipi-
tation, and fires caused by drought and extreme temperatures.
High temperatures and long droughts can substantially de-

crease the productivity and cause high dieback in dark conif-
erous forests. Hurricanes occur fairly often in the forest zone.
For example, a hurricane destroyed about 78 000 ha of forest
in the Irkutsk region in July 2004 (Vaschuk and Shvidenko,
2006). However, there are no reliable statistics on many types
of natural hazards.

In order to build scenarios of the future frequency and
properties of weather-related hazards, one should first anal-
yse the atmospheric mechanisms behind the circulation
structures responsible for these hazards: the cyclones re-
lated to strong winds and heavy precipitation and the anticy-
clones related to drought and fires episodes. Studying the cy-
clone/anticyclone tracks, frequency and intensity can provide
a statistical basis for understanding the geographical distribu-
tion and properties of the major atmospheric hazards and ex-
tremes (e.g. Shmakin and Popova, 2006). For future climate
projections, atmospheric hazards and extremes should be in-
terpreted from the viewpoint of cyclone/anticyclone statis-
tics, and possible changes in the cyclone/anticyclone geogra-
phy and frequency should be analysed.

Fires are the most important natural disturbances in the
boreal forests. Fires strongly determine the structure, com-
position, and functioning of the forest. Each year, about
0.5–1.5 % of the boreal forest burns. Since boreal forests
cover 15 % of the Earth’s land surface, this is a signifi-
cant area (Kasischke, 2000; Conard et al., 2002; Bondur,
2011b, 2015). Climate change already substantially impacts
fire regimes in northern Eurasia. More frequent and severe
catastrophic (mega-) fires have become a typical feature of
the fire regimes. Such fires envelope areas of up to a hundred
thousand hectares within large geographical regions, lead to
the degradation of forest ecosystems, decrease the biodiver-
sity, may spread to usually unburned wetlands, cause large
economic losses, deteriorate life conditions and health of lo-
cal populations, and lead to “green desertification”, which is
an irreversible transformation of the forest cover for long pe-
riods (Shvidenko and Schepaschenko, 2013; Bondur, 2011b,
2015). Megafires also lead to specific weather conditions
over the affected areas that are comparable in size to large-
scale pressure systems (∼ 30 million ha and more). The an-
nually burned area in the Russian territory was estimated
to be 8.2± 0.8× 106 ha during 1998–2010, and about two-
thirds of this area consisted of boreal forests. For this pe-
riod, the fire carbon balance (total amount of carbon in the
burnt fuel) was estimated to be 121± 28 Tg C yr−1 (Shvi-
denko et al., 2011). Current model projections suggest that
the number of fires will double by the end of this century.
The extent of catastrophic fires escaping from the control
and fire intensity are projected to increase. Due to increased
severity of fire and deeper soil, carbon emissions from fires
are predicted to increase by a factor of 2 to 4 (Gromtsev,
2002; Malevsky-Malevich et al., 2008; Flanningan et al.,
2009; Shvidenko et al., 2011). During and after fires, signif-
icant changes take place in the forest ecosystems, including
the soil. These changes include (i) a significant amount of
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biomass is combusted, and large amounts of carbon and ni-
trogen are released to the atmosphere in the form of carbon
dioxide and other gases or particles (Harden et al., 2000; An-
dreae and Merlet, 2001; Kaiser et al., 2012; Konovalov et al.,
2014; L. Kulmala et al., 2014); (ii) fire alters the microbial
community structure in the soil as well as the structure of
the vegetation (Dooley and Treseder, 2012; Sun et al., 2015);
(iii) fires determine the structure of the vegetation, succession
dynamics and the fragmentation of forest cover, tree species
composition, and the productivity of boreal forests (Gewehr
et al., 2014), and (iv) fire is one of the crucial drivers con-
trolling the dynamics of the carbon stock of boreal forests
(Jonsson and Wardle, 2010; Köster et al., 2014).

Disturbances resulting from fire, pest outbreaks, and dis-
eases also have substantial effects on the emissions of
BVOCs and volatile organic nitrogen compounds (Isidorov,
2001), and consequently on atmospheric aerosol formation.
The acceleration of fire regimes will also affect the amount
of black carbon in the atmosphere, and thus has an effect on
the albedo of the cryosphere.

Permafrost degradation and infrastructures

The degradation of permafrost will cause serious damage
both to infrastructure and to ecosystems and water systems
in the northern Eurasian region. This includes, for example,
damage to pipelines and buildings, deformation of roads and
railroads in Russia, Mongolia, and China, variations in the
ion distribution in soil water in young and ancient landslides,
cryogenic landslides, spatial and temporal changes of grass
and willow vegetation, saline water accumulation in local de-
pressions of the permafrost table, and formation of highly
saline lenses of groundwater called “salt traps”.

Due to the large extent of permafrost-covered areas in
northern Eurasia (for ecosystem effects, see Sect. 2.1.1 and
2.1.2), there are numerous infrastructural issues related to
possible changes in the thickness and temperature of the
frozen part of the subsurface, and thus in the mechani-
cal soil properties. Climate change-induced changes in the
cryosphere are probably among the most dramatic issues af-
fecting the infrastructure in northern Eurasia, as this infras-
tructure is literally standing on permafrost. Moreover, an in-
teresting coupling may be related to the decreasing ice-cover
of the Arctic Ocean, which results in increased humidity and
precipitation on the continent, and thus a further thicken-
ing and longer duration of the annual snow cover. Snow is
a good thermal insulator, and influences the average ground
surface temperature, thus playing a potentially important role
in speeding up the thawing of permafrost.

