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Abstract. Fossil-fuel (FF) burning releases carbon dioxide
(CO2) together with many other chemical species, some of
which, such as nitrogen dioxide (NO2) and carbon monox-
ide (CO), are routinely monitored from space. This study
examines the feasibility of estimation of FF CO2 emis-
sions from large industrial regions by using NO2 and CO
column retrievals from satellite measurements in combina-
tion with simulations by a mesoscale chemistry transport
model (CTM). To this end, an inverse modeling method is
developed that allows estimating FF CO2 emissions from
different sectors of the economy, as well as the total CO2
emissions, in a given region. The key steps of the method
are (1) inferring “top-down” estimates of the regional budget
of anthropogenic NOx and CO emissions from satellite mea-
surements of proxy species (NO2 and CO in the case con-
sidered) without using formal a priori constraints on these
budgets, (2) the application of emission factors (the NOx-
to-CO2 and CO-to-CO2 emission ratios in each sector) that
relate FF CO2 emissions to the proxy species emissions and
are evaluated by using data of “bottom-up” emission inven-
tories, and (3) cross-validation and optimal combination of
the estimates of CO2 emission budgets derived from mea-
surements of the different proxy species. Uncertainties in the
top-down estimates of the NOx and CO emissions are eval-
uated and systematic differences between the measured and
simulated data are taken into account by using original ro-
bust techniques validated with synthetic data. To examine
the potential of the method, it was applied to the budget of
emissions for a western European region including 12 coun-

tries by using NO2 and CO column amounts retrieved from,
respectively, the OMI and IASI satellite measurements and
simulated by the CHIMERE mesoscale CTM, along with the
emission conversion factors based on the EDGAR v4.2 emis-
sion inventory. The analysis was focused on evaluation of
the uncertainty levels for the top-down NOx and CO emis-
sion estimates and “hybrid” estimates (that is, those based on
both atmospheric measurements of a given proxy species and
respective bottom-up emission inventory data) of FF CO2
emissions, as well as on examining consistency between the
FF NO2 emission estimates derived from measurements of
the different proxy species. It is found that NO2 measure-
ments can provide much stronger constraints to the total an-
nual FF CO2 emissions in the study region than CO measure-
ments, the accuracy of the NO2-measurement-based CO2
emission estimate being mostly limited by the uncertainty
in the top-down NOx emission estimate. Nonetheless, CO
measurements are also found to be useful as they provide
additional constraints to CO2 emissions and enable evalua-
tion of the hybrid FF CO2 emission estimates obtained from
NO2 measurements. Our most reliable estimate for the to-
tal annual FF CO2 emissions in the study region in 2008
(2.71± 0.30 Pg CO2) is found to be about 11 and 5 % lower
than the respective estimates based on the EDGAR v.4.2
(3.03 Pg CO2) and CDIAC (2.86 Pg CO2) emission invento-
ries, with the difference between our estimate and the CDIAC
inventory data not being statistically significant. In general,
the results of this study indicate that the proposed method has
the potential to become a useful tool for identification of pos-
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sible biases and/or inconsistencies in the bottom-up emission
inventory data regarding CO2, NOx , and CO emissions from
fossil-fuel burning in different regions of the world.

1 Introduction

Carbon dioxide (CO2) is commonly recognized as the ma-
jor greenhouse gas providing the driving force of recent and
future climate change (IPCC, 2013). Its atmospheric con-
centration has considerably increased (by 40 %) since the
industrial revolution (Petit et al., 1999). This increase, the
rate of which has accelerated in the past decade, is attributed
mostly to anthropogenic sources, such as fossil-fuel (FF)
burning (Canadell et al., 2007). Curbing further growth of
CO2 concentration has become a goal of international agree-
ments such as the Kyoto protocol (UNFCCC, 1998) and the
Paris Agreement on Climate Change (UNFCCC, 2015). Thus
accurate knowledge of anthropogenic CO2 emissions is of
paramount importance both for climate prediction and miti-
gation policy purposes.

Over the past few decades a lot of effort has been put into
the compilation of global (e.g., Olivier et al., 2005; GCP,
2010; Ciais et al., 2010a; Janssens-Maenhout et al., 2015)
as well as regional (Gurney et al., 2009; Huang et al., 2011;
Kurokawa et al., 2013; Zhao et al., 2012; Wang et al., 2013)
inventories of CO2 emissions from FF burning and other
smaller anthropogenic sources (such as biofuel burning and
cement production). Those emission inventories are based on
available statistical information regarding economic activi-
ties and corresponding technologies. However, it is known
that such information can be subject to errors and biases lead-
ing to considerable uncertainties in emission estimates, espe-
cially in the case of rapidly growing developing economies
(e.g., Akimoto et al., 2006; Guan et al., 2012; Korsbakken et
al., 2016). For example, the uncertainty of available estimates
of the total FF CO2 emissions in China is assessed to be about
15–20 % (Gregg et al., 2008). Much larger uncertainties may
be associated with the subnational spatial distributions and
temporal evolution of FF CO2 emissions within a year (Ciais
et al., 2010b). The uncertainties in anthropogenic CO2 emis-
sion inventory data are mostly due to inaccuracies of avail-
able data regarding fuel consumption and fuel chemical com-
position. Note that the estimation of uncertainty in emission
inventory data is itself a challenging task: in particular, as dif-
ferent inventories are usually based (at least partly) on com-
mon sources of information, their intercomparison does not
necessarily result in revealing all the uncertainties.

A promising alternative approach to constrain NO2 emis-
sions and to assess the uncertainty in available emission es-
timates is inverse modeling (Enting, 2002); the key idea of
this approach is to derive emission estimates from atmo-
spheric measurement data by optimizing emissions coupled
to a transport model. Such estimates are frequently referred

to as “top-down”, in contrast to “bottom-up” ones based
on emission inventories alone. Numerous studies have suc-
cessfully used in situ CO2 measurements in the framework
of this approach to constrain surface CO2 fluxes associated
mostly with biospheric and oceanic sources and sinks of CO2
in different regions of the world (e.g., Gurney et al., 2002;
Baker et al., 2006; Schulze et al., 2009; Chevallier et al.,
2010; Broquet et al., 2013). More recently, it was demon-
strated that uncertainties in CO2 flux estimates can be po-
tentially reduced by using satellite CO2 measurements (e.g.,
Chevallier et al., 2007; Houweling et al., 2004; Hungershoe-
fer et al., 2010; Kadygrov et al., 2009; Nassar et al., 2011;
Maksyutov et al., 2013; Reuter et al., 2014a). However, less
progress has been made in isolating FF CO2 emissions from
other sources and sinks. Major limitations are due to the fact
that the atmospheric variability of CO2 is strongly affected
by biogenic sources and sinks, such as plant respiration and
photosynthesis, and that the signatures of regional FF CO2
emissions in CO2 observations are typically weak relative
to regional background CO2 concentration, except near hot
spots. Promising approaches suggest separation of FF CO2
emissions from biospheric fluxes by using available measure-
ments of radiocarbon content (14C) of CO2 (e.g., Turnbull et
al., 2009; Miller et al., 2012; Lehman et al., 2013; Basu et al.,
2016), ground-based CO2 measurements in vicinity of strong
anthropogenic emission sources like megacities (Bréon et al.,
2015), or satellite CO2 retrievals with sampling near hot-
spots (Bovensmann et al., 2010; Silva et al., 2013; Reuter et
al., 2014b). However, neither of these approaches has already
been sufficiently generalized to provide reliable estimates of
the budget of anthropogenic CO2 emissions in an arbitrary
industrialized region of the world.

It has also been suggested that anthropogenic CO2 emis-
sions can be constrained to a certain extent by measurements
of “proxy” species, whose sources are mostly collocated in
time and space with CO2 sources (Rivier et al., 2006; Sun-
tharalingam et al., 2004). The measurements of proxy species
can be either combined with CO2 measurements (Palmer et
al., 2006; Rivier et al., 2006; Suntharalingam et al., 2004;
Brioude et al., 2012) or used alone but with information on
a relationship between emissions of CO2 and of the proxy
species from bottom-up emission inventories. In the second
approach, Berezin et al. (2013) estimated multiannual rela-
tive changes of FF CO2 emissions from China by using satel-
lite measurements of nitrogen dioxide (NO2) and emission
inventory data on the ratio of FF emissions of CO2 and nitro-
gen oxides (NOx =NO+NO2). A similar approach was em-
ployed by Konovalov et al. (2014) to obtain estimates of CO2
emissions from biomass burning in Siberia by using satellite
measurements of carbon monoxide (CO) and of aerosol op-
tical depth.

The goal of this study is to examine the feasibility of infer-
ring estimates of annual budgets of CO2 emissions from FF
burning in a given industrialized region with a typical size of
the order of 1000 km by using satellite measurements of NO2
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and CO. In doing so, we develop a special method by build-
ing upon the ideas that were exploited in Berezin et al. (2013)
and Konovalov et al. (2014). The method includes several
major steps, namely (1) inferring top-down estimates of to-
tal anthropogenic emissions of NOx and CO from satellite
measurements of the corresponding proxy species by using
simulations performed with a mesoscale chemistry transport
model (CTM), (2) applying NOx-to-CO2 (or CO-to-CO2)

emission conversion factors given by bottom-up emission in-
ventories to relate FF CO2 emissions to the NOx and CO an-
thropogenic emissions from the previous step, and (3) cross-
validation and optimal combination of estimates of the FF
CO2 emission budgets derived from measurements of differ-
ent proxy species. As a result, we obtain a “hybrid” FF CO2
emission estimate integrating information coming from mea-
surements and bottom-up inventories. The use of NO2 and
CO as proxy species in the context of our approach is justified
because their satellite measurements are known to contain a
strong signal associated with human activities in industrial
regions and have abundantly been used earlier to constrain
emissions of, respectively, NOx (e.g., Martin et al., 2003;
Konovalov et al., 2006; Napelenok et al., 2008; Miyazaki
et al., 2012; Gu et al., 2014) and CO (e.g., Arellano et al.,
2004; Pétron et al., 2004; Kopacz et al., 2010; Hooghiemstra
et al., 2012; Krol et al., 2013; Jiang et al., 2015) from various
sources, including anthropogenic ones. Note that although
NOx and CO emissions from FF burning are more sensi-
tive to technological factors than CO2 emissions, different
aspects of the combustion technology are expected to affect
NOx and CO emissions in different ways: e.g., while NOx
emissions are strongly dependent on the temperature of com-
bustion (more NOx is released at higher temperatures), CO
emissions can be regarded as a measure of the incomplete-
ness of combustion processes. So, the combination of hybrid
FF CO2 emission estimates derived from both NO2 and CO
measurements can enable a compensation of a part of the un-
certainties associated with inaccurate knowledge of technol-
ogy and conditions of combustion affecting separately NO2
and CO measurement based FF CO2 emission estimates.

Particular efforts in this study were made to provide ad-
equate confidence intervals for the hybrid FF CO2 emission
estimates. To this end, we had to ensure that potential er-
rors in our top-down estimates of NOx and CO emissions
are statistically independent from those of the conversion
factors. We also had to ensure that the evaluation of confi-
dence intervals does not involve any subjective quantitative
assumptions regarding the level of uncertainties in measured
and simulated data. Such requirements would be difficult to
satisfy if the top-down estimates of the emission annual bud-
gets were partly constrained (in the Bayesian sense) with a
priori knowledge on these budgets from a bottom-up emis-
sion inventory (as it is usual in inverse modeling studies).
Furthermore, the use of a priori constraints would make the
cross-validation of the estimates of FF CO2 emission bud-
gets based on NO2 and CO measurements infeasible, as both

priors and cross-validation estimates could then be biased
in a similar way due to possible systematic uncertainties in
activity data employed in the emission inventory. Accord-
ingly, a distinctive feature of our method is that it does not
involve any formal a priori constraints to the top-down es-
timates of the emission budgets or any quantitative settings
specifying the level of uncertainties in measured and simu-
lated data. This feature is expected to reinforce the potential
of the method to elucidate possible uncertainties and/or in-
consistencies in CO2, NOx , and CO emission data provided
by different bottom-up emission inventories.

In this study, our method is applied for estimation of an-
nual FF CO2 emissions from a group of 12 western Euro-
pean countries, including a selection of 11 member states
of the European Union (EU) that provide the predominant
part (> 70 %) of EU total FF carbon emissions (Ciais et al.,
2010b) and Switzerland. Taking into account availability of
bottom-up emission inventory data necessary for our anal-
ysis, the annual emission estimates were obtained specifi-
cally for the year 2008. We believe that estimation of FF
CO2 emissions from the European region could be consid-
ered as a good testing case for our method, taking into ac-
count that uncertainties in corresponding emission inventory
data for the EU countries with well-developed statistics are
relatively low (compared to potential uncertainties in FF CO2
emission data for countries with less developed statistical
infrastructure), although not quite negligible. For example,
by comparing data of several international emission invento-
ries, Ciais et al. (2010b) estimated the full uncertainty of the
bottom-up estimates of the anthropogenic CO2 emissions in
the EU countries to be about 19 % but less (∼ 7 %) if possible
inconsistencies between types of CO2 sources are taken into
account in different emission inventories are resolved. Note
that the uncertainty in bottom-up FF CO2 emission estimates
is expected to be lower than in corresponding NOx and CO
emission estimates because of an important role played for
emissions of those proxy species by the technology and end-
of-pipe measures; at the same time, the ratio of emissions
of CO2 and of the proxy species can be less uncertain than
the emission themselves if the emission data are subject to
a strong common bias caused by uncertainties in fuel con-
sumption statistics.

In the following, Sect. 2 describes data and modeling
tools used in our study. Description of our inverse model-
ing method and its validation with synthetic “observations”
are presented in Sect. 3. The results of its application to the
real-world situation are presented and discussed in Sect. 4.
Finally, major findings are summarized in Sect. 5.
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2 Data and model description

2.1 Retrievals from satellite measurements

We used the tropospheric NO2 column retrievals from mea-
surements of the Earth’s backscattered radiation in visible
and ultraviolet spectral regions by the OMI satellite instru-
ment (Levelt et al., 2006) on board the NASA EOS Aura
spacecraft. The Aura satellite (Schoeberl et al., 2006) is in
a sun-synchronous ascending polar orbit with an Equator
crossing time of 13:30 local solar time (LST) and an orbital
period of 99 min. The OMI instrument has a swath width of
∼ 2600 km divided into 60 pixels with a size of 13–26 km.