The increased risk of damage to local infrastructure, such
as buildings and roads, can cause significant social problems,
and exerts pressure on the local economies. Thawing per-
mafrost is structurally weak, and places a variety of infras-
tructure at risk. For example, the failure of buildings, roads,
pipelines, or railways can have dramatic environmental con-

sequences, as seen in the 1994 breakdown of the pipeline
to the Vozei oilfield in northern Russia, which resulted in a
spill of 160 000 t of oil – the world’s largest terrestrial oil
spill (United Nations Environment Program, 2013). Mainte-
nance and repair costs related to permafrost thaw and degra-
dation of infrastructure in northern Eurasia have recently in-
creased, and will most probably increase further in the fu-
ture. This is an especially prominent problem in discontinu-
ous permafrost regions, where even small changes in the per-
mafrost temperature can cause significant damage to infras-
tructure. Most settlements in permafrost zones are located on
the coast, where strong erosion places structures and roads at
risk. After damage to the infrastructure, local residents and
indigenous communities are often forced to relocate. This
can cause changes in, or even disappearances of, local so-
cieties, cultures, and traditions (United Nations Environment
Program, 2013).

Changing sea environments and the risk of accidents in
coastal regions

In northern Eurasia, from the eastern part of the Barents Sea
to the Bering Sea, the permafrost is located directly on the
seacoast. In many of these coastal permafrost areas, sea level
rise and continuing permafrost degradation leads to signifi-
cant coastal erosion, and to the possibility of a collapse of
coastal constructions, lighthouses, ports, houses, etc. In this
region, the sea level rise is coupled to the permafrost degra-
dation in a complex way, and should be focused on in future
studies.

Understanding and measuring artificial radionuclides in
marine ecosystems is needed for improving emergency pre-
paredness capabilities, and for developing risk assessments
of potential nuclear accidents. The awareness of the general
public and associated stakeholders across the region should
also be raised concerning the challenges and risks associ-
ated with nuclear technologies, environmental radioactivity,
and emergency preparedness. The current state of radioac-
tive contamination in terrestrial and marine ecosystems in
the European Arctic region will be studied by examining en-
vironmental samples collected from Finnish Lapland, Finn-
mark, and Troms in Norway, the Kola Peninsula, and the Bar-
ents Sea. The results will provide updated information on the
present levels, occurrence and fate of radioactive substances
in the Arctic environments and food chains. The results will
also allow us to estimate where the radioactive substances
originate from, and what risks they may pose in case of acci-
dents.

Annual expeditions for sample collection are needed for
the development of models to predict the distribution of ra-
dionuclides in the northern marine environment, and for the
assessment of the current state of radioactive contamination
in marine ecosystems in the European Arctic region. In view
of recent developments and increased interests in the Euro-
pean Arctic region for oil and gas extraction, special atten-
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tion needs to be given to the analysis of norms (naturally oc-
curring radioactive materials) in order to understand current
levels. The future focus should be put on atmospheric mod-
elling, and on the assessment of radionuclide distributions
in the case of accidents leading to the release of radioactive
substances to the environment in the European Arctic region.
This includes the assessment of nuclear accident scenarios
for dispersion modelling.

2.4.3 Social transformations

Climate and weather strongly affect the living conditions,
mostly in the Eastern part of the northern Eurasian soci-
eties, influencing people’s health, incidence of diseases and
adaptive capacity. The vulnerability of societies, including
their adaptive capacity, varies greatly depending on both their
physical environment, and on their demographic structure
and economic activities. There is a need to analyses the sci-
entific background and robustness of the adaptation and mit-
igation strategies (AMS) of the region’s societies, and their
resilience capacity, with special emphasis on the forest sec-
tor and agriculture. The future research needs are in under-
standing what ways populated areas are vulnerable to cli-
mate change; how their vulnerability can be reduced and
their adaptive capacities improved; what responses should be
identified to mitigate and adapt to climate changes.

Health issues are also important in multi-disciplinary stud-
ies of northern Eurasia, as the living conditions of both hu-
mans and livestock are changing dramatically. SLCF, such
as black carbon, ozone, and aerosol particles, are important
players in both air quality and Arctic climate change and their
impacts are not yet quantified. Black carbon has a special role
when designing future emission control strategies, since it is
the only major aerosol component whose reduction is likely
to be beneficial to both climate and human health. These
changes can be expressed through complex parameters com-
bining the direct effects of, e.g., temperature and wind speed,
with indirect effects of several climatic and non-climatic fac-
tors such as the atmospheric pressure variability, or the fre-
quency of unfavourable weather events, e.g. heat waves or
strong winds. During the last decades, living conditions in
northern Eurasia have generally improved, but with a sig-
nificant regional and seasonal variation (Zolotokrylin et al.,
2012).

Both northern and eastern Eurasia have small and di-
minishing populations, mainly due to the migration outflow
started in the 1990s due to severe and unfavourable living
conditions combined with changing state policies with re-
spect to the development of the northern territories. This re-
versed the previous long-standing pattern of migration in-
flow. The combination of outflow and natural population de-
crease (with some regional exceptions in several ethnic re-
publics and autonomous regions (okrugs) with oil and gas
industry) led to a steady population decline in most regions
in northern and eastern Russia from 1990s. In the post-soviet

period, the population of eastern Russia decreased by 2.7
million, while the population of Russia’s Arctic zone de-
creased by nearly by one-third (500 000 people), in con-
trast to the majority of the world’s Arctic territories (Glezer,
2007a, b). The population change in north-eastern Rus-
sia was particularly remarkable: the Chukotka Autonomous
Okrug lost 68 % of its population, the Magadan Oblast lost
59 %, and the Kamchatka Krai lost 33 %.

Geographical and ethnic factors influence the demogra-
phy and settlement pattern in the region. Geographical fac-
tors include environmental conditions and the mixture of ur-
ban and rural territories. Areas with a large proportion of in-
digenous people employed in traditional nature management
were exposed to relatively small post-soviet transformations
in the 1990s and 2000s. In contrast, the largest transforma-
tions occurred in areas with a larger proportion of Russian
people and developed mining industries. The differences in
the transformations between settlements with predominantly
indigenous and predominantly Russian populations are evi-
dent. For example, in the Chukotka Autonomous Okrug, the
former remained mostly intact, with only small decreases in
population, while the latter disappeared entirely or were sig-
nificantly depopulated (Litvinenko, 2012, 2013).

When assessing the impacts of climate change and other
environmental changes on human societies, it should be
taken into account that the urban environments in northern
Eurasian cities and towns situated in the less favoured re-
gions are currently incapable of mitigating unfavourable im-
pacts. The impact of climate parameters, such as tempera-
ture (including seasonal, weekly, and daily cycles, and ex-
treme values), strong winds, snowfall, snowstorms, and pre-
cipitation should be investigated. Both the frequency and the
duration of weather events should be considered. These cli-
mate parameters influence human health, incidence of dis-
eases, adaptation potential, and economic development in
general. Furthermore, it is important to explore the inter-
actions between the environmental change and post-soviet
transformations of natural resource utilization in northern
Eurasia in order to assess the complexity of their socio-
ecological consequences at regional and local levels (Litvi-
nenko, 2012; Tynkkynen, 2010). The population dynamics of
the northern Russian regions in 1990–2012, and the linkage
between intra-regional differences in population dynamics,
spatial transformations of natural resources utilization, and
ethnic composition of the populations should be clarified. It
would be desirable to develop an “early warning system” for
the timely mitigation of the negative socio-ecological effects
of both environmental changes, and changes in the availabil-
ity of natural resources as well as accident like leakages in
gas and oil pipelines. Such systems would be useful for fed-
eral, regional, and local authorities as well as for local com-
munities.

It should also be taken into account that the majority of
the world’s ethnic groups are small and engaged in culturally
specialized methods of subsistence, so any change in their
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immediate environment may lead to their traditional way of
life becoming unsustainable. These changes may be due to
rising sea levels, warming seawater, melting ice cover, thaw-
ing permafrost, flooding rivers, changing rain patterns, or
moving vegetational zones. These are direct effects of cli-
mate change and environmental deterioration on ethnodiver-
sity. However, even more threatening are the indirect effects.
The immediate environment of small ethnic groups is often
vulnerable to the adverse impact of majority populations rep-
resenting governments and nations. The effects of climate
change may lead to a rapid and massive transfer of major-
ity populations to areas previously inhabited by small ethnic
groups.

3 From process studies towards system understanding
and quantification of feedbacks of Arctic–boreal
regions

The system understanding helps us to understand the be-
haviour of feedbacks between the land, atmosphere, aquatic,
and societal/economic systems. To be able to provide a sys-
tem understanding, we need to understand the individual
processes, and based on process understanding we are then
able to quantify different biogeochemical cycles. Via bio-
geochemical cycles, the energy and matter flows are linked
to a wider system context, which enables us to analyse the
feedback phenomena. Feedbacks are essential components
of our climate system, as they either increase or decrease the
changes in climate-related parameters in the presence of ex-
ternal forcings (IPCC, 2013).

The effects of climate change on biogeochemical cycles
are still inadequately understood, and many feedback mech-
anisms are difficult to quantify (Arneth et al., 2010; M. Kul-
mala et al., 2014). They are related to, for example, the cou-
pling of carbon and nitrogen cycles, permafrost processes
and ozone phytotoxicity (Arneth et al., 2010), or to the emis-
sions and atmospheric chemistry of biogenic volatile or-
ganic compounds (Grote and Niinemets, 2008; Mauldin et
al., 2012), subsequent aerosol formation processes (Kulmala
et al., 2004b; Tunved et al., 2006; Kulmala et al., 2011a;
Hirsikko et al., 2011) and aerosol–cloud interactions (Mc-
Comiskey and Feingold, 2012; Penner et al., 2012; Rosenfeld
et al., 2014).

The northern Eurasian Arctic–boreal geographical region
covers a wide range of interactions and feedback processes
between humans and natural systems. Humans are acting
both as the source of climate and environmental changes,
and as recipient of their impacts. The PEEX research agenda
is addressing the most relevant research topics related to the
process dynamics in the land, atmospheric, aquatic, and so-
ciety systems relevant to northern regions. PEEX also aims
to quantify the range of emissions and fluxes from different
types of ecosystems and environments and links to ecosys-
tem productivity (see also Su et al., 2011; Kulmala and

Petäjä, 2011; Bäck et al., 2010). This new knowledge helps
us to obtain a holistic view on the changes in biogeochemi-
cal cycles and feedbacks in the future Arctic–boreal system
(Fig. 4). PEEX will also to take into consideration that there
may exist previously unknown sources and processes (Su et
al., 2011; Kulmala and Petäjä, 2011; Bäck et al., 2010).