The retrievals used in this study are provided by the
Royal Netherlands Meteorological Institute (KNMI) as the
DOMINO version 2 data product (Boersma et al., 2011)
through the TEMIS portal (http://www.temis.nl/). The prod-
uct contains Level 2 data, that is, NO2 columns and relevant
geophysical information for each ground pixel observed by
the instrument. In this study, only cloud and surface albedo
screened data (retrieved for the scenes with the cloud frac-
tion less than 30 % and with the surface albedo less than
0.3) were used. The main steps of the OMI NO2 retrieval
algorithm (see Boersma et al., 2011, for details) include
(1) spectral fitting and the slant column density (SCD) es-
timation by using the differential optical absorption spec-
troscopy (DOAS) method, (2) separation of the tropospheric
and stratospheric parts of the slant columns, and (3) calcula-
tion of the tropospheric vertical column by applying the air
mass factor (AMF) to the tropospheric slant column. Each
step involves different uncertainties that may contribute, to
various extents, to the uncertainty of the tropospheric NO2
columns; in particular, the SCD uncertainty is likely to pre-
dominate over other uncertainties in remote areas and is
about 0.7× 1015 molec. cm−2, while the retrievals for urban
areas are mostly affected by the AMF uncertainty, that is of
about 25 % for cloud-free conditions (Boersma et al., 2007,
2011). Several studies (e.g., Zhao and Wang, 2009; Miyazaki
et al., 2012; Vinken et al., 2014) found that in spite of the
considerable uncertainties, the tropospheric NO2 columns
retrieved from the OMI measurements provide useful con-
straints to anthropogenic NOx emissions in different regions
of the world, including Europe.

We also used the Level 2 retrievals of total CO column
amounts from the measurements performed by the Infrared
Atmospheric Sounding Interferometer (IASI) on board the
Metop-A satellite (Clerbaux et al., 2009). Metop-A has
the sun-synchronous polar orbit with Equator crossing at
21:30 LST for the ascending node. The IASI instrument
provides global coverage twice a day (around 09:30 and
21:30 LST), with a swath of about 2× 1100 km and a nomi-
nal pixel diameter footprint on the ground of 12 km.

The CO column amounts are retrieved from the cloud
screened measurements of the spectrum at the 1–0 rotation
vibration band centered at 4.7 µm (2128 cm−1) by using the

Fast Optimal Retrievals on Layers for IASI (FORLI) algo-
rithm (Hurtmans et al., 2012). The FORLI algorithm pro-
vides CO partial column amounts (for at most 19 layers)
fitting the spectral observations with a priori constraints;
the partial columns are combined to yield the total column
amounts. The uncertainty of the IASI CO retrievals strongly
depends on the geographical location and conditions of the
observations (Clerbaux et al., 2009; George et al., 2009; Tur-
quety et al., 2009); it is estimated to be about 10 % under
typical conditions (Clerbaux et al., 2009). It should be noted,
however, that the capability of the IASI measurements to in-
form about CO sources depends not only on the accuracy of
the CO retrievals but also on the sensitivity of the spectral
observations to the CO concentration in the boundary layer.
A convenient way to characterize this sensitivity (which is
related to the vertical resolution of the retrieval and depends,
in particular, on the difference between the temperatures of
the surface and of the atmospheric boundary layer) is to con-
sider the trace of the averaging kernel matrix (Clerbaux et al.,
2009); this parameter is called the degree of freedom of the
signal (DOFS). Distinguishing between the upper and lower
troposphere requires this parameter to be about 2 (George
et al., 2009). Taking these considerations into account, we
used only those retrievals that were characterized by rela-
tively large DOFS values: similar to Konovalov et al. (2014),
the DOFS threshold was set to be 1.7. The available CO re-
trievals for individual pixels were projected to the 0.5◦× 0.5◦

grid of a CTM (see Sect. 2.2) and averaged over each day.
We would like to note that instead of (or together with)

the IASI measurements, we had an option of using alterna-
tive data from other infrared sounders, such as MOPITT and
AIRS. Our decision to choose the IASI measurements was
made by taking into account their relatively high sensitivity
in the boundary layer (George et al., 2009), as well as pre-
vious studies in which the IASI data were successfully em-
ployed for constraining CO emissions from different sources
(Fortems-Cheiney et al., 2009; Krol et al., 2013; Konovalov
et al., 2014). We considered the relatively high sensitivity of
the IASI measurements in the lower troposphere as an impor-
tant advantage, especially in the context of the given study in-
volving a mesoscale CTM. Indeed, the upper troposphere CO
content simulated with such a CTM is likely to be strongly
affected by boundary conditions which are specified by us-
ing global CTM simulations and therefore are not dependent
on CO emissions used in the regional CTM (see, e.g., a dis-
cussion in Konovalov et al., 2011). Exploring the potential
of the alternative CO data products goes beyond the scope of
the given study.

2.2 CTM simulations and initial processing of the
model output data

In this study, the relationships between NOx and CO emis-
sions and, respectively, NO2 and CO column amounts are
simulated by the CHIMERE CTM. CHIMERE is a three-

Atmos. Chem. Phys., 16, 13509–13540, 2016 www.atmos-chem-phys.net/16/13509/2016/

http://www.temis.nl/


I. B. Konovalov et al.: Estimation of fossil-fuel CO2 emissions 13513

dimensional Eulerian model designed to simulate air pol-
lution on urban, regional, and continental scales; it allows
to take into account the most important atmospheric pro-
cesses (such as anthropogenic, biogenic, and fire emissions,
gas-phase and heterogeneous chemistry, advection, turbulent
diffusion, deep convection, dry and wet deposition) affect-
ing the atmospheric fate of a number of reactive gaseous
and aerosol species (see Menut et al., 2013, and references
therein). The model was earlier successfully used in combi-
nation with satellite NO2 and CO retrievals in several inverse
modeling studies of NOx and CO emissions (e.g., Konovalov
et al., 2006, 2008, 2010, 2014; Berezin et al., 2013; Mijling
and van der A, 2012; Ding et al., 2015).

In this study, the CHIMERE model was run with one of
the standard domains (called the CONT5 domain) covering a
western part of Europe (−13.75–25.25◦ E, 34.75–58.25◦ N)
with the horizontal resolution of 0.5◦× 0.5◦. The simulations
were performed with 12 non-equidistant layers in the vertical
(up to the 200 hPa pressure level); the layers were specified in
the hybrid sigma–pressure coordinates such that the distance
between the layers increased with the altitude from ∼ 50 m
near the surface to ∼ 2 km in the upper part of the mod-
eled atmosphere. Gas-phase chemical processes were sim-
ulated with the simplified MELCHIOR2 chemical mecha-
nism (Schmidt et al., 2001), and several heterogeneous reac-
tions on the surfaces of aerosol particles were taken into ac-
count as described in Menut et al. (2013). Initial and bound-
ary conditions for several key gaseous species responsible
for the oxidation capacity of the lower atmosphere (e.g., CO,
NO, NO2, O3,H2O2, HCHO) and aerosols were specified us-
ing monthly climatological data from LMDz-INCA global
model (Folberth et al., 2006). A full list of these species is
provided in the CHIMERE documentation available on the
web site www.lmd.polytechnique.fr/chimere. An influx of
other species, most of which are very reactive and short-lived
(such as OH and HO2), into a model domain is not specified
in CHIMERE. Meteorological data were obtained from the
WRF-ARW (v.3.6) model (Skamarock et al., 2008), which
was run with a horizontal resolution of 50 km× 50 km and
with 30 levels extending in the vertical up to the 50 hPa pres-
sure level for a region covering the CHIMERE domain and
was driven with the NCEP Reanalysis-2 data (National Cen-
ters for Environmental Prediction, 2000). The anthropogenic,
biogenic, and fire emissions of major gaseous and aerosol
species were taken into account in our simulations as de-
scribed in the next section (Sect. 2.3). The model was run
with different scenarios (specified below in Sect. 3.2) for the
period from 22 December 2007 to 29 December 2008. The
spin-up period included the first 10 days of any run, which
therefore were withheld from the following analysis.

To enable consistency of our simulations with the satellite
data employed in this study, the CHIMERE outputs were pro-
cessed by taking into account measurement properties. All
the simulated NO2 and CO vertical profiles corresponding (in
time and space) to any pixel that contained, respectively, the

OMI and IASI measurements satisfying to the criteria speci-
fied in Sect. 2.1 were projected into the measurement vertical
grids and transformed into tropospheric NO2 columns and to-
tal CO columns, CNO2

m and CCO
m , by applying the respective

averaging kernels, ANO2 and ACO.
Specifically, the simulated NO2 profiles were transformed

as follows (Eskes and Boersma, 2003):

CNO2
m =

(
ANO2

)T
C

NO2
m(o), (1)

where C
NO2
m(o) are the original model outputs (partial columns)

interpolated to the pressure grid of the averaging kernels up
to the tropopause pressure level (specified in the measure-
ment database). Note that in relatively rare cases (consti-
tuting less than 20 % of the total number of valid observa-
tions available for the study region and period) where the
tropopause pressure was smaller than the pressure at the top
of the model grid (200 hPa), the lack of the simulated data at
altitudes exceeding the height of the upper model layer could
result in some underestimation of the modeled tropospheric
columns, but such a minor inconsistency between the mod-
eled and simulated NO2 columns is not expected to result in
underestimation of NOx emissions in our analysis, owing to
application of a debiasing technique described in Sect. 3.2
and validated in Sect. 3.5.

A slightly different procedure was used to process the
modeled CO partial columns:

CCO
m = (A

CO)T
(
CCO

m(o)−CCO
a

)
+ ITCCO

a , (2)

where CCO
a is the a priori CO vertical profile used in the re-

trieval procedure, and I is the identity vector. The missing
components of CCO

m(o) for altitudes above the upper layer of
the CHIMERE CTM were taken to be equal to the respective
values from CCO

a . Note that the transformation providing the
total CO columns in accordance to Eq. (2) is a special case of
the more general transformation procedure providing partial
CO columns (see Fortems-Cheiney et al., 2009).

The model outputs transformed with different averaging
kernels but corresponding to the same model grid cell and
hour as the observations were averaged. The modeled pro-
files which had not been matched with the corresponding ob-
servational data were not used in our analysis. With the satel-
lite data used in this study, each grid cell is provided with
observed or modeled data for at most two different hours
of each day. In addition to the selection criterion based on
the DOFS values (see Sect. 2.1), in order to minimize the
impact of model errors that are not associated with uncer-
tainties in emission data on inverse modeling results, only
those days and grid cells were taken into account when and
where the modeled contribution of anthropogenic NOx or
CO emissions in the study region (specified in the next sec-
tion) to CNO2

m and CCO
m was larger than one percent of the

corresponding “background” values of the columns (here
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“background” is defined according to a simulation made
without anthropogenic emissions, i.e., with the biogenic and
open biomass burning emissions specified in the next section,
and with the transport model boundary conditions described
above).

2.3 Emission inventory data

We used annual anthropogenic emission data for the year
2008 from several sources: the European Monitoring and
Evaluation Programme (EMEP) regional emission inven-
tory (EMEP/CEIP, 2014; Mareckova et al., 2014), the Emis-
sion Database for Global Atmospheric Research, version 4.2
(EDGAR v4.2) (EC-JRC/PBL, 2011), and the Carbon Diox-
ide Information Analysis Center (CDIAC) (Boden et al.,
2011). The EMEP inventory data were used in our simula-
tions described in Sect. 2.2, and the EDGAR v.4.2 data were
used to relate the emission estimates for the proxy species
with CO2 emissions (see Sect. 3.3). The CDIAC data were
involved in the analysis of uncertainties in our emission esti-
mates (see Sect. 3.4) along with the EMEP and EDGAR v4.2
data.

The EMEP/CEIP inventory is based on emission data re-
ported under the Convention on Long-range Transbound-
ary Air Pollution by individual countries in Europe and in
the Middle East, which are expected to use a unified ap-
proach (EMEP/EEA, 2013) applicable on the national level.
In this study, we used the EMEP anthropogenic annual
emission data distributed among 11 Selected Nomenclature
for Air Pollutants (SNAP) sectors and provided for sev-
eral pollutants, such as NOx , CO, non-methane hydrocar-
bons (NMHC), SOx , and particulate matter, on a grid with
the resolution of 0.5◦× 0.5◦. Note that the EMEP inventory
does not provide data for CO2 emissions and that the emis-
sions for the 11th sector (comprising biogenic sources and
fires associated with human activities) were replaced in our
simulations with data of dedicated inventories (as described
in this section below).

The EDGAR v4.2 inventory is created by using the energy
activity data provided by the International energy agency
(IEA, 2010) and by following the methodology and fuel-
specific emission factors based on the 2006 IPCC guide-
lines (IPCC, 2006). The IEA data were compiled follow-
ing harmonized definitions of fuels and activities and ap-
plying the same methodologies across most countries (and
some groups of countries outside of the study region). We
used the EDGAR v4.2 data for the national totals of anthro-
pogenic NOx , CO, and CO2 emissions distributed between
several emission sectors (not necessarily coinciding with the
SNAP sectors). Note that we used the EDGAR v4.2 FF CO2
emission data excluding CO2 emissions from biofuel burn-
ing (that is, the data used were calculated after “excluding
short-cycle organic carbon”), while the corresponding CO
and NOx data included emissions from both fossil-fuel and
biofuel burning.

The FF CO2 emission data provided by CDIAC are based
on the energy statistics that were compiled primarily from
the annual energy questionnaire distributed by the United
Nations Statistics Division and supplemented by official na-
tional statistical publications (UN, 2012). The quantity of
fuel was converted into the quantity of CO2 emissions by
using the methodology based on Marland and Rotty (1984).
The CDIAC database used in this study reports only national
totals of FF CO2 emissions without sectorial breakdowns and
was used in this study for evaluation of uncertainties in our
results.