Holistic representations of feedback loops potentially rel-
evant to Arctic–boreal systems have been given by Charl-
son et al. (1987), Quinn and Bates (2011), and by M. Kul-
mala et al. (2004a, 2014). The “CLAW” hypothesis (the
CLAW acronym refers to Charlson, Lovelock, Andreae and
Warren) connects the ocean biochemistry and climate via
a negative feedback loop involving cloud condensation nu-
clei production due to dimethylsulfoniopropionate (DMSP)
and dimethyl sulfide (DMS) biosynthesis by marine phyto-
plankton (e.g. Quinn and Bates, 2011; Ducklow et al., 2001;
O’Dowd et al., 2004; de Leeuw et al., 2011; Malin et al.,
1993; O’Dowd and de Leeuw, 2007). The COBACC (COnti-
nental Biosphere–Aerosol–Cloud–Climate) hypothesis sug-
gests two partly overlapping feedbacks that connect the at-
mospheric carbon dioxide concentration, ambient tempera-
ture, gross primary production, biogenic secondary organic
aerosol formation, clouds, and radiative transfer (M. Kulmala
et al., 2004a, b, 2014; also see Sect. 2.1.1.). The quantifica-
tion of these feedback loops under changing climate is cru-
cial for reliable Earth system modelling and predictions.

In the context of the COBACC feedback loop, the key
large-scale research questions are the changing cryospheric
conditions and consequent changes in ecosystem feedbacks
affecting the Arctic–boreal climate system and weather. Fur-
thermore, we should estimate the net effects of various feed-
back effects (CLAW, COBACC) on land cover changes,
photosynthetic activity, GHG exchanges, BVOC emissions,
aerosol and cloud formation, and radiative forcing at regional
and global scales. In our analysis, we should also take into
account the urbanization processes and social transforma-
tions (see Sect. 2.4.3), which are changing the regional cli-
mates. In this task, we should also study the key gaps of the
biogeochemical cycles.

3.1 Hydrological cycle

Climate change may profoundly affect most of the compo-
nents of the hydrological cycle, giving rise to positive or neg-
ative feedbacks (Fig. 5). While variations in the hydrological
cycle often take place at regional or local scales, they can
also give rise to large-scale or even global changes. Knowl-
edge of the hydrological cycle in general and particularly re-
lated to permafrost is crucial for predicting the resilience and
transformation of forest ecosystems coupled with permafrost
(Osawa et al., 2010).

In addition to permafrost processes, another important is-
sue in high latitudes is precipitation. Precipitation is a crit-
ical component of the hydrological cycle, having a great
spatial and temporal variability. The lack of understanding
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Figure 4. In urban and industrialized regions, the process under-
standing of biogeochemical cycles includes anthropogenic sources,
such as industry and fertilizers, as essential parts of the biogeochem-
ical cycles.

of some precipitation-related processes, combined with the
lack of global measurements of sufficient detail and accu-
racy, limits the quantification of different components of the
hydrological cycle such as precipitation, evapotranspiration,
or CCN formation. This is especially true in high-latitude re-
gions, where observations and measurements are particularly
sparse, and processes poorly understood.

Recent retrievals of multiple satellite products for each
component of the terrestrial water cycle provide an opportu-
nity to estimate the water budget globally (Sahoo et al., 2011)
(Fig. 5). Global precipitation is retrieved at very high spa-
tial and temporal resolution by combining microwave and in-
frared satellite measurements (Sorooshian et al., 2000; Kum-
merow et al., 2001; Joyce et al., 2004; Huffman et al., 2007).
Large-scale estimates of global precipitation have been de-
rived by applying energy balance, process, and empirical
models to satellite-derived surface radiation, meteorology,
and vegetation characteristics (e.g. Mu et al., 2007; Su et
al., 2007; Fisher et al., 2008; Sheffield et al., 2010). The wa-
ter storage change component can be obtained from satel-
lite data, and the water level in lakes and large-scale river
systems can be estimated from satellite altimetry with spe-
cial algorithms developed for terrestrial waters (Berry et al.,
2005; Velicogna et al., 2012; Troitskaya et al., 2012, 2013).

3.2 Carbon cycle

It is not clear how future climate will modify incoming ter-
restrial net primary production (NPP) and outgoing (e.g. het-
erotrophic soil respiration, HSR) carbon fluxes to and from
terrestrial ecosystems. It is likely that the transformation of
Russian forests is a tipping element for the climate system
by the end of the century over huge areas, even though un-

Figure 5. Hydrological cycle schematics.

certainties in such forecasts are significant (Gauthier et al.,
2015). The role of boreal and Arctic lakes and catchment ar-
eas in carbon storage dynamics is poorly quantified (Fig. 6).