Note that CO2 emissions from cement production have
been reported in CDIAC (as well as in EDGAR v4.2) sep-
arately from FF CO2 emissions and were not considered in
our study. Excluding this emission source from our estimates
seems to be reasonable, taking into account that cement pro-
duction, unlike FF burning, is not associated with consider-
able emissions of either NOx or CO, and so satellite mea-
surements of the corresponding proxy species cannot provide
strong constraints on CO2 emissions from cement produc-
tion.

The anthropogenic emissions were aggregated into two
categories. Splitting the total emissions among the two cat-
egories was deemed to reduce the generation of aggregation
errors (Kaminski et al., 2001) in our top-down estimate of
the total NOx and CO emissions. To this end, we tried to
ensure that, on the one hand, the emissions corresponding
to the different categories had distinct spatial distributions
(such as the emissions from power plants and from transport)
and, on the other hand, that the amounts of annual emissions
from each category were of the same order of magnitude.
Specifically, the first category (EHI) included the emissions
associated mostly with energy and heat production and heavy
industries. The second category (TCO) comprised transport,
chemical industry, and all other anthropogenic sources. In the
EMEP inventory, the EHI category was defined by aggregat-
ing the sources corresponding to the first, second, and third
sectors of SNAP (combustion in energy and transformation
industries, nonindustrial combustion plants, and combustion
in manufacturing industry, respectively). The sectors 1A1a-c
(public electricity and heat production, other energy indus-
tries), 1A2 (manufacturing industries and construction), and
1A4 (fuel combustion in residential and other sectors) were
allocated into the same category in the case of the EDGAR
inventory. The TCO category aggregated all other anthro-
pogenic sources considered in the EMEP or EDGAR v4.2
inventories. We expected that, apart from limiting the aggre-
gation error, consideration of these two categories would al-
low us to get more specific information on emission sources.
Note that splitting emission sources between the two cate-
gories specified above is, at large, rather arbitrary: in this
study, we did not attempt analyzing the impact of the source
categories definitions on the uncertainty of our emission es-
timates.
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Figure 1. Spatial distributions of NOx (a) and CO (b) total annual emissions (g cm−2 yr−1) and the fractions (%) of the EHI (c, e) and TCO
(d, f) emission source categories (see the definitions in Sect. 2.3) according to the EMEP inventory for 2008. The emission data are shown
only for the study region comprising land territories of 12 European countries.

Figure 1 shows the CONT5 domain (employed in this
study) of the CHIMERE CTM along with the spatial distribu-
tions of total annual anthropogenic NOx and CO emissions
from the selection of 12 western European countries consid-
ered in our analysis according to the EMEP inventory for
2008; it also shows the fractions of the two source categories
introduced above. Note that emissions outside of the selected
countries (including ship emissions) are not indicated (the

corresponding territories are left blank), such emissions con-
stitute minor parts of the total NOx and CO emissions in
the whole model domain shown in Fig. 1 (41 and 30 %, re-
spectively, according to the EMEP inventory for 2008). The
territory of the United Kingdom is not fully represented in
the model domain; however, the emissions from the missing
northern part of this country are rather negligible (∼ 0.5 % of
the total emissions in UK).
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It is noteworthy that not only the total emissions (see
Fig. 1a, b) but also the fractions of the different emission
source categories (see Fig. 1c–f) exhibit considerable spa-
tial variations. The spatial variability of the source category
fractions indicates that, given sufficiently accurate observa-
tions, an appropriate inverse modeling procedure together
with the dense spatial sampling of the atmosphere by satel-
lites may have a potential to distinguish between emissions
coming from the different sources. It can also be noted that
the fractions of the same source categories of the NOx and
CO emissions considerably differ (cf. Fig. 1c–f). In partic-
ular, while the NOx emissions mostly come from the TCO
sources, the CO emissions are distributed between the TCO
and EHI sources much more evenly. This observation indi-
cates that the measurements of these two proxy species might
provide complementary (to a certain extent) information on
human activities associated with CO2 emissions, even if at-
mospheric fates of the CO and NOx emissions were identical.

The annual anthropogenic emission data were distributed
at shorter timescales by applying monthly, daily, and
hourly factors from the standard emission interface of the
CHIMERE CTM (Menut et al., 2013); the factors were pro-
vided for specific pollutants, the SNAP sectors, and countries
by IER, University of Stuttgart (GENEMIS, 1994). The sea-
sonal variations specified in this way for the two categories
of anthropogenic emissions are shown in Fig. 2. In addition,
emissions were vertically distributed within 1 km by using
the profiles (specific for each SNAP sector) provided in the
emission interface of CHIMERE. Note that the vertical pro-
files did not explicitly account for aircraft emissions, which
are also included in the EMEP inventory, but are likely to
provide a very small contribution (less than 2 %) to anthro-
pogenic NOx and CO emission in Europe (Tarassón et al.,
2004).

Along with the anthropogenic emissions, our model in-
cluded biogenic emissions (in particular, NOx emissions
from soils and emissions of isoprene and some other hydro-
carbons from vegetation) and emissions of gaseous species
(NOx , CO, and non-methane hydrocarbons) from open
biomass burning (fires). Biogenic emissions were calculated
for each grid cell, day, and hour within the CHIMERE model
by using the European inventory of soil NO emissions (Stohl
et al., 1996) and the emission factors and parameteriza-
tions from the MEGAN (Model of Emissions of Gases and
Aerosols from Nature) model (Guenther et al., 2006). The
fire emissions were specified using the daily data provided
by the Global Fire Assimilation System, version 1.0 (GFAS
v1.0) fire emission inventory (Kaiser et al., 2012). The fire
emissions were distributed in the vertical uniformly up to the
altitude of 1 km (similar to Konovalov et al., 2011). Note that
according to the data of the GFAS v1.0 and EMEP emis-
sion inventories, the total emissions of both NOx and CO
from fires in the countries considered (mainly, in Portugal)
in 2008 were rather small (∼ 0.5 and ∼ 5 % relative to the

Figure 2. The seasonal variations of the spatially averaged (over the
study region) NOx (a) and CO (b) emissions for the EHI and TCO
categories of sources. The variations were calculated as explained
in Sect. 2.3. The values shown (unitless) are the monthly emissions
normalized to the total annual emissions divided by 12.

corresponding FF emission estimates given by the EMEP in-
ventory).

2.4 Preliminary comparative analysis of the
measurement and simulation data

In this section, we compare the measurement and simulated
data and assess to what extent the variability of the NO2 and
CO columns over the study region is affected by direct an-
thropogenic emissions in the same region. Figure 3 shows
time series of the daily values of NO2 and CO columns av-
eraged over the study region (see Fig. 1). The model was run
both with and without anthropogenic emissions in the study
region, and the model results are presented in Fig. 3 after
compensating for a systematic difference with the measure-
ments. The systematic difference (the bias) was evaluated as
the average difference between the model data (obtained by
running CHIMERE with full emissions) and the correspond-
ing measurements. The averaging was carried out either di-
rectly for the whole annual period considered (see Fig. 3a, b)
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Figure 3. Time series of the spatially averaged NO2 (a, c) and CO (b, d) columns retrieved from satellite measurements (see green curves)
and simulated using the CHIMERE CTM both with and without anthropogenic emissions in the study region (see red and blue curves,
respectively). The simulated data shown have been debiased: the differences (see brown curves) between either the annual (a, b) or monthly
(c, d) averages of the simulation and measurement data were subtracted from the original simulation data.

or for each month independently (see Fig 3c, d). Note that the
modeled NO2 and CO columns shown in Fig. 3 were sam-
pled consistently (both in time and space) with the respective
available satellite data and processed using averaging kernels
(see Sect. 2.2 and Eqs. 1 and 2); a very small difference be-
tween the CO columns calculated with and without anthro-
pogenic emissions in the study region partly reflects the rel-
atively low sensitivity of the CO retrievals in the boundary
layer (compared to the upper troposphere).

It can be seen that both the NO2 and CO measurements
exhibit strong day-to-day variability. A part of the observed
variability is captured by the model, but the amplitude of

the variations is typically smaller in the simulations than in
the measurements. Exact reasons for the stronger day-to-day
variations in the measurements are not known: one possible
reason is that the variations in the measurements may re-
flect random errors in the retrieval procedures (see Sect. 2.1),
while another possible reason is that a part of the variations
in the measurements may be due to factors which are not
taken into account in our model (such as daily variability in
the boundary conditions). Apart from the day-to-day varia-
tions, both the NO2 and CO columns manifest slower varia-
tions. Such variations have a seasonal component in both the
measured and simulated NO2 columns, with larger values ob-
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served in winter than in summer. A regular seasonal variabil-
ity is visible also in the simulated CO data; however, similar
variability in the corresponding measurement data appears to
be offset by slower (probably interannual) variability, which
is not reflected in the boundary conditions of CHIMERE.
The differences between the measurements and simulations
vary from month to month, thus indicating the importance of
evaluating the biases on shorter than annual timescales; this
observation is taken into account in our inversion procedure
described in Sect. 3.2. It should be noted that the seasonal
changes in the monthly biases may partly be due to errors in
the seasonal cycles of the emissions specified in CHIMERE
and in the global models that were used to obtain the a pri-
ori NO2 and CO profiles for the respective retrieval proce-
dures (see Boersma et al., 2011, and George et al., 2009,
for details); such changes may also be indicative of some
errors in the assumed seasonal variations of other parame-
ters of the retrieval procedures, such as surface reflectance or
atmospheric scattering by clouds and aerosol in the case of
the NO2 retrievals and surface temperature, local emissivity,
vertical distributions of atmospheric temperature, and humid-
ity in the case of the CO retrievals. Figure 3 also shows that
while the anthropogenic emissions in the study region pro-
vide the predominant contribution to the NO2 columns over
the same region, the respective signal in the CO columns is
very small.

Figure 4 presents the spatial distributions of the annually
averaged NO2 and CO columns derived from OMI and IASI
measurements and simulated with the CHIMERE CTM.
Note that only the data taken into account in our analysis
are shown. NO2 columns from both the measurements and
simulations show very strong spatial variability correlating
with the spatial distribution of NOx emissions (cf. Figs. 4a, c
and 1a); this observation is coherent with findings of earlier
studies (e.g., Konovalov et al., 2006; Napelenok et al., 2008;
Mijling et al., 2012) demonstrating that satellite retrievals of
NO2 columns combined with CTM outputs can provide use-
ful information on the spatial distribution of NOx emissions
on a regional and even local (e.g., cities) scale. However, the
simulations do not reproduce the spatial variability of NO2
columns perfectly. In particular, the NO2 column amounts
over the hot spots located in the heavily industrialized Po Val-
ley in Northern Italy, as well as over an industrialized region
in the northwestern Germany and Madrid, are considerably
smaller in the simulations than in the measurements; in con-
trast, the simulated NO2 column amounts tend to be larger
than the satellite retrievals over Great Britain. These differ-
ences may be due to uncertainties in the spatial distribution
of NOx emissions as well as to measurement and simulation
errors.

Consistent with the results shown in Fig. 3, the signal
from anthropogenic emissions appears to be rather weak and
“smeared” in the spatial distribution of the CO columns.
There are also big differences between the retrievals and sim-
ulations in some locations. Both the retrieved and simulated

CO column amounts tend to be elevated over areas where
the anthropogenic emissions are particularly large (such as
those in Belgium, Germany, England, or the Po valley in
Italy). However, Fig. 4f, showing the CO columns simulated
without anthropogenic CO emissions in the study region and
transformed using averaging kernels (see Eq. 2), bears ev-
idence that an “anthropogenic signal” in the spatial varia-
tions of the measured CO columns may come mostly from
the a priori CO columns employed in the retrieval procedure.
Therefore, the preliminary analysis presented in this section
indicates that the NO2 measurements can potentially provide
much stronger constraints for anthropogenic emissions on a
regional scale compared to the CO measurements.

3 Method

3.1 Preliminary remarks

Our method is first described below for a rather general case
(with arbitrary numbers of proxy species and emission source
categories and for an arbitrary region); some settings spe-
cific for this study are either explained later or have been
discussed in Sect. 2. The main steps of the method were
briefly outlined in Introduction. The key step of the method –
namely, the estimation of annual emissions of a proxy species
from different categories of sources (emission sectors) in a
region of interest – is described in Sect. 3.2. This step in-
volves optimization of the emissions for a given sector by
fitting simulations performed with a CTM to satellite obser-
vations of a corresponding species. An important element of
the first step is the estimation and elimination of a possible
systematic discrepancy between the simulations and observa-
tions which is not related to uncertainties in a priori emission
data. Further steps leading to the estimation of the budgets of
FF CO2 emissions are described in Sect. 3.3. An important
part of the method is dedicated to the estimation of the confi-
dence intervals for all our emission estimates (see Sect. 3.4).

3.2 Optimization of emissions of proxy species

We estimate annual totals of anthropogenic emissions, Es
c,

from different categories of sources, c (c ∈[1,Nc], where Nc
is the total number of categories), for a given proxy species,
s, in a study region. To do that, we combine observations, Cs

o,
of the species atmospheric column amounts with respective
modeled data, Cs

m, by assuming (similar to, e.g., Berezin et
al., 2013) that Cs

m depends on the emissions of a correspond-
ing species linearly:

Cs
m
∼= Cs

mb+
∑

c
Ss

ca
s
c(E

s
c− Ẽ

s
c), (3)

where Ẽs
c are the available (a priori) bottom-up annual an-

thropogenic emission estimates for a species s and a source
category c, as

c is the vector specifying allocation of the an-
nual anthropogenic emissions to each cell of model’s grid
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Figure 4. Spatial distributions of the annually averaged NO2 (a, c, e) and CO (b, d, f) columns obtained from satellite observations (a, b)
and model runs performed with (c, d) and without (e, f) anthropogenic emissions in the study region. Red lines (e, f) depict four subregions
used in the uncertainty analysis described in Sect. 3.4; the subregions contain approximately the same amounts of daily data. Note that the
simulation data have been debiased (in the same way as the data shown in Fig. 3a, b). Note also that the data which are not taken into account
in our inverse modeling analysis are not shown.

and each day of the simulations, Ss
c is the Jacobean matrix

containing sensitivities of the model outputs to the emis-
sions, and Cs

mb are the species amounts calculated in a “base”
model run using the bottom-up emission inventory data. Note
that in this study, Eq. (3) was used specifically to express
the modeled relationships between NO2 measurements and

NOx emissions, as well as between CO measurements and
CO emissions.

The annual emission estimates for individual source cate-
gories, Es

c, constitute the control vector of our inverse prob-
lem, Es. The optimum estimate of Es can be obtained by
minimizing the sum of the squared differences between the
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observations and simulations as follows:

Ês
= argmin

(
Cs

o− Cs
m+1s)T (Cs

o− Cs
m+1s) , (4)

where Ês is the optimal estimate of the control vector, and
1s denotes the systematic discrepancies between the simula-
tions and observations of a given proxy species s. Note that
different components of the vectors Cs

o, Cs
m, and Cs

mb are as-
sumed to represent available values of the respective columns
amounts of the species s in different grid cells and/or differ-
ent moments of time in the region and period considered.

The estimation given by Eq. (4) formally implies that the
errors are homoscedastic, normally distributed, and uncorre-
lated in space and time; deviations of real data from these
ideal assumptions can result in errors in Ês, but we attempt
to take such errors into account in respective confidence in-
tervals for Ês (see Sect. 3.4). The systematic discrepancies
1s, which are assumed to be independent of emission uncer-
tainties and are estimated as explained below, can, in princi-
ple, be due to systematic errors both in the simulations and
observations. For definiteness, 1s is assumed in this study to
be due to biases in the simulations; the vector 1s is referred
to below as simply “the bias”. Formally, it can be defined as
follows:

1s
= 〈Cs

m−Cs
o〉, (5)

where the brackets denote the averaging over the assumed
statistical ensemble of probable values of Cs

m and Cs
o in a

situation when the anthropogenic emissions in the study re-
gions are known exactly.

Note that Eq. (4) does not include any formal a priori con-
straints on the magnitude of the optimal emission estimates
(unlike many other inverse modeling studies) or any other
regularization terms, and, accordingly, our procedure does
not involve any explicit quantitative settings for the a priori
error covariance matrices. In this way, we avoid possible un-
certainties in optimal emission estimates that could be associ-
ated with such settings. Not using a priori constraints on the
magnitude of the optimal emission estimates also enhances
the value of the CO2 emission estimates derived from com-
pletely independent measurements of different proxy species
for cross-validation purposes, because otherwise the top-
down estimates of emissions of the proxy species (and, ac-
cordingly, hybrid estimates of CO2 emissions) could be more
strongly dependent on the data of bottom-up inventories pro-
viding a priori estimates. Avoiding formal a priori constraints
(or any other regularization) does not necessarily result in
ill-conditioning of an inverse problem, as long as the dimen-
sion of the control vector does not exceed that of the mea-
surement vector (Enting, 2002), and it is definitely so in our
case. Although satisfying this criterion alone cannot guaran-
tee that the problem is well conditioned, the numerical ex-
periments presented below in Sect. 3.5 indicate that errors in
our emission estimates due to probable errors in input data
remain limited and thus the problem considered in this study

is not ill conditioned. The dimension of the control vector
(one or two) is much smaller, in our case, than that of the
measurement vector (including tens of thousands of observa-
tions) because we do not attempt improving the allocation of
the emissions in space and time: the vectors as

c are assumed
to be known (in practice, as

c are provided implicitly by an
emission interface in a CTM). Similar assumptions are not
unusual in inverse modeling studies involving CTMs (e.g.,
Pétron et al., 2004; Müller and Stavrakou, 2005; Huneeus et
al., 2012), when the emissions are corrected for big regions
rather than for each model grid cell individually: indeed, op-
timization of emissions of chemically reactive species (like
NOx) is, in a general case, a time-consuming task, even when
an adjoint code is available. A drawback of fixing the spatial
distribution of the emissions in inversion is a probable ag-
gregation error (Kaminski et al., 2001). Similarly, errors in
our total annual emission estimates can also result from fix-
ing the temporal distribution of the emissions. For example,
if the assumed seasonal cycle of the emissions overestimates
them in summer and underestimates in winter, then, taking
into account that more satellite observations are available in
summer than in winter (because of seasonal differences in
the atmospheric conditions), our annual estimates can be bi-
ased negatively. We attempted to take into account possible
errors in our estimates due to errors in spatial and temporal
allocation of the emissions in the uncertainty analysis (see
Sect. 3.4).

We assess the bias for a given data point i as the average
difference between the simulated and observed columns of a
species s for the month m in which the data point i lies:

1s
i
∼=

[∑
j
θ s
j (m)

]−1∑
j

[
θ s
j (m)

(
Cs

mj −C
s
oj

)]
, (6)

∈

{
θ s
j = 1, j ∈�m

θ s
j = 0, j 6∈�m

,

where�m denotes the subset of the available data for a given
month m, and i ∈�m is the index of a component (a point
in time and space) of the vector 1s. It should be noted that
values of Cs

m in Eq. (6), like those in Eq. (4), depend on the
control vector, Es. When combined with Eqs. (3) and (6),
Eq. (4) specifies a linear optimization problem that can be
easily resolved numerically. Effectively, information about
optimal values of the emission vector is obtained from spatial
and temporal variations of the observations and simulations
within each month.

Equation (6) provides a simple approximation for Eq. (5)
by implying that the systematic differences between differ-
ent pairs of simulations and observations corresponding to
a given month are about the same; that is, we assume that
the bias is uniform in space and time during a given month.
In reality, however, systematic errors of satellite retrievals
and model results can be different for different grid cells and
days. Therefore, this approximation (which reflects the lack
of any a priori information about the bias) may introduce
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some extra errors in our emission estimates which would not
appear if the structure of the bias were known exactly. Al-
though we cannot avoid such errors, we try, at least, to take
them into account in the confidence intervals for our esti-
mates. Note that as long as there is only one realization of
Cs

m and Cs
o for the region and period considered, an unam-

biguous separation between their random uncertainties and
systematic errors is hardly feasible anyway.

Summing up the optimal emission estimates for the differ-
ent source categories provides the estimate of total emissions,
Ês

sum, of the species s in the study region. Alternatively, the
estimate of the total emissions can be obtained by apply-
ing the estimation procedure described above to the special
case where all emission sources are aggregated together and
Nc = 1. The corresponding optimal emission estimates are
denoted below as Ês

tot. Considering the difference between
Ês

sumand Ês
tot provides a useful test for self-consistency of

the inversion procedure: the difference should not exceed the
combined confidence intervals (that are expected to include
an aggregation error among other uncertainties) for Ês

sum and
Ês

tot.
The estimation method described above requires the

knowledge of the product of the Jacobean matrix, Ss
c, and

of the vector as
c (see Eq. 3), while the knowledge of the Ja-

cobean matrix itself is not needed. In this study, this prod-
uct was evaluated as the difference between the results of a
model base run performed with the standard emission set-
tings as described in Sect. 2.3 and the results of the spe-
cial runs (EHI or TCO) performed after decreasing the an-
nual EMEP emission values for the respective (EHI or TCO)
source categories by 10 %. The product of Ss

c and as
c in the

case where all emission sources were aggregated together
(that is, with Nc = 1) was evaluated as the sum of the prod-
ucts of Ss

c and as
c for the two individual (EHI and TCO) emis-

sion categories.
Note that we analyzed only the measurements over land

in the study region, and so the measurements outside of the
study region (e.g., over ocean) were not used. Such a limi-
tation affected the amount of data used in the analysis, but
we do not see any reason to expect that it could result in any
biases in our emission estimates, which would not be cov-
ered by their uncertainty intervals (evaluated as explained in
Sect. 3.4). Likewise, we do not expect that any biases in our
emission estimates can be caused by NOx and CO emissions
outside of the study region. Indeed, on the scales considered,
it seems reasonable to regard temporal and spatial variations
of NO2 and CO originating from any sources (including ship
emissions) outside of the study region as model errors on top
of the modeled variations of NO2 and CO originating from
inside of the study region. Accordingly, we do not distinguish
such variations from other errors and treat their systematic
and random parts as explained in this section (see Eq. 6) and
in Sect. 3.4, respectively.

3.3 Estimation of FF CO2 emissions

Following Berezin et al. (2013), we introduce the conversion
factors, F s

c , describing the relationships between the annual
emissions for a given proxy species s and the CO2 emissions:

F s
c =

Ẽ
CO2
c

Ẽs
c
, (7)

where ẼCO2
c and Ẽs

c are the annual estimates of anthro-
pogenic CO2 emissions and of anthropogenic emissions for
a species s for a given emission source category (sector) c.
Here (as above), the tildes indicate that the emission esti-
mates are obtained from a bottom-up emission inventory (as
opposed to the optimal emission estimates, Ês

c, inferred from
the measurements according to Eq. (4) by using the modeled
relationships between the column amounts of a given proxy
species and corresponding emissions).

Application of the conversion factors to the correspond-
ing optimal emission estimates allows us to obtain the hybrid
CO2 emission estimates, ÊCO2

sc , that are partly constrained
by the measurements but also depend on data of the emission
inventory:

ÊCO2
sc = F s

c Ê
s
c. (8)

Similarly, we can estimate the total CO2 emissions:

ÊCO2
s, sum =

∑
c
F s

c Ê
s
c. (9)

The alternative total CO2 emission estimate, ÊCO2
c, tot, can be

inferred directly from an estimate of the total emissions for a
proxy species:

Ê
CO2
s, tot = F

s
totÊ

s
tot, (10)

where F s
tot is the conversion factor evaluated similar to

Eq. (7) but by using total annual emission estimates based
on emission inventory data, and Ês

tot are the corresponding
estimates inferred from satellite measurements. Note that the
conversion factors that were used to obtain our hybrid FF
CO2 emission estimates reported below in Sect. 4.2 were cal-
culated with the EDGAR v4.2 emission inventory data.

The hybrid CO2 emission estimates derived from measure-
ments of different species can be used for the cross-validation
purposes (specifically, the different estimates are expected to
agree within the range of their confidence intervals if all un-
certainties including aggregation errors are adequately ac-
counted for in the inversion procedure). They can also be
combined by taking into account the uncertainty of the in-
dividual estimates. Specifically, given Ns individual emis-
sion estimates, ÊCO2

sc , the combined (maximum likelihood)
estimate of the CO2 emissions, ECO2

comb, c, and its uncertainty
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range can be expressed as follows:

Ê
CO2
comb, c =

(∑Ns
s=1

(
σCO2

sc

)−2
)−1∑Ns

s=1
ÊCO2

sc

(
σCO2

sc

)−2
;

σ
CO2
comb, c =

(∑Ns
s=1

(
σCO2

sc

)−2
)−1/2

, (11)

where σCO2
sc are the uncertainties (the standard deviations) of

Ê
CO2
sc .
A combined estimate for the total CO2 emissions,

Ê
CO2
comb, tot, can be obtained in a similar way by using values

of ÊCO2
s, tot . An alternative combined estimate for the total emis-

sions, ÊCO2
comb, sum, can be obtained by summing up values of

Ê
CO2
comb, c for different source categories c. The standard devi-

ations σCO2
sc can be evaluated as described in the next section

(Sect. 3.4). Importantly, according to Eq. (11), the probable
uncertainty of the combined estimate ÊCO2

comb, c is smaller than
the uncertainty of any of the individual estimates. It should be
noted, however, that Eq. (11) provides the maximum likeli-
hood estimate only if the “input” emission estimates derived
from measurements of individual proxy species are statis-
tically independent from each other; otherwise it would be
necessary to take into account their error covariances. Appli-
cability of Eq. (11) to the situation addressed in this study is
discussed in Sect. 4.2.

3.4 Uncertainties in the emission estimates

Evaluation of credible confidence intervals for our optimal
emission estimates by using a typical error propagation tech-
nique requires proper knowledge of the statistical character-
istics of model and measurement errors. However, in case of
simulations and satellite measurements of minor atmospheric
species, such knowledge is usually lacking due to complex-
ity and multiplicity of factors that may lead to retrieval and
model errors. Taking such considerations into account, in-
stead of using the error propagation technique, we follow the
so-called subsampling approach (Politis et al., 1999). Sub-
sampling suggests estimating the confidence interval of a
sample statistic (e.g., the variance) by considering variability
of that statistic among subsamples drawn from the original
sample without replacement.

To adopt the subsampling approach in this study, the orig-
inal set (sample) of input data for a given proxy species s
is divided into nd subsets (subsamples). From each subset,
a “partial” independent emission estimate, Ês

c, i (i ∈[1, nd]),
is inferred. The partial estimates can be used to evaluate the
standard error, σ s

c , of Ês
c (that is, the standard error of the

sample estimate) as follows:

σ s
c
∼=

√√√√ 1
nd(nd−1)

nd∑
i=1

(
Ês

c, i − Ê
s
c(•)

)2
, (12)

where (•) denotes the mean over all the partial estimates. Im-
portantly, the estimation given by Eq. (12) requires the par-
tial estimates to be statistically independent. If this condition
is satisfied, the partial estimates, Ês

c, i , that are involved in
Eq. (12) can be regarded as independent observations of the
same characteristic: deviations between Ês

c, i and Ês
c(•) can

only be due to errors in the simulated and measured data. In
this sense, Eq. (12) essentially evaluates the standard devia-
tion of the mean of individual observations (individual top-
down emission estimates in our case) affected by random er-
rors. Note that a simple and robust estimation technique in-
volving Eq. (12) is basically the same as one of the oldest and
popular techniques within the subsampling approach, known
as replicated sampling (Deming, 1960; Lee and Forthofer,
2006). The standard errors in our estimates, Ês

sum and Ês
tot,

for the total emissions of proxy species can be evaluated in
the same way (that is, by substituting Ês

sum, i and Ês
sum(•) or

Ês
tot, i and Ês

tot(•) into Eq. (12) instead of Ês
c, i and Ês

c(•)).
The statistical independence of the partial estimates could

not be ensured in our case if different subsets were selected
in a quite arbitrary way. The reason is that the model and
observation errors tend to covariate both in space and time
(as confirmed by our analysis discussed below in Sect. 3.5).
Thus, on the one hand, the data included in different sub-
sets should be sufficiently separated in time and/or space to
avoid co-variation of errors of different partial estimates. On
the other hand, the number of the subsets should not be too
small to ensure that the standard error estimate is sufficiently
reliable (note that statistical inference defined by Eq. (12) is
based on nd− 1 degrees of freedom). It was also necessary
to take into account that the error structure in temporal and
spatial domains can be different.