The terrestrial biosphere is a key regulator of atmospheric
chemistry and climate via its carbon uptake capacity (Arneth
et al., 2010; Heimann and Reichstein, 2008). The Eurasian
area holds a large pool of organic carbon both within the
above- and below-ground living biota, in the soil, and in
frozen ground, stored during the Holocene and the last ice
age. The area also contains vast stores of fossil carbon. Ac-
cording to estimates of carbon fluxes and stocks in Russia
made as part of a full carbon account by the land–ecosystem
approach (Shvidenko et al., 2010; Schepaschenko et al.,
2011; Dolman et al., 2012), terrestrial ecosystems in Russia
served as a net carbon sink of 0.5–0.7 Pg(C) per year during
the last decade. Forests provided above 90 % of this sink. The
spatial distribution of the carbon budget shows considerable
variation, and substantial areas, particularly in permafrost re-
gions and in disturbed forests, display both sink and source
behaviour. The already clearly observable greening of the
Arctic is going to have large consequences on the carbon
sink in the upcoming decades (Myneni et al., 1997; Zhou
et al., 2001), although future predictions are uncertain. The
net ecosystem carbon budget (NECB) or net biome produc-
tion (NBP) are usually a sensitive balance between carbon
uptake through forest growth, ecosystem heterotrophic respi-
ration, and carbon release during and after disturbances such
as fire, insect outbreaks, or weather events, e.g. as exception-
ally warm autumns (Piao et al., 2008; Vesala et al., 2010).
This balance is delicate, and for example in the Canadian
boreal forest the estimated net carbon balance is close to car-
bon neutral due to fires, insects, and harvesting cancelling the
carbon uptake from forest net primary production (Kurz and
Apps, 1995; Kurz et al., 2008b). Long-term measurements
of the concentrations of CO2 and other carbon gases at se-
lected sites, especially using tall towers such as the ZOTTO
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Figure 6. Carbon cycling in the Arctic will change as the climate
warms. Figure after ACIA, 2004 (Arctic Climate Impact Assess-
ment, 2004).

tower, will be essential for constraining the large-scale car-
bon fluxes in the PEEX region (Heimann et al., 2014).

Plant growth and carbon allocation in boreal forest ecosys-
tems depend critically on the supply of recycled nutrients
within the forest ecosystem. In the nitrogen-limited boreal
and Arctic ecosystems, the biologically available nitrogen
(NH4 and NO3) is in short supply, although the flux of as-
similated carbon below ground may stimulate the decompo-
sition of nitrogen-containing soil organic matter (SOM), and
the nitrogen uptake of trees (Drake et al., 2011; Phillips et
al., 2011). The changes in easily decomposable carbon could
enhance the decomposition of old SOM (Kuzyakov, 2010;
Karhu et al., 2014), and thus increase the turnover rates of
nitrogen in the rhizosphere, with possible growth-enhancing
feedbacks on vegetation (Phillips et al., 2011).

Arctic warming is promoting terrestrial permafrost thaw
and shifting hydrologic flow paths, leading to fluvial mobi-
lization of ancient carbon stores (Karthe et al., 2014). Ob-
served permafrost thaw acts as a significant and preferen-
tially degradable source of bioavailable carbon in Arctic
freshwaters, which is likely to increase as permafrost thaw
intensifies, causing positive climate feedbacks in response
to ongoing climate change (Mann et al., 2012). Significant
differences in fluvial carbon input between headwaters and
downstream reaches of large Arctic catchments (Yenisey and
Lena) have been identified, but the problem is until now very
poorly explained. At the same time, the fluvial export by
the largest rivers is considered to be an order of magnitude
less than coastal erosion in the East Siberian Arctic Shelf
(Semiletov et al., 2011). The Lena’s particulate organic car-
bon export is estimated to be 2 orders of magnitude less than
the annual input of eroded terrestrial carbon onto the shelf of
the Laptev and East Siberian seas.

Although inland waters are especially important as lat-
eral transporters of carbon, their direct carbon exchange with

the atmosphere, so-called outgassing, has been recognized
to be a significant component in the global carbon budget
(Bastviken et al., 2011; Regnier et al., 2013). In the boreal
pristine regions, forested catchment lakes can vent ca. 10 %
of the terrestrial NEE (net ecosystem exchange), thus weak-
ening the terrestrial carbon sink (Huotari et al., 2011). There
is a negative relationship between the lake size and gas satu-
ration, and especially small lakes are relatively large sources
of CO2 and CH4 (e.g. Kortelainen et al., 2006; Vesala et
al., 2012). However, on a landscape level, large lakes can
still dominate the GHG fluxes. Small lakes also store rela-
tively larger amounts of carbon in their sediments than larger
lakes. The role of lakes as long-term sinks of carbon, and si-
multaneously as clear emitters of carbon-containing gases, is
strongly affected by the physics of the water column. In lakes
with very stable water columns and anoxic hypolimnion sed-
iments, carbon storage is especially efficient, but at the same
time, these types of lakes emit CH4. In general, the closure of
landscape-level carbon balances is virtually impossible with-
out studying the lateral carbon transfer processes (Pumpa-
nen et al., 2014), and the role of lacustrine ecosystems as
GHG sources/sinks. Besides lakes, these studies should in-
clude rivers and streams, which could be even more impor-
tant than lakes as transport routes of terrestrial carbon and as
emitters of GHGs (Huotari et al., 2013). In addition, the role
of VOC emissions as a part of the carbon budget needs to be
quantified.

3.3 Nitrogen cycle

Nitrogen is the most abundant element in the atmosphere.
However, most of the atmospheric nitrogen is in the form
of inert N2, which is unavailable most for plants and mi-
crobes, and can only be assimilated into terrestrial ecosys-
tems through biological N2 fixation (Canfield et al., 2010).
Only cryptogamic covers and certain organisms living in
symbiosis with plants are capable of nitrogen fixation, mak-
ing nitrogen the main growth-limiting nutrient in terrestrial
ecosystems (Elbert et al., 2012; Lenhart et al., 2015). Hu-
man perturbations to the natural nitrogen cycle have, how-
ever, significantly increased the availability of nitrogen in the
environment (Fig. 7). These perturbations mainly stem from
the use of fertilizers in order to increase crop production to
meet the demands of the growing population (Sutton et al.,
2010), although atmospheric nitrogen deposition may also
play a significant role in some areas. The increased use of
fertilizer nitrogen, and consequent perturbations in nitrogen
cycling, also cause severe environmental problems such as
eutrophication of terrestrial and aquatic ecosystems, atmo-
spheric pollution, and groundwater deterioration (Sutton et
al., 2010).