In view of these considerations, we opted to divide the
original dataset into four subsets in the temporal domain and
four subsets in the spatial domain. Each of the subsets in the
temporal domain included data for only one season but for
the full spatial domain. The gridded data subsets for win-
ter, spring, summer, and autumn months included 3.9× 104,
4.1× 104, 5.4× 104, and 4.1 × 104 values in the case of
NO2 measurements and 2.6× 103, 1.4× 104, 2.5× 104, and
1.2× 104 values in the case of CO measurements. The spatial
subsets were defined as shown in Fig. 4e, f and each included
about 4.3× 104 and 1.3× 104 values for the whole year in
the cases of NO2 and CO measurements, respectively. The
standard error was estimated in accordance to Eq. (12) in-
dependently for both “temporal” and “spatial” subsets (that
is, nd was equal 4 in the both cases), and the maximum of
the two estimates of σ s

c was selected as the final estimate of
the standard error. Note that such a division allowed us to re-
tain most of the actual error covariances within a given sub-
sample, as the areas and time periods covered by each sub-
set were significantly larger than expected error covariance
scales (see Sect. 3.5 for further details). In contrast, selection
of the maximum of the two different σ s

c estimates may re-
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sult in overestimation of the confidence intervals that can be
robustly evaluated by applying t values (from the Student’s
distribution with three degrees of freedom in our case) to the
standard error estimate.

We expect that apart from random errors in the input data,
the error estimate obtained as described above also includes
(at least to some extent) the aggregation error (Kaminski et
al., 2001). In this study, that kind of error may be due to ag-
gregation of similar sources in all the countries considered
into a single component of the control vector. As contri-
butions of various sources to the CO and (especially) NO2
columns in the different countries are different, the aggrega-
tion error is likely to be manifested as deviations between the
different partial estimates. For example, if, in a hypothetical
situation, an emission estimate inferred from the full dataset
were mostly affected by strong emission sources from only
one country, a partial estimate obtained after leaving the mea-
surements over that country out would likely be much less
affected by the same sources, at least in the case of emission
estimates of such a short-lived species as NOx .

The confidence intervals estimated using Eq. (12) are also
likely to account for most of estimation errors associated
with uncertainties in the diurnal and weekly variations of an-
thropogenic emissions, as well as with uncertainties due to
shortcomings in the model representation of chemical pro-
cesses (including effects of subgrid-scale chemical interac-
tions). Indeed, it seems reasonable to expect that different
errors of the emission temporal cycles for different emis-
sion sectors, countries, and seasons can be manifested as
quasi-random deviations between the simulations and mea-
surements in different grid cells and days. Uncertainties in
the diurnal variations of emissions are likely to be manifested
additionally in the differences between the hybrid CO2 emis-
sions estimates inferred separately from the CO and NO2
measurements, as those measurements are taken in different
times of a day (see Sect. 2.1). Uncertainties in simulations of
chemical processes and subgrid-scale chemical interactions
are likely to have a different impact on the modeled NO2 or
CO columns in different types of environments (e.g., rural
or urban) and in different seasons; therefore, the respective
model errors are likely to differ in different grid cells (and
days of an year) and to have a different impact on the NOx
or CO emission estimates for different subregions and sea-
sons. Accordingly, it indeed seems reasonable to assume that
such errors are mostly taken into account in the emission es-
timate uncertainties evaluated with Eq. (12). In addition, as
the NO2 and CO behaviors are governed by essentially dif-
ferent chemical processes, uncertainties due to a “chemical”
part of model errors are likely to contribute to differences be-
tween the CO2 emission estimates based on the NO2 and CO
measurements.

Note that it is nonetheless not quite infeasible that some
model errors associated with the representation of chemical
interactions can result in similar (positive or negative) biases
across the NOx or CO emission estimates inferred from the

different data subsets. For example, systematic underestima-
tions of the NOx emissions may be due to persistent posi-
tive biases in the ozone formation rate and in boundary con-
ditions for tropospheric ozone concentration (as ozone con-
centration accounts for partitioning of NOx between NO and
NO2) as well as due to other numerous factors (such as un-
derestimation of the hydrocarbon emissions or of the ozone
photolysis rate) that may result in underestimation of concen-
tration of hydroxyl radical providing a major sink for NOx
and determining its atmospheric lifetime (Seinfeld and Pan-
dis, 2006). Depending on atmospheric conditions, effects of
different model errors on the emission estimates may or may
not compensate each other. Even though different model er-
rors are likely to combine and affect the emission estimates
in different ways in the different subregions and seasons, we
cannot completely ensure that the confidence intervals for
our CO and (especially) NOx emission estimates actually ac-
count for all possible model errors. More accurate evaluation
of effects of possible errors in the model representation of
chemical processes on NOx and CO emission estimates that
can be derived from satellite measurements by using our in-
verse modeling method requires further research (involving,
e.g., multi-model inversions) that goes beyond the scope of
this study.

Uncertainties in the seasonal cycles of anthropogenic
emissions are likely to be manifested (in the absence of any
other model and measurement errors) as the differences be-
tween the annual emission estimates obtained with the four
data subsets including data for the different seasons. There-
fore, we expect that such uncertainties are also addressed in
the confidence intervals evaluated as explained above. How-
ever, compared to the diurnal and weekly variations, uncer-
tainties in the seasonal variations of emissions more prob-
ably result in common systematic biases of NOx and CO
emission estimates. To get an idea about the magnitude of
such biases, we compared the emission estimates for the two
cases involving simulations with different seasonal cycles.
The first case (referred to below as the “cycle” case) corre-
sponds to the standard seasonal cycles assumed in our model
(see Fig. 2). The second (“flat”) case corresponds to simu-
lations performed with constant emissions in any month of
a year (yet with the same diurnal and weekly emission tem-
poral profiles as in the cycle case). Note that the differences
between the emissions estimates obtained for these two cases
are likely to strongly exceed the respective uncertainty (be-
cause the flat case is evidently unrealistic).

It should be noted that the qualitative considerations dis-
cussed above are by no means intended to strictly prove that
the estimations based on Eq. (12) actually account for all pos-
sible errors. Nonetheless, taking the above arguments into ac-
count and given the fact that both the origins and the statisti-
cal characteristics of errors in the measurement, simulation,
and inventory data involved in our analysis are very poorly
known, we believe that the simple and robust subsampling
technique described above provides sufficiently reliable and
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robust uncertainty estimates and has no serious alternative in
the situation considered. Some further arguments supporting
reliability of this technique are discussed in Sect. 3.5.

To obtain the confidence intervals for our CO2 emission
estimates, we need to combine the uncertainty of our esti-
mates of emissions of proxy species with the uncertainty of
the corresponding conversion factors. Ideally, the uncertainty
of the conversion factors for source categories that group dif-
ferent sectors (like EHI and TCO) could be obtained, e.g., by
varying parameters of a bottom-up inventory (Wang et al.,
2013) and provided along with emission data. However, in
our knowledge, such information has unfortunately not yet
been made available within any inventory except those by
Wang et al. (2013) for China. As an alternative approach, we
suggest that the uncertainty of the conversion factors can be
roughly estimated by comparing their values based on data
of different emission inventories. Ideally, it would be best to
consider an ensemble of several independent inventories pro-
viding the data on emissions of all the species (NOx , CO, and
CO2) involved in our analysis. However, in this study, in view
of the limited practical availability of the necessary data, we
realized only a highly simplified version of such an approach.
Specifically, along with the conversion factors based on the
EDGAR v4.2 emission inventory (those values were used to
obtain our “main” CO2 emission estimates as described in
Sect. 3.3 and are denoted in this section simply as F s

c ), we
considered “alternative” conversion factor values based on
the data of other inventories, such as EMEP and CDIAC.
The alternative conversion factor values are denoted below as
F s’

c . Specifically, we used the EMEP inventory data for NOx
and CO emissions and the CDIAC data for FF CO2 emis-
sions (see Sect. 2.3). Taking into account considerable dif-
ferences in the data sources and methodologies used across
the three inventories (see Sect. 2.3 and the corresponding ref-
erences for details), we assume that the main and alternative
conversion factor estimates are sufficiently independent. As
the CDIAC emission data had not been originally distributed
among individual emission sectors, the fractions of the two
categories of the CO2 sources were taken to be the same as
in the EDGAR v.4.2 inventory. However, only the original
CDIAC and EMEP data were used to estimate the conver-
sion factors applied to the total emissions (F s’

tot).
Using again the subsampling technique, we roughly esti-

mated the standard error for the conversion factors, σ F
sc, as

follows:

σsc
F
=√

1
(Nk − 1)Nk

∑
k=1

N

k

(
F s

c, k −F
s’
c, k −F

s
c(•) +F

s’
c(•)

)2
+

(
F s

c −F
s’
c

)2
, (13)

where F s
c, k and F s

c, k are the conversion factors evaluated in-
dividually for each of the 12 countries considered, c is the
country index,Nk is the total number of the countries consid-
ered (Nk = 12 in this study), and (•) denotes the means over
the countries. The country scale is used in Eq. (13), because

the CDIAC data had not been provided on a spatial grid, and
thus we could not consider the same spatial subsamples as
those with the data for NO2 and CO columns. The estima-
tions given by Eqs. (12) and (13) are based on the same idea,
except that unlike Eq. (12), Eq. (13) does not involve the as-
sumption that the error of a “sample” estimate is completely
random in origin; rather, it takes into account that the error
may contain both random and systematic components. The
latter is evaluated in Eq. (13) as the difference between the
estimates F s

c and F s’
c representing the full study region. Ac-

tually, that difference may include a part of the random error,
so Eq. (13) is likely to overestimate σFcs . Further overesti-
mation may be due to the fact that the differences in Eq. (13)
comprise cumulative errors in the both conversion factor esti-
mates: if the errors were distributed equally between the main
and alternative estimates, a proper value of σ F

cs would be at
least the factor of 21/2 smaller than the one given by Eq. (13).
In contrast, using the same (EDGAR v.4.2) data to evaluate
both F s

c, k and F s’
c, k may compensate such an enhancement

or even entail a tendency for underestimation in σ F
sc (except

for the case where the conversion factors and their uncertain-
ties are estimated directly for total emissions, that is, without
sectorial breakdowns). Nonetheless, on the whole, taking the
above qualitative considerations into account, we expect that
values of σ F

sc calculated as described above are more likely
to be overestimated than underestimated, thus being conser-
vative in our approach to provide optimal CO2 emission es-
timates.

Values of the conversion factors, F s
tot and F s’

tot, calculated
using different inventories for each country considered are
shown in Fig. 5. The differences between the different es-
timates of the conversion factors are, in general, consider-
able and vary across different countries in the study region.
Specifically, the differences for the NOx-to-CO2 emission
and CO-to-CO2 conversion factors range from 1.4 to 24.9 %
and from 3.8 to 52.6 % (relative the values based on the
EDGAR v.4.2 data), respectively. The differences are small-
est for Austria and Germany.

The standard error, σCO2
sc , representing the uncertainty in

our hybrid estimates of anthropogenic CO2 emissions was
estimated by assuming that uncertainties in the estimates of
a proxy species emissions and in the estimates of the conver-
sion factors are independent:

σCO2
sc = ÊCO2

sc

√√√√( σ s
c

Ês
c

)2

+

(
σFsc
F s

c

)2

. (14)

The standard error, σCO2
s, tot , for a corresponding total CO2

emission estimate, ÊCO2
s, tot (see Eq. 10), was evaluated in the

same way. Taking into account that the uncertainties in the
top-down estimates of emissions of proxy species for differ-
ent source categories are likely not independent, the standard
error, σCO2

s, sum, of ÊCO2
s, sum (see Eq. 9) was given by a similar but
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Figure 5. NOx -to-CO2 (a, b) and CO-to-CO2 (c, d) emission conversion factors obtained using NOx , CO, and CO2 emission estimates from
the EDGAR v4.2 emission inventory (a, c) and from the CDIAC and EMEP emission inventories (b, d) for the emission totals.

slightly more complicated equation:

σCO2
s, sum =

√∑
c

(
Ês

cσ
F
sc

)2
+

(
σ

CO2|F
s, sum

)2
, (15)

where σCO2|F
s, sum represents the standard error of ÊCO2

s, sum under
the condition that the conversion factors are known exactly
(that is, the errors included in σCO2|F

s, sum are associated with
only uncertainties of our top-down emission estimates for the
proxy species); σCO2|F

s, sum was evaluated by using the same sub-
sampling technique as described above for the case of es-
timation of uncertainties in Ês

c. The standard errors given
by Eqs. (14) or (15) allowed us to combine the estimates
based on the measurement of NO2 and CO columns by using
Eq. (11).