Emission of reactive nitrogen (NO, NO2, HONO, ammo-
nia, amines) from soils (Su et al., 2011; Korhonen et al.,
2013), fossil fuel burning, and other sources links the nitro-
gen cycle to atmospheric chemistry and secondary aerosol
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Figure 7. Schematic figure for terrestrial nitrogen cycle.

formation in the atmosphere. There are indications that emis-
sions of N2O from the melting permafrost regions in the Arc-
tic may significantly influence the global N2O budget and
hence contribute to the positive radiative forcing by green-
house gases (Repo et al., 2009; Elberling et al., 2010).

In natural terrestrial ecosystems, nitrogen availability lim-
its ecosystem productivity, linking the carbon and nitrogen
cycles closely together (Gruber and Galloway, 2008). The in-
creasing temperatures due to climatic warming accelerate ni-
trogen mineralization in soils, leading to increased nitrogen
availability and transport of reactive nitrogen from terrestrial
to aquatic ecosystems. This perturbed and accelerated nitro-
gen cycling may lead to large net increases in the carbon se-
questration of ecosystems (Magnani et al., 2007). The large
surface area of boreal and Arctic ecosystems implies that
even small changes in nitrogen cycling or feedbacks to the
carbon cycle may be important on the global scale (Erisman
et al., 2011). For instance, increased atmospheric nitrogen
deposition has led to higher carbon sequestration in boreal
forests (Magnani et al., 2007). However, the feedback mecha-
nisms from increased perturbations of the nitrogen cycle may
change the dynamics of the emissions of other greenhouse
gases, hence complicating the overall effects. For instance,
the stimulated carbon uptake of forests due to increased at-
mospheric nitrogen deposition can largely be offset by the
simultaneously increased soil N2O emissions (Zaehle et al.,
2011). In the Arctic, the melting permafrost may lead to high
emissions of N2O (Repo et al., 2009; Elberling et al., 2010),
which may significantly influence the global N2O budget.

Understanding the processes within the nitrogen cycle, the
interactions of reactive nitrogen with the carbon and phos-
phorus cycles, atmospheric chemistry and aerosols, as well
as their links and feedback mechanisms, is therefore essen-
tial in order to fully understand how the biosphere affects
the atmosphere and the global climate (Kulmala and Petäjä,
2011).

3.4 Phosphorus cycle

Phosphorus (P) is, together with nitrogen (N), one of the
limiting nutrients for terrestrial ecosystem productivity and
growth, while in marine ecosystems, phosphorus is the main
limiting nutrient for productivity (Whitehead and Cross-
mann, 2012). The role of P in nutrient limitation in natural
terrestrial ecosystems has not been recognized as widely as
that of N (Vitousek et al., 2010).

In the global phosphorus biogeochemical cycle, the main
reservoirs are in continental soils, where phosphorus in min-
eral form is bound to soil parent material, and in ocean
sediments (Fig. 8). Sedimentary phosphorus originates from
riverine transported material eroded from continental soils.
The atmosphere plays a minor role in the phosphorus cycle,
and the phosphorus cycle does not have a significant atmo-
spheric reservoir. Atmospheric phosphorus mainly originates
from aeolian dust, sea spray, and combustion (Wang et al.,
2014). Gaseous forms of phosphorus are scarce, and their
importance for atmospheric processes is unknown (Glinde-
mann et al., 2005).

South-western Siberian soils have lately been reported to
contain high concentrations of plant-available phosphorus
(Achat et al., 2013), which may enhance the carbon seques-
tration of the ecosystems if they are not too limited by ni-
trogen. In soils, phosphorus is found mainly in mineral form
and bound to the soil parent material such as apatite minerals.
The amount of phosphorus in the parent material is a defin-
ing factor for phosphorus limitation, and the weathering rate
determines the amount of phosphorus available for ecosys-
tems. In ecosystems, most of the available phosphorus is in
organic forms (Achat et al., 2013; Vitousek et al., 2010). In
ecosystems growing on phosphorus-depleted soils, the pro-
ductivity is more likely to be nitrogen-limited in early succes-
sional stages, and gradually shift towards phosphorus limita-
tion as the age of the site increases (Vitousek et al., 2010). In
freshwater ecosystems, excess phosphorus leads to eutroph-
ication, which has ecological consequences, such as the loss
of biodiversity due to changes in physicochemical proper-
ties and in species composition (Conley et al., 2009). Due to
the scarcity of studies focusing on ecosystem phosphorus cy-
cling, the effects of climate change on physicochemical soil
properties and phosphorus availability, and the interactions
of the phosphorus cycle with the cycles of carbon and nitro-
gen, are largely unknown.

3.5 Sulfur cycle

Sulfur is released naturally through volcanic activity as well
as through weathering of the Earth’s crust. The largest natu-
ral atmospheric sulfur source is the emission of DMS from
oceanic phytoplankton (Andreae, 1990). DMS is converted
to sulfur dioxide (SO2), sulfuric acid (H2SO4), and methyl
sulfonic acid (MSA) via gas-phase oxidation. However, hu-
man activities have a major effect on the global sulfur cycle
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Figure 8. Schematic figure of the phosphorus cycle.

via vast emissions of SO2 from fossil fuel burning and smelt-
ing activities. The main sink of SO2 is oxidation to sulfuric
acid in both gas and liquid phases, and subsequent removal
from the atmosphere via precipitation and dry deposition.