3.5 Observation system simulation experiments
(OSSEs; tests with synthetic data)

In this section, we examine the capabilities of our method
for estimation of emissions of the proxy species by means
of OSSEs. Specifically, we apply our method to synthetic

“observational” data featuring known uncertainties that are
evaluated by considering the misfits between real observation
and corresponding simulated data. Specifically, to generate
the synthetic data, we assumed that the covariances of cumu-
lated errors in the real measurement and simulation data can
be described by the three-dimensional covariance function,
covs (ρx,ρy, ρt), that can be approximated as follows:

covs (ρx,ρy, ρt)∼= covs
x (ρx)covs

y

(
ρy
)

covs
t (ρt ) , (16)

where ρx and ρy denote the distances between a pair of ob-
servations in west-to-east and south-to-north directions, re-
spectively; ρt is the period (the lag) between different ob-
servations; and covs

x , covs
y , and covs

t are the respective one-
dimensional covariance functions. We further approximated
the covariance functions by using misfits between the obser-
vations and simulations as follows:

covs
∗ (ρ∗)∼

∑
i

∑
j
H s
ij [ρ∗](

Cs
oi −C

s
mi +1

s
i

)(
Cs

oj −C
s
mj +1

s
j

)
, (17)

where the subscript ∗ denotes either x, y, or t; H s
ij [ρ∗] is the

selection operator which is nonzero (unity) only for those
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pairs of data points that correspond to a given value of ρ∗;Cs
o

and Cs
m are the vectors of the observational and simulated

data; and 1s is the bias. The distances and the lag were ex-
pressed in the numbers of grid cell and days, respectively.
The vector Cs

o involved in Eq. (17) represents the actual ob-
servational data described in Sect. 2.1. The simulated data,
Cs

m, were obtained from the model base run results presented
in Sect. 2.4, and the bias was evaluated on the monthly ba-
sis as the zero-order estimate obtained by applying Eq. (6) to
the same data (that is, without using top-down emission esti-
mates). The covariance functions, covs

x , covs
y , and covs

t , eval-
uated according to Eq. (17) were found to have the following
characteristic scales (corresponding to a 2-fold decrease of
the covariance functions): 3 (5) and 2 (3) grid cells and 1 (1)
day in the case of NO2 (CO) columns, respectively, although
these scales do not necessarily reflect the presence of rather
long “tails” in the covariance functions.

Our OSSEs are not expected to disregard any of possi-
ble errors in observational and model data that determine
variability of the misfits between the observations and sim-
ulations within 1 month, although it should be noted that
Eq. (16) provides a rather simplified temporal and special
structure of such errors. In particular, our error model does
not allow us to take into account probable error “clusters”
that can be associated with the aggregation error in our opti-
mal emission estimates, as well as less probable model errors
(see Sect. 3.4) that affect the modeled relationship between
the NOx emissions and the NO2 columns but do not con-
tribute to the variability of the differences between the obser-
vations and simulations. Nonetheless, inversion of the syn-
thetic data generated even with the simplified error model
is useful, as it allows us to assess the adequacy of our un-
certainty estimates obtained with the subsampling technique
in the presence of probable covariances of errors in the in-
put data, as well as to examine the self-consistency of our
procedure (that is, to see whether or not any systematic de-
viations of our optimal emission estimates from the “true”
emission values are covered by the corresponding confidence
intervals).

Estimations given by Eqs. (16) and (17) were used to
set up a Monte Carlo experiment in which the vector Cs

m
(obtained either from the model base run or from a model
run with the emissions perturbed as explained below) rep-
resented the true content of a given species, while the syn-
thetic observations were generated by adding random errors
(and, in some cases, biases) to Cs

m. Samples of the errors
with the covariance structure given by Eq. (16) were gener-
ated from a Gaussian distribution by using a standard method
(Press et al., 1992) involving the Cholesky decomposition
of the correlation matrices that were specified, in our case,
using the covariance functions given by Eqs. (16) and (17).
The Cholesky decomposition of a correlation matrix gives a
lower-triangular matrix, L; applying this matrix to a vector
of uncorrelated samples of Gaussian noise, u, gives a vec-
tor, Lu, with the components satisfying the original correla-

tion matrix. Using the synthetic data, we obtained uncertain
emission estimates which were compared with true emission
data specified in the model. Each Monte Carlo experiment
included 100 iterations performed with the same covariance
matrix and with the same bias, 1s, but with different samples
of random errors. The bias added to Cs

m in each experiment
for any given day was specified by linearly interpolating (in
time) the monthly biases shown in Fig. 3c, d, with the mag-
nitude of the monthly bias values scaled (in different experi-
ments) with a factor (δ) ranging from 0 to 1.

The uncertainties (expressed as the standard error) in the
emission estimates were evaluated both in the “direct” way
(as the root mean square difference between the uncertain
and true emission estimates) and by averaging squares of
σ s

c calculated by using the subsampling technique described
above. The magnitude of errors in the synthetic data was
changed in different experiments by applying a scaling fac-
tor (σ) ranging from 0 to 1 to the covariance matrix given by
Eq. (16). An additional factor (ξ) was introduced to scale
the non-diagonal components of the covariance matrix: ξ
equals zero in an “ideal” case where errors in each grid
cells and days are statistically independent from errors in any
other grid cells and days. Along with the experiments where
the “true” emissions were set to be exactly the same as the
bottom-up emissions used in the base run of our model (see
Figs. 6, 7), we performed the experiments where the base
case emissions for both NOx and CO were either uniformly
increased by 20 % (see Fig. 8) or increased by 20 % only for
the EHI categories but reduced by 20 % for the TCO cate-
gory (see Fig. 9). Note that not only anthropogenic NOx and
CO emissions were perturbed in the corresponding model
runs but also respective anthropogenic emissions of all other
model species, including those of NMHCs.

The results of the OSSEs indicate, in particular (see
Figs. 6, 7), that if errors in the input data for different grid
cells and days were statistically independent (ξ = 0), the un-
certainties (evaluated in the “direct” way with both σ and δ
equal unity) of our top-down estimates of both NOx and CO
emissions would be very small, specifically 0.9 and 0.6 %
for the NOx emission estimates in the EHI and TCO sec-
tors and somewhat larger (13 and 5 %) for the CO emission
estimates for the same sectors. The fact that the uncertain-
ties in our emission estimates remain rather small in spite
of the large uncertainties in the input data (see Sect. 2.4)
clearly indicates that the inverse problem considered is not
ill conditioned. Expectedly, taking the error covariances into
account increases the emission estimate uncertainties consid-
erably. The uncertainties in the estimates of NOx (CO) emis-
sions from the EHI and TCO sectors are found to be 4 (28)
and 5 (17) %, respectively. Larger uncertainty levels in the
CO emission estimates compared to those in the NOx emis-
sion estimates are an expected result, reflecting the fact that
the constraints to CO emissions provided by the CO obser-
vations are much weaker than the corresponding constraints
provided by the NO2 observations to the NOx emissions. In-
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Figure 6. Results of the OSSEs for estimation of NOx (a, b) and CO (c, d) emissions: the dependencies of the normalized standard error
of the NOx (CO) emission estimates for the EHI (a, c) and TCO (b, d) source categories on the level of noise (that is, on the value of the
diagonal elements, σ , of the error covariance matrixes) in the input “synthetic” data. The noise level is normalized to its magnitude estimated
with the real measurement and simulation data. Apart from the random noise, the synthetic data included the bias that was specified (for
any given day) by linearly interpolating (in time) the monthly biases shown in Fig. 3c, d. Different colors show the results obtained with the
different levels of error co-variances (ξ is the scaling factor applied to non-diagonal elements of the covariance matrix). The standard errors
estimated in the “direct” way (as the RMSE representing the differences between the emission estimates inferred from the synthetic data and
the “true” NOx emission estimates) and by using the subsampling technique are shown by solid and dashed lines, respectively.

deed, an “emission signal” in the CO data considered (see
Figs. 3 and 4) is, on average, much weaker than that in the
NO2 data; moreover, taking into account that the atmospheric
lifetime of CO is much longer compared to that of NOx , an
emission signal from a given grid cell is effectively spread
between a much larger number of grid cells (and days) in CO
than in NO2 observations, resulting in large non-diagonal el-
ements of the Jacobian matrix and potentially leading to a
stronger sensitivity of the CO emission estimates to errors in

the input data. Interpretation of changes in the uncertainty es-
timates with respect to the ideal case is difficult: it can only
be speculated that the increase in the uncertainties is larger
in the NOx than in CO emission estimates, probably because
introduction of the error covariance is effectively equivalent
to aggregation of available observations into a few “super-
observations”, leading to suppression of the effect of large
non-diagonal elements in the Jacobian matrix describing the
relationship between the CO emissions and observations.
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Figure 7. The same as in Fig. 6 but for the dependencies of the normalized standard error on the scaling factor, δ, characterizing the bias
applied to the synthetic data (see Sect. 3.5 for further details).

Importantly, it is found that introduction of a bias into the
synthetic data does not have a strong impact on the accuracy
of the retrieved emission estimates (see Fig. 7) affected by
random errors in the input data. This result confirms that our
inverse modeling scheme is indeed capable of efficiently fil-
tering out the bias, even if it is not constant during 1 month
(as assumed in Eq. 6).

The results of our OSSEs also indicate that the subsam-
pling technique employed in this study provides reasonable
uncertainty estimates, although it tends to overestimate the
actual uncertainties in the experiments representing the most
realistic case (where all the scaling factors equal unity). We
consider a probable overestimation of uncertainties in our

emission estimates as a rather positive feature of our proce-
dure, making conclusions of this study more reliable.

The results shown in Figs. 8 and 9 demonstrate that the op-
timal emission estimates obtained with our inversion proce-
dure are likely not significantly biased even if the true emis-
sions are considerably different from the bottom-up emission
inventory data. These results also confirm that our inversion
procedure enables efficient separation of the uncertainties in
the model data due to emission errors from other systematic
uncertainties in the model and observation data. Importantly,
the fact that the emissions perturbations are retrieved almost
perfectly indicates that the effects of chemical interactions
(nonlinearities) and changes in NMHC emissions on the re-
lationships between NOx and CO emissions and the NO2 and
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Figure 8. The total NOx (a) and CO (b) emission estimates (Ês
tot) obtained in the OSSEs where the “true” emissions were specified by

scaling the bottom-up emissions (employed in the base case model run) with the factor of 1.2. The emission estimates (normalized to the
respective bottom-up emission estimates, Ẽs

tot, based on the EMEP inventory data) represent the average over the ensemble of 100 Monte
Carlo experiments, each with a different sample of noise in the synthetic data, and are shown as a function the noise level (σ). Both non-
diagonal elements of the error co-variance matrix and the systematic uncertainties were taken into account in the OSSEs (specifically, both ξ
and δ were set to be equal to unity; see further details in Sect. 3.5). Note that the value of 1.2 on the axis of ordinates corresponds to a perfect
emission estimate in the case considered. Note also that the confidence intervals shown were estimated by using the subsampling technique
(see Eq. 12) that is expected to predict a nonzero uncertainty (associated with the bias estimation procedure) even when the synthetic input
data are not affected by random uncertainties (that is, when σ = 0; see also blue lines in Fig. 7).

Figure 9. The NOx (a) and CO (b) emission estimates obtained similarly to the estimates shown in Fig. 8 but separately for the two source
categories (EHI and TOC) in the OSSEs, where the “true” emissions in the EHI and TCO were specified by scaling the corresponding
bottom-up emissions (employed in the base case model run) with the factors of 1.2 and 0.8. Note that the estimates for the EHI and TCO
categories are depicted by using the abscissa axes at the bottom and at the top of the plots, respectively.

CO columns, respectively, are likely rather small in the sit-
uation considered, although it should be noted that such ef-
fects can be stronger if the differences between the bottom-up
and true emissions were much larger than in our experiments
(±20 %).

4 Results

4.1 NOx and CO emission estimates

The estimates of anthropogenic NOx and CO emissions from
the EHI and TCO categories (Ês

c) as well as from all sources
aggregated together (Ês

tot) based on actual observations are
presented in Fig. 10. The corresponding numbers are listed
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Figure 10. Top-down estimates (Ês
c and Ês

tot) of the anthropogenic
NOx (a) and CO (b) emissions in the study region in comparison
with the corresponding estimates from the EMEP and EDGAR v4.2
inventories. Our estimates are shown for the two cases (“cycle” and
“flat”) with different seasonal cycles of anthropogenic emissions.

in Table 1, which also shows alternative estimates (Ês
sum) of

the total emissions. The results are reported for the two esti-
mation cases (cycle and flat; see Sect. 3.4) that involve dif-
ferent seasonal variations of anthropogenic emissions in the
model (specifically, the seasonal cycles specified in the stan-
dard version of the CHIMERE CTM were used for the cy-
cle case estimations, while constant monthly anthropogenic
emissions with diurnal and weekly variations were employed
for the flat case). Note that the flat case is obviously unre-
alistic and is considered here only for testing purposes; ac-
cordingly, if not stated otherwise, below we discuss estimates
obtained for the main (cycle) case. The uncertainties are re-
ported in terms of the 68.3 % (1σ ) confidence intervals. It
should be noted that the confidence intervals were evaluated
under the assumption (see Sect. 3.4) that the NOx and CO
emission estimates are not significantly affected by any sys-
tematic errors that cannot be manifested in the differences
between the emission estimates for different subregions and
seasons. If this assumption holds, the uncertainty intervals
evaluated with our subsampling technique may actually cor-

respond to a higher confidence level, as discussed in Sect. 3.4
and 3.5.

All of our optimal (top-down) estimates of both the total
NOx and CO emissions are slightly (less than 10 %) smaller
than the bottom-up estimates based on the EMEP inventory
data; the differences between the top-down and bottom-up
estimates are not statistically significant. The relative uncer-
tainties in our estimates of the total emissions range from
10 % (in case of the Ês

tot estimate for the NOx emissions) to
30 % (in case of the Ês

sum estimate for the CO emissions). A
low uncertainty in our estimate of the total NOx emissions is
not surprising, as random uncertainties of a very large num-
ber of individual retrievals used in our inverse modeling anal-
ysis tend to compensate each other, while systematic errors
were taken into account in the framework of our inversion
procedure explicitly. Nonetheless, this low uncertainty esti-
mate should be considered with a certain degree of caution
as it may not fully account for some unknown errors depend-
ing on emissions themselves (e.g., due to uncertainties in a
model chemical scheme; see also Sect. 3.4). Taking into ac-
count our preliminary analysis (see Sect. 2.4) indicating that
the contribution of the anthropogenic CO emissions in the
study region into the corresponding CO columns is relatively
small and the results of the OSSEs (see Sect. 3.5), it is also
not surprising that the uncertainties in our CO emission esti-
mates are much larger than those in the NOx emission esti-
mates.