Global anthropogenic SO2 emissions are predicted to de-
crease significantly by the year 2100 (IPCC SRES, 2000).
Emissions in Europe and North America started to decrease
already in the 1970s, but this decrease is still overwhelmed
on a global scale by increasing emissions in eastern Asia
and other strongly developing regions of the world (Smith
et al., 2011). The current global anthropogenic SO2 emis-
sions are about 120 Tg per year, with Europe, the former So-
viet Union and China together responsible for approximately
50 % (Smith et al., 2011). Global natural emissions of sul-
fur, including DMS, are significantly smaller (a few tens of
Tg per year; Smith et al., 2001). Anthropogenic emissions
dominate especially over the continents. The main sources
of SO2 are coal and petroleum combustion, metal smelting,
and shipping, with minor contributions from biomass burn-
ing and other activities.

SO2 emissions in Eurasia have a large spatial variabil-
ity. Smelters in the Russian Arctic areas emit vast amounts
of SO2, significantly affecting the regional environment. In
2007 Blacksmith Institute experts estimated, that the smelter
complexes in Norilsk, with annual emissions of 2 Tg are
alone responsible for more than 1.5 % of global SO2 emis-
sions. However, the emissions from the smelters in the Kola
Peninsula, while still remarkably high, have decreased signif-
icantly during the past decades (Paatero et al., 2008), thus al-
tering the impact of human activities on the regional climate
and environment. In general, existing anthropogenic activi-
ties are slowly becoming more sulfur-effective and less pol-
luting. However, the emergence of new sulfur-emitting ac-
tivities and infrastructures partially counteracts this develop-
ment.

The behaviour of future changes in SO2 emissions in the
PEEX research area is uncertain. In northern Eurasia, natu-
ral resources like fossil fuels, metals, minerals, and wood are

vast, and their utilization is becoming more and more attrac-
tive due increasing demand. This will most likely lead to an
increase in human activities (e.g. mining, oil drilling, ship-
ping) in this area (e.g. Smith, 2010, and references therein).
For example, sulfur emissions in China increased rapidly un-
til 2006, and then decreased by 9.2 % to 30.8 Tg in 2010
due to the wide application of flue-gas desulfurization (FGD)
equipment in power plants (Lu et al., 2011). Sulfur emis-
sions in Europe have decreased significantly during the last
decades (Jones and Harrison, 2011).

Most of the natural and anthropogenic SO2 is removed
from the atmosphere by liquid-phase oxidation to H2SO4,
and subsequent precipitation. In areas with high sulfur load-
ings, acid rain leads to acidification of soils and waters
(Fig. 9). The main final sink of sulfur is the oceans. A fraction
of SO2 is oxidized to H2SO4 in the gas phase in a reaction
chain initiated by the reaction of SO2 with the hydroxyl rad-
ical, OH. Especially in forested areas of Eurasia, reactions
of SO2 with a second important oxidant type, the stabilized
Criegee intermediates originating from biogenic VOC emis-
sions, also produce significant amounts of H2SO4 (Mauldin
et al., 2012). Gas-phase sulfuric acid plays a key role in the
Earth’s atmosphere by triggering secondary aerosol forma-
tion, thus connecting anthropogenic SO2 emissions to global
climate via aerosol–cloud interactions. Particles containing
sulfuric acid, or sulfate, are also connected with air quality
problems and human health deterioration. Understanding the
spatial and temporal evolution of SO2 emissions in north-
ern Eurasia, along with atmospheric sulfur chemistry, is cru-
cial for understanding and quantifying the impacts of anthro-
pogenic activities and SO2 emissions on air quality, acidifi-
cation as well as on regional and global climate.

4 From system understanding to mitigation and
adaptation strategies and decision-making

Climate change and weather extremes are already affecting
the living conditions of northern Eurasian societies. The vul-
nerability of the northern environments and societies, includ-
ing their adaptive capacity and buffering thresholds, varies
greatly depending on their current and future physical envi-
ronment as well as their demographic structure and economic
activities. The PEEX program as a whole is built on four pil-
lars, namely (i) research, (ii) research infrastructure, (iii) im-
pact on society, and (iv) knowledge transfer and capacity
building. The scientific outcome of the first two pillars will be
addressing the future state of the physical environment and
its interactions and feedbacks with the demographic struc-
ture and economic activities in the Arctic–boreal system. Pe-
riodic PEEX assessments will be delivered for constructing
mitigation and adaptation strategies of the Northern societies
and for use of regional and governmental decision-making.
The PEEX approach is applicable to China, when taking into
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Figure 9. Schematic figure of the sulfur cycle.

account the specific geographical, climatological, and social
characteristics of that region.

The integrative approach of the PEEX first two pillars pro-
vides both analytical and operational answers to our research
questions, which can be utilized in solving interlinked grand
challenges using pillars (iii) and (iv). These will also con-
tribute to the ESS questions as a whole (see ESS questions:
Schellnhuber et al., 2004). The implementation of the PEEX
research agenda starts with process studies in the frame
of three main topics determined for the land, atmosphere,
aquatic, and social systems of the northern Eurasian region.
The research approach is designed to answer the analytical
questions on the major dynamical patters and feedback loops
relevant to Earth system science in the northern context. The
PEEX program has defined altogether 12 large-scale research
questions for the 12 main topics in the northern Eurasian do-
main (Kulmala et al., 2016). At the same time, PEEX adheres
to several operational ESS questions, including “what level
of complexity and resolution have to be achieved in Earth
System modelling?”, “what are the best techniques for ana-
lyzing and predicting irregular events?”, “what might be the
most effective global strategy for generating, processing, and
integrating relevant Earth system data sets?”, and “what are
the most appropriate methodologies for integrating natural
science and social science knowledge?” (Schellnhuber et al.,
2004).