The differences between our alternative estimates of the
total emissions, Ês

sum and Ês
tot, are also small compared to

the uncertainties of those estimates, while the uncertainties in
Ês

sum are larger than the uncertainties in Ês
tot. The difference

between the uncertainties in Ês
sum and Ês

tot would be difficult
to predict a priori, particularly because the cost function (see
Eq. 4) employed in this study includes the bias whose esti-
mation may increase uncertainties in the emission estimates
to a various extent, depending on the number of variables
to be optimized. Our emission estimates for the individual
source categories are much more uncertain than the estimates
of the total emissions: the uncertainties range from 15 % in
the case of the NOx emission estimate for the TCO sector up
to 54 % in the case of the CO emission estimate for the EHI
sector. The absolute differences of our estimates of both CO
and NOx emissions with the EMEP data are smaller than the
respective uncertainty range. It may be noteworthy that our
estimates for both the CO and NOx emissions from the TCO
sector are ∼ 12 % lower than the corresponding EMEP esti-
mates. This observation indicates that there may be a com-
mon bias in the EMEP data for both NOx and CO emissions
in this sector; however, available information does not allow
us to make a firmer conclusion in this regard.

Unlike the EMEP data, the EDGAR v4.2 data strongly
disagree with our estimate for the NOx emissions from
the EHI sector. The differences of our estimates with the
EDGAR v4.2 data are also larger than with the EMEP data
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Table 1. The optimal estimates of the anthropogenic NOx and CO emissions (Tg NO2 and Tg CO, respectively) from the study region. The
numbers in brackets represent the one-sided 68.3 % confidence intervals (in % relative to the respective optimal estimate).

Estim. EHI TCO Totals

Species case Ês
1 EMEP EDGAR Ês

2 EMEP EDGAR Ês
sum Ês

tot EMEP EDGAR

NOx
cycle 2.59 (18)

2.55 4.25
4.17 (15)

4.75 3.53
6.76 (11) 6.86 (10)

7.30 7.78
flat 2.82 (23) 4.02 (17) 6.84 (7) 6.97 (7)

CO
cycle 6.99 (54)

7.41 5.55
9.59 (33)

10.84 10.02
16.57 (30) 17.03 (26)

18.25 15.57
flat 5.53 (75) 10.4 (50) 15.93 (25) 16.82 (28)

in particular in the cases of the Ês
tot estimates of both NOx

and CO emissions and in the case of CO emission estimate
for the EHI sector, although smaller in the cases of the CO
emission estimates in the TCO sectors. It is noteworthy that
the differences between all our NOx emission estimates with
the corresponding EDGAR data are statistically significant.
In general, our analysis indicates that the NOx and CO emis-
sion data provided by the EMEP inventory are more consis-
tent with the NO2 and CO satellite measurements than those
given by the EDGAR v4.2 inventory. This is an expected re-
sult because the methodology used in the EMEP inventory is
specific to national statistical data available from European
countries, while the EDGAR v4.2 inventory uses another ap-
proach which is deemed to be robust at the global scale.

The differences between the estimates obtained with dif-
ferent types of seasonal variations of anthropogenic emis-
sions are small compared to the uncertainty in the estimates
for the cycle case, although not entirely negligible. Evidently,
these differences cannot explain the significant disagreement
of our NOx emission estimates with the EDGAR v4.2 data.
Nonetheless, our test results indicate that the effect of pos-
sible inaccuracies in the seasonal variations of emissions
may not be negligible and should not be disregarded a priori
when examining the significance of the differences between
the top-down estimates of annual emissions and respective
bottom-up inventory data. Note that the uncertainties in the
NOx and CO emission estimates for the individual source
categories tend to be larger for the flat case than for the cy-
cle case, while, in contrast, the uncertainties in the total NOx
emission estimates are larger for the cycle case. Such non-
symmetrical differences indicate that none of the cases con-
sidered represent the seasonal cycles in NOx and CO emis-
sions quite perfectly.

The uncertainty levels in our estimates of both NOx and
CO emissions using actual data are considerably larger than
those obtained above in our OSSEs (see Sect. 3.5) in which
synthetic data were generated using a simplified error model.
(Note that to be compared with the confidence intervals
discussed in this section the standard errors presented in
Sect. 3.5 should be multiplied with the t score of about 1.2.)
This result indicates that, as expected, the uncertainties in our
emission estimates are caused not only by random uncertain-
ties in the input (measurement and simulation) data but also

by other factors – such as the aggregation error and spatial
variability of the bias – which could not be adequately taken
into account in our tests. Besides, the actual temporal and
spatial structure of both the model and measurement errors
is likely much more complex and irregular than that assumed
in Eq. (16). Anyway, unless the data subsamples defined in
Sect. 3.5 are strongly affected by temporal and spatial covari-
ances of errors in the input data (as evidenced by our OSSEs,
that is unlikely the case in this study), the confidence inter-
vals provided by the subsampling technique are expected to
be sufficiently reliable even in such a complex real situation
as that considered in this study.

Note that the uncertainties of our top-down estimates of
NOx emissions in the region considered turned out to be
comparable with the differences between similar estimates
provided by different emissions inventories, or even smaller
than them. Therefore, our top-down NOx emission estimates
can be considered as an independent alternative to bottom-
up estimates based on emission inventory data alone. Both
our NOx and CO emission estimates could formally be com-
bined (in the Bayesian way) with the bottom-up (a priori)
estimates; the uncertainties in the combined (a posteriori) es-
timates would probably be lower than the uncertainties in ei-
ther the top-down or a priori estimates taken alone.

In general, our results confirm the findings of previous
studies (see the corresponding references in Introduction)
showing that NO2 and CO retrievals from satellite measure-
ments can provide useful information on NOx and CO emis-
sions over high emission regions. In this regard, it can be
noted that while previous inverse modeling studies utilized
satellite CO measurements to estimate CO emissions from
regions with predominantly anthropogenic sources involved
global CTMs (e.g., Pétron, 2004; Fortems-Cheiney et al.,
2009; Kopacz et al., 2010; Jiang et al., 2015), we obtained
reasonable top-down CO emission estimates by using a re-
gional model. We regard this fact as a promising develop-
ment, because the use of regional models (usually featuring
a higher spatial resolution than global CTMs and employing
high-resolution regional emission inventories that are likely
more accurate and detailed compared to global ones) in in-
verse modeling procedures can, potentially, provide more de-
tailed and accurate constraints to CO emissions from various
sources. A major difficulty that needs to be overcome in ap-
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Table 2. The NOx -to-CO2 (g CO2 [g NO2]−1) and CO-to-CO2
(g CO2 [g CO]−1) emission conversion factors based on the
EDGAR v4.2 emission inventory along with their relative uncer-
tainties given in brackets as one-sided 68.3 % confidence interval
(in %).

Sectors NOx -to-CO2 CO-to-CO2

EHI 494.97 (58) 378.63 (38)
TCO 262.06 (30) 92.42 (22)
TOT 389.22 (4) 194.50 (22)

plications of a regional CTM for estimating anthropogenic
CO emissions by inverse modeling is associated with proba-
ble biases in boundary conditions, especially for CO, which
has a long chemical lifetime compared to the transit time
across the European domain; here we tackled this difficulty
by means of a special procedure aimed at eliminating system-
atic differences between the measured and simulated data.
The results of the OSSEs presented in Sect. 3.5 (see Figs. 8,
9) indicate that our estimation procedure successfully relies
on the spatial gradients of CO (and NO2) columns within
the European domain to constrain the CO (and NOx) emis-
sions rather than on the average abundance (which is strongly
driven by the boundary conditions) in the measurements.

4.2 Fossil-fuel CO2 emission estimates

Our hybrid FF CO2 emission estimates presented in this sec-
tion were obtained by applying the conversion factor values
listed in Table 2 to our top-down estimates of NOx and CO
emissions discussed above. The FF CO2 emission estimates
derived from NO2 and CO measurements (ÊCO2

sc and ÊCO2
s, tot)

as well as the combined FF CO2 emission estimates (ÊCO2
comb, c

and ÊCO2
comb, tot) are shown in Fig. 11 in comparison with the

corresponding data of emission inventories. The same esti-
mates are listed in Table 3, which, in addition, presents an-
other version of the hybrid estimates of total FF CO2 emis-
sions, ÊCO2

s, sum and ÊCO2
comb, sum (see Sect. 3.3). Note again (see

also Sect. 2.3) that CO2 emissions from the cement produc-
tion are not included in our estimates. Two types of the con-
fidence intervals are provided along with the CO2 emission
estimates based on measurements of one proxy species. The
full confidence intervals include the uncertainty in the top-
down estimates of the proxy species as well as the uncer-
tainty in the conversion factors. The partial confidence inter-
vals were estimated by taking into account only the uncer-
tainty in the top-down estimates of the NOx and CO emis-
sions.

The relative differences of NO2- or CO-measurement-
based FF CO2 emission estimates with the EDGAR v4.2
CO2 data correspond to the differences of our top-down NOx
or CO emission estimates with the EDGAR v4.2 data for
the respective species. This is not surprising, as the con-

Figure 11. Hybrid estimates of the fossil-fuel CO2 emissions
(ÊCO2

sc , ÊCO2
s, tot Ê

CO2
comb, c, and ÊCO2

comb, tot) from the study region in
comparison with the data of the EDGAR v4.2 and CDIAC emission
inventories. The estimates were obtained either from (a) only NOx
and (b) only CO or (c) from both NOx and CO measurements. The
“partial” and “full” 68.3 % confidence intervals are also shown: the
partial intervals (depicted by narrow brackets and not shown for the
combined CO2 emission estimates) are determined only by uncer-
tainties in the top-down estimates of NOx or CO emissions, while
the full intervals also take into account probable uncertainties in the
conversion factors.
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Table 3. The estimates of the fossil-fuel CO2 emissions (Pg CO2) from the study region in comparison with corresponding data (when
available) of the EDGAR v4.2 and CDIAC emission inventories. The numbers in brackets represent the one-sided 68.3 % confidence intervals
(in % relative to the respective optimal estimate). Along with the “full” confidence intervals, the “partial” confidence intervals are shown
after a slash (except for the combined estimates) and do not include uncertainties in the conversion factors.

Inversion Estim. EHI TCO Totals

settings case Ê
CO2
s, 1 EDGAR Ê

CO2
s, 2 EDGAR Ê

CO2
s, sum Ê

CO2
s, tot CDIAC EDGAR

NOx -based
cycle 1.28 (72/18)

2.10

1.09 (39/15)

0.93

2.37 (43/12) 2.67 (11/10)

2.86 3.03

flat 1.40 (74/23) 1.05 (40/17) 2.45 (44/9) 2.71 (8/7)

CO-based
cycle 2.64 (71/55) 0.89 (42/33) 3.53 (49/35) 3.31 (37/26)
flat 2.09 (88/75) 0.96 (57/50) 3.06 (54/42) 3.27 (38/28)

NOx - and cycle 1.55 (54) 0.98 (29) 2.67 (33) 2.71 (11)
CO-based flat 1.56 (57) 1.02 (33) 2.63 (34) 2.73 (8)

version factors relating CO2 emissions with the respective
proxy species were based on the EDGAR v4.2 inventory.
The full relative uncertainties in our CO2 emission estimates
are larger than the uncertainties in our estimates of emissions
of proxy species due to uncertainties in the conversion fac-
tors. Among the uncertainties in the conversion factors, σ F

sc,
they are largest for the NOx-to-CO2 and CO-to-CO2 emis-
sion conversion factors for the EHI source category (58 and
38 %, respectively).

These uncertainties strongly contribute to the confidence
intervals of the respective CO2 emission estimates. In con-
trast, the uncertainties are relatively small in the NOx-to-
CO2 and CO-to-CO2 emission conversion factors for the to-
tal emissions (4 and 22 %, respectively); those uncertain-
ties contribute considerably to the full confidence intervals
only for the total CO2 emission estimates based on the CO
measurements, while the uncertainty in the respective NO2-
measurement-based estimate is mostly due to the uncertainty
in the top-down NOx emission estimates. Note that as dis-
cussed in Sect. 3.4 and 3.5 our method is likely to overesti-
mate uncertainties in both the top-down estimates and in the
conversion factors.

Taking into account the full confidence intervals (which
are, in some cases, very wide), all our estimates are in agree-
ment with the EDGAR v4.2 data, except for the estimates of
the total CO2 emissions (ÊCO2

s, tot) based on NO2 measurements
and on both NO2 and CO measurements. Our hybrid NO2-
measurement-based and combined estimates of the total CO2
emissions (2.67 and 2.71 Pg CO2 with the relative uncertain-
ties of about 10 %) are 12 and 11 % lower than the EDGAR
v4.2 estimate (3.03 Pg CO2), respectively. These differences
are statistically significant but at the edge of significance
with the given confidence level. Note that while discussing
statistical significance of the differences between the hybrid
and bottom-up emission estimates, we do not take into ac-
count the uncertainty in the bottom-up inventory data, which
has not been reported. The differences between the same hy-
brid estimates and the corresponding estimate (2.86 Pg CO2)

provided by the CDIAC inventory (7 and 5 %) are slightly

smaller than the differences with the EDGAR v4.2 data and
are not statistically significant. Therefore, our analysis sug-
gests that the CO2 emissions in the region considered are
likely estimated more accurately by CDIAC than by EDGAR
v4.2; however, the difference between the data of the two in-
ventories in the case considered is small (∼ 6 %).

Note that if the conversion factor uncertainties were not
taken into account, which is not recommended, the differ-
ence between our NO2-measurement-based CO2 emission
estimate for the EHI sector and the respective EDGAR v4.2
estimate would be statistically significant. However, it is not
significant with respect to the full confidence interval. Con-
sidering the emission estimates for the EHI sector along with
the total CO2 emission estimates illustrates a possible way of
using our method for evaluation of bottom-up FF CO2 emis-
sion inventory data. That is, assuming that the confidence
intervals for our estimates are sufficiently reliable, we can
argue that a difference between hybrid and bottom-up es-
timates that exceeds uncertainties associated with measure-
ment and model errors may, in a general case, be due to the
two following reasons: (1) there are inconsistencies between
bottom-up estimates of emissions of CO2 and of a corre-
sponding proxy species or/and (2) a bottom-up CO2 emission
estimate is inaccurate. Taking uncertainties in the conversion
factors into account allows examination of the first reason:
evidently, it cannot be ruled out in the case of the emission
estimates for the EHI sector. However, the first reason alone
is not sufficient to fully explain the differences between the
hybrid and bottom-up estimates of the total CO2 emissions.

Comparing NO2- and CO-measurement-based CO2 emis-
sion estimates (which, ideally, should be the same) enables
their cross-validation. All kinds of NO2-measurement-based
CO2 emission estimates are found to be consistent with
the respective CO-measurement-based estimates in the sense
that their confidence intervals are intersecting. In principle,
this is an important result confirming that uncertainties in
our emission estimates are not underestimated, since NO2
and CO measurements are independent from each other.
However, it should be noted that the uncertainties in CO-
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measurement-based estimates are so large that such estimates
can hardly be useful as a unique source of information on
CO2 emissions. Similar large uncertainties are associated
with NO2-measurement-based CO2 emission estimates for
the EHI and TCO sectors, as well as with the total CO2 emis-
sion estimates obtained by summing the NO2-measurement-
based estimates for the individual sectors together. While
the uncertainties in the CO-measurement-based estimates are
mostly caused by uncertainties in the top-down estimates of
CO emissions, the uncertainties in the NO2-measurement-
based estimates are mainly associated with uncertainties in
the conversion factors.

Importantly, the combined estimates (based on both NO2
and CO measurements) of the FF CO2 emissions from indi-
vidual sectors feature considerably lower relative uncertain-
ties (evaluated with Eq. 11) than the uncertainties in the es-
timates based on measurements of only one proxy species
(for example, relative uncertainties of 39 and 42 % for the
NO2- and CO-measurement-based estimates, respectively,
are reduced to a relative uncertainty of 29 % in the com-
bined estimate for the TCO sector). This fact illustrates the
potential usefulness of combining hybrid estimates based on
independent measurements of different proxy species such
as NO2 and CO. The uncertainty of our combined esti-
mate

(
Ê

CO2
comb, tot

)
of the total CO2 emissions is very insignif-

icantly smaller than the uncertainty of the corresponding
NO2-measurement-based estimate.

As mentioned in Sect. 3.3, the uncertainty intervals for our
combined estimates evaluated with Eq. (11) can be reliable
only if the hybrid emission estimates derived from measure-
ments of individual species are statistically independent. We
believe that the CO2 emission estimates derived from NO2
and CO measurements are indeed sufficiently independent
particularly because NO2 (as a part of the NOx chemical
family) and CO experience very different atmospheric pro-
cessing. Indeed, while the key role in spatial and temporal
variations of CO is played by the transport processes (and
boundary conditions in simulations), atmospheric evolution
of NO2 is very strongly affected by local photochemistry.
Furthermore, the results of our estimations for the cycle and
flat cases (see Table 1) indicate that probable errors in the
seasonal cycles of the NOx and CO emissions are also un-
likely to result in considerable and common biases in the
NOx and CO emission estimates. Thus it seems reasonable
to believe that possible model errors for these species are, for
the most part, different in origin and weakly correlated. Any
significant covariance of errors in CO and NO2 measurement
data is also hardly possible, as those measurements are per-
formed with different satellite instruments and by using dif-
ferent methods (see Sect. 2.1). The covariance of errors in
the conversion factors F s

c for the different species is likely
small, too (given the complexity of data involved in bottom-
up estimates of different proxy species and the fact that NOx
and CO emissions depend on different technological factors

and end-of-pipe measures), although we could not evaluate it
confidently with available information. Therefore, the uncer-
tainties in our combined emission estimates are based on an
(so far) inevitable assumption that errors in the conversion
factors for the different proxy species are statistically inde-
pendent.

As in the case with the top-down estimates of NOx and
CO emissions, our hybrid estimates of FF CO2 emissions
are rather insensitive to the changes in simulations associated
with using different seasonal cycles (cf. the estimates for the
cycle and flat cases). That is, we can conclude that the impact
of uncertainties in the assumed seasonal cycles of anthro-
pogenic emissions on our hybrid estimates is small. In par-
ticular, such uncertainties can hardy explain the rather con-
siderable difference between our “combined” estimate of the
total CO2 emissions and the corresponding estimate based on
the EDGAR v4.2 inventory.

5 Summary and conclusions

We examined feasibility of estimation of FF CO2 emissions
by using NO2 and CO column retrievals from satellite mea-
surements. FF CO2 emissions are an important component
of the global carbon balance and are believed to be a major
contributor to global warming. Although such emissions are
usually known with better certainty than CO2 fluxes associ-
ated with the biosphere, there still exist considerable diver-
gences between data of different bottom-up FF CO2 emis-
sion inventories; typically, such data cannot be evaluated by
using atmospheric CO2 measurements and rarely come with
a reported uncertainty structure.

We followed the concept of proxy species that suggests
constraining FF CO2 emissions by using atmospheric mea-
surements of minor species co-emitted with CO2. We devel-
oped a general inverse modeling method aimed at estimation
of the budgets of FF CO2 emissions from different sectors
of economy in a given region by using satellite measure-
ments of proxy species. The method involves (1) obtaining
top-down estimates of anthropogenic emissions for a proxy
species from the satellite measurements and simulations per-
formed with a mesoscale CTM, (2) using bottom-up emis-
sion inventories to relate CO2 emissions with emissions of
the proxy species, and (3) combining CO2 emission esti-
mates derived from measurements of different proxy species.
Important parts of our method are robust techniques to esti-
mate systematic differences between the measured and sim-
ulated data, as well as uncertainties in top-down estimates of
the proxy species.

Considering NO2 and CO as the proxy species, the method
was applied to a western European region including 12 coun-
tries by using the NO2 and CO column amounts retrieved
from, respectively, the OMI and IASI satellite measurements
along with the simulated data from the CHIMERE CTM.
The study region was selected by taking into account that
uncertainties in available bottom-up emission inventory data
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for the EU countries with well-developed statistics are likely
rather low, compared to potential uncertainties in FF CO2
emission data for countries with less developed statistical in-
frastructure, although such uncertainties are likely not quite
negligible even in the study region. The relationship between
FF CO2 emission and the NOx and CO emissions was rep-
resented by the NOx-to-CO2 and CO-to-CO2 emission con-
version factors evaluated with the EDGAR v4.2 emission in-
ventory. The estimates were obtained for the total FF CO2
emissions from the region considered as well as individ-
ually for FF CO2 emissions aggregated into two different
source categories (sectors), such that the first category (EHI
included the emissions associated mostly with energy and
heat production and heavy industries, and the second cat-
egory (TCO) comprised transport, chemical industry, and
all other anthropogenic sources. Our FF CO2 emission es-
timates were compared with the corresponding data of the
EDGAR v.4.2 global emission inventory; in addition, our
total FF CO2 emission estimates for the study region were
compared with the data of the CDIAC FF CO2 emission in-
ventory. The top-down estimates of NOx and CO emissions
were compared with the respective data from the European
EMEP and global EDGAR v.4.2 emission inventories.

As expected (taking into account findings of several previ-
ous studies), the NO2 column retrievals from OMI measure-
ments provide rather strong constraints to NOx emissions.
Our most reliable top-down estimate of the total NOx emis-
sions is found to be only insignificantly (by about 6 %) lower
than the respective bottom-up estimate based on the EMEP
emission inventory; our estimates for the emissions from the
EHI and TCO having much larger uncertainties (of about 18
and 15 %, respectively) are also found to agree with the cor-
responding estimates based on the EMEP emission inventory
within the uncertainty range. Larger and statistically signif-
icant differences are found between our NOx emission es-
timates and the respective data of the EDGAR v4.2 global
emission inventory. In particular, our results suggest that the
total NOx emissions from the study region may be overesti-
mated in the EDGAR v4.2 inventory by ∼ 13 %, while the
EDGAR emissions for the EHI sector are likely overesti-
mated by more than 60 % (relative to our estimates).

In contrast to the NOx emission estimates, our top-down
estimates of the CO emissions are fully consistent with both
the EMEP and EDGAR v4.2 emission data; however, this
consistency is partly due to much larger uncertainties in our
CO emission estimates (compared to uncertainties in the
NOx emission estimates). The relatively large uncertainties
in the top-down CO emission estimates (∼ 55 and ∼ 35 % in
the estimates for the EHI and TCO sectors, respectively, and
∼ 25 % in the total CO emission estimate) are not surpris-
ing in view of the much lower sensitivity of the satellite CO
measurements to anthropogenic CO emissions in the study
region compared to the sensitivity of the NO2 measurements
to the anthropogenic NOx emissions. Nonetheless, in spite of
the large uncertainties (which may be overestimated by our

procedure), the differences between our top-down estimates
of CO emissions and respective EMEP data are rather small
(less than 7 %). Similar to our NOx emission estimates, the
top-down CO emission estimates differ more considerably
from the EDGAR v4.2 data.

The top-down estimates of the NOx and CO emis-
sions were used to obtain different hybrid estimates (com-
bining different information coming from measurements
and bottom-up inventories) of CO2 emissions. The NO2-
measurement-based hybrid estimate of total CO2 emissions
is about 12 % smaller than the respective estimates based
on the EDGAR v4.2; the difference exceeds the estimated
uncertainty range (∼ 11 %) of our estimate, although only
marginally. In contrast, the difference between the same hy-
brid estimate and the corresponding estimate provided by the
CDIAC inventory (∼ 7 %) is not statistically significant. A
large negative difference (more than 60 %) is found between
our NO2-measurement-based CO2 emission estimate for the
EHI source category and the corresponding EDGAR v4.2 es-
timate. This difference is, however, not statistically signifi-
cant and can be mostly attributed to uncertainties in the NOx-
to-CO2 emission conversion factor for the given source cat-
egory. Our CO-measurement-based hybrid estimates of the
total FF CO2 emissions are larger than the respective bottom-
up estimates based on both the EDGAR v4.2 and CDIAC
data but the differences are not too big (less than 25 %) and
can be well explained by uncertainties in our estimates. Sim-
ilar to the case with the NO2-measurement-based hybrid es-
timate, the largest difference between our CO-measurement-
based FF CO2 emission estimates and the EDGAR v4.2 data
is found for the EHI source category, with our best estimate
being about 26 % larger.

Taking into account the range of uncertainties, all
our NO2-measurement-based CO2 emission estimates were
found to be consistent with the respective CO-measurement-
based estimates. This is an important result confirming the re-
liability of our approach. The combined emission estimates
(based on both NO2 and CO measurements) for individual
source categories feature considerably smaller uncertainties
than the corresponding partial estimates. Our combined es-
timate of total FF CO2 emissions is weighed toward the
NO2-measurement-based estimate and is found to be ∼ 11
and ∼ 5 % lower than the respective estimates based on the
EDGAR v4.2 and CDIAC data. The difference of our esti-
mate with the EDGAR v4.2 data slightly exceeds the confi-
dence interval of our combined estimate, while the difference
with the CDIAC data is again not statistically significant.

In general, our analysis demonstrated that NO2 and CO
column retrievals from satellite measurements provide rea-
sonable constraints to FF CO2 emissions at the scale of west-
ern Europe. Although relative uncertainties in our top-down
CO emission estimates were evaluated to be considerably
larger than in the similar NOx emission estimates based on
NO2 measurements, the CO column retrievals were found
to be a useful source of independent information on FF
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CO2 emissions, particularly in the cases where probable un-
certainties in the conversion factors for NOx emissions are
larger than uncertainties in the conversion factors for CO
emissions. Differences between hybrid CO2 emission esti-
mates derived from the satellite data and respective estimates
based on bottom-up emission inventory data can, in princi-
ple, be due to various kinds of uncertainties in the hybrid
estimates (including uncertainties in the top-down estimates
of NOx and CO emissions and uncertainties in the conver-
sion factors). We argue that such uncertainties can be roughly
evaluated using the robust techniques described in this paper.
Nonetheless, further research (involving, e.g., multi-model
inversions and ensembles of independent emission invento-
ries) is needed to ensure that the confidence intervals for the
emission estimates actually take into account all possible es-
timation errors, including those associated with uncertainties
in the modeled representation of chemical processes, in the
boundary conditions for reactive species, and in the NOx-to-
CO2 and CO-to-CO2 emission conversion factors. Possible
future developments of our approach can also include us-
ing NO2 and CO retrievals from measurements performed by
other satellite instruments (such as GOME-2, MOPITT and
AIRS) together with the retrievals from the OMI and IASI
measurements (as in this study), and implementing hybrid
CO2 emission estimates into a global transport model simu-
lating CO2 distribution in the atmosphere in order to validate
them against ground-based and satellite CO2 measurements.
Finally, it should be noted that as FF CO2 emission inven-
tory data for the western European countries are likely much
less uncertain than similar data for developing regions of the
world, applications of our method to developing regions can
be especially fruitful. In this regard, our method can become
an integral part of a policy-relevant global carbon observing
system (Ciais et al., 2014, 2015).

6 Data availability

The OMI and IASI retrievals are available at
http://www.temis.nl/ (TEMIS, 2016) and http:
//ether.ipsl.jussieu.fr/ether/pubipsl/iasi_CO_uk.jsp (ES-
PRI, 2016), respectively. The EMEP, EDGAR v.4.2
and CDIAC emission inventory data are available at
http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_
emepdatabase/emissions_emepmodels/ (EMEP/CEIP,
2014), http://edgar.jrc.ec.europa.eu/overview.php?v=
42 (EC-JRC/PBL, 2011) and http://cdiac.ornl.gov/trends/
emis/tre_coun.html (CDIAC, 2016). The modeled data used
in this study are available upon request from the correspond-
ing author, Igor Konovalov (konov@appl.sci-nnov.ru).
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