In terms of the level of complexity and resolution in Earth
system modelling, PEEX builds on a multi-scale modelling
and observation approach originally introduced by Kulmala
et al. (2009). PEEX will construct its own multi-scale mod-
elling platform (Lappalainen et al., 2014). In terms of gener-
ating, processing and integrating relevant Earth system data
sets, a detailed conceptual design of the PEEX research in-
frastructure (RI) will include a concept design of a coherent
in situ observation network, coordinated use of remote sens-
ing observations and standardized and harmonized data pro-

cedures as well as a data system. One of the first tasks of
PEEX-RI is to fill in the observational gap in atmospheric in
situ and ground base remote sensing data in northern Eura-
sia, especially in Siberia. This approach is based not only on
the coordination of existing observation activities (Aleksey-
chik et al., 2016), but also on making plans for a new in-
frastructure needed. PEEX-RI development will be largely
based on the SMEAR (Station for Measuring Ecosystem-
Atmosphere Relations) concept (Kulmala et al., 2016), which
has been developed by the University of Helsinki Division of
Atmospheric Sciences together with Division of Forest Ecol-
ogy starting from 1995 (Hari and Kulmala, 2005; Hari et al.,
2016). The SMEAR concept provides a state-of-the-art foun-
dation for establishing a PEEX observation system to be in-
tegrated into the global GEOSS data system. Furthermore,
detailed design of greenhouse gas, aerosol, cloud, and trace
gas measurements, and observation of biological activity will
find synergies with the major European land–atmosphere ob-
servation infrastructures, such as ICOS (Integrated Carbon
Observations System; a research infrastructure to determine
the greenhouse gas balance of Europe and adjacent regions),
ACTRIS (aerosols, clouds, and trace gases research infras-
tructure), GAW (Global Atmospheric Watch), and AnaEE
(Infrastructure for Analysis and Experimentation on Ecosys-
tems).

PEEX is interested in developing methodologies for in-
tegrating natural science and social science knowledge as
part of the operational Earth sustainable system questions
(Schellnhuber et al., 2004). The first-priority task in this
case is to establish an integrated geographical information
background (Ribeiro et al., 2009; Shvidenko et al., 2010;
Skryzhevska et al., 2015). A common information back-
ground would be the first step serving the development of
a common language of integrated studies. For example, we
need spatially and temporally explicit descriptions of terres-
trial ecosystems, landscapes, atmosphere, and hydrosphere.
A common information background would be a unified base
for the PEEX modelling platform and for the development
of integrated modelling clusters, which could combine eco-
logical, economic, and social dimensions. It could provide
a historical background for the future trajectories of land
cover, state and resilience of ecosystems, stability of land-
scapes, and dynamics of environmental indicators of envi-
ronment. The already exiting Integrated Land Information
System could be utilized here for combining all historical
knowledge about the region and all scientific results obtained
by past, current, and future studies across the region (Schep-
aschenko et al., 2011).

In addition to data services, PEEX is developing proce-
dures for integrating and linking natural science and so-
cial science knowledge and data. As one example, we need
to analyse data on emission sources together with popula-
tion health risk factors, environment pollution, food security,
drinking water quality, changes in the spreading areas of in-
fectious diseases, and changes in the general epidemiological
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Figure 10. An example of the study approach to be implemented by
PEEX for integrating natural science and social science knowledge
and generating climate predictions and narratives of the northern
regions.

situation (Bityukova and Kasimov, 2012; Malkhazova et al.,
2013). Via novel multi-disciplinary data interfaces and data
procedures, we are able to connect satellite observations with
inverse modelling, provide fast updates to emission invento-
ries, estimate the emission for the climate models, and, in the
end, provide climate and air quality scenarios and the story-
lines of the future development of the Arctic–boreal region
(Fig. 10).

In terms of strategic questions of the ESS, such as “what
is the optimal mix of adaptation and mitigation measures to
respond global change?” or “what is the structure of an ef-
fective and efficient system of global institutions and devel-
opment of institutions?”, PEEX is an active player in creat-
ing direct contacts with the stakeholders, so that its scientific
information and services will receive an optimal impact on
decision-making. Furthermore, the PEEX approach endorses
the Earth System Manifesto (https://www.atm.helsinki.fi/
peex/images/manifesti_peex_ru_hub2.pdf), which addresses
three strategic tasks: (i) construction of novel observation
systems, (ii) finding consensus addressing necessary mitiga-
tion and adaptation actions in different parts of the world,
and (iii) operational prerequisites for technological develop-
ment to moderate the global change towards the sustainable
Earth System. In this framework, PEEX will work closely
with influential organizations, such as the Intergovernmental
Panel for Climate Change (IPCC) delivering PEEX assess-
ment of the Arctic–boreal region, the future earth acting as
an Arctic–boreal hub, and the digital Earth via demonstrat-
ing novel methods for integrating in situ data with satellite
observations.

5 Data availability

This paper is an overview of the current state of the art in se-
lected fields relevant to system understanding of the arctic–
boreal regions. The results and conclusions presented in this
paper are based on the already published peer reviewed pa-

pers. Their underlying research data can be accessed via the
information provided in the individual papers listed in the
references.
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