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Abstract. A new model for greenhouse gas transport has
been developed based on Environment and Climate Change
Canada’s operational weather and environmental prediction
models. When provided with realistic posterior fluxes for
CO,, the CO;, simulations compare well to NOAA’s Car-
bonTracker fields and to near-surface continuous measure-
ments, columns from the Total Carbon Column Observing
Network (TCCON) and NOAA aircraft profiles. This cou-
pled meteorological and tracer transport model is used to
study the predictability of CO;. Predictability concerns the
quantification of model forecast errors and thus of transport
model errors. CO; predictions are used to compute model—
data mismatches when solving flux inversion problems and
the quality of such predictions is a major concern. Here, the
loss of meteorological predictability due to uncertain me-
teorological initial conditions is shown to impact CO, pre-
dictability. The predictability of CO» is shorter than that of
the temperature field and increases near the surface and in the
lower stratosphere. When broken down into spatial scales,
CO, predictability at the very largest scales is mainly due to
surface fluxes but there is also some sensitivity to the land
and ocean surface forcing of meteorological fields. The pre-
dictability due to the land and ocean surface is most evident
in boreal summer when biospheric uptake produces large
spatial gradients in the CO; field. This is a newly identified
source of uncertainty in CO, predictions but it is expected
to be much less significant than uncertainties in fluxes. How-
ever, it serves as an upper limit for the more important source
of transport error and loss of predictability, which is due to

uncertain meteorological analyses. By isolating this compo-
nent of transport error, it is demonstrated that CO; can only
be defined on large spatial scales due to the presence of me-
teorological uncertainty. Thus, for a given model, there is a
spatial scale below which fluxes cannot be inferred simply
due to the fact that meteorological analyses are imperfect.
These unresolved spatial scales correspond to small scales
near the surface but increase with altitude. By isolating other
components of transport error, the largest or limiting error
can be identified. For example, a model error due to the lack
of convective tracer transport was found to impact transport
error on the very largest (wavenumbers less than 5) spatial
scales. Thus for wavenumbers greater than 5, transport model
error due to meteorological analysis uncertainty is more im-
portant for our model than the lack of convective tracer trans-
port.
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1 Introduction

Atmospheric observations of CO, are important for under-
standing the global carbon cycle and its response to perturba-
tions from anthropogenic emissions into the atmosphere. The
global carbon budget is routinely updated using atmospheric
and oceanic measurements in conjunction with a careful ac-
counting of anthropogenic emissions (Le Quéré et al., 2015).
Since the greatest uncertainty in the quantified exchanges of
carbon between the atmosphere, ocean and land reservoirs is
associated with the terrestrial biosphere flux (Friedlingstein
et al., 2014), this component is determined as the residual be-
tween anthropogenic emissions and atmospheric and ocean
changes (which are relatively well constrained by measure-
ments). The growth in global atmospheric CO; is attributed
to anthropogenic emissions but superimposed on this trend
are seasonal and interannual variations which are largely
attributed to the terrestrial biosphere (Ciais et al., 2013).
Specifically, observations of the '>C isotope (which is frac-
tionated during photosynthesis by land plants so its relative
concentration is indicative of the terrestrial biosphere) reveal
that the interannual and seasonal variations of the global at-
mospheric CO, budget are due to the terrestrial biosphere
(Keeling et al., 2005). At the same time, biospheric uptake
is influenced by climate variations (Nemani et al., 2003;
Friedlingstein et al., 2006; Zhao et al., 2011). Specifically,
the El Nifio-Southern Oscillation (ENSO) signal and vol-
canic eruptions can explain 75 % of the variations in the
terrestrial biospheric uptake (Raupach et al., 2008). Thus,
atmospheric observations are important for determining the
global terrestrial biospheric flux, while temporal biospheric
flux variations explain atmospheric variability of CO, con-
centrations on seasonal and interannual timescales.

Beyond the global budget, an important challenge is to
understand how temporal variations in atmospheric sources
and sinks reflect the interplay between natural processes and
anthropogenic perturbations and also the feedback between
the carbon cycle and climate variations. By combining atmo-
spheric observations with atmospheric models, a spatial dis-
tribution of fluxes of CO, between the Earth’s surface and the
atmosphere can be obtained through inverse modelling (e.g.
Rodenbeck et al., 2003; Patra et al., 2005; Baker et al., 2006a;
Peylin et al., 2013; Chevallier et al., 2014). Such “flux in-
versions” performed on the global domain and incorporating
only around 100 or so CO, observation stations near the sur-
face are able to constrain the global atmospheric carbon bud-
get, capture interannual and seasonal variations and attribute
these to the terrestrial biosphere (Rodenbeck et al., 2003;
Peylin et al., 2013). In fact, only a few observation sites rep-
resentative of background values (far from CO, sources and
sinks) are needed to constrain the global CO; budget because
variations in the vicinity of source/sink regions are smoothed
out by the time these locations are reached (Bruhwiler et
al., 2011; Keeling et al., 2005). However, with more surface
observations, the retrieved flux uncertainties can be reduced

Atmos. Chem. Phys., 16, 12005-12038, 2016

S. M. Polavarapu et al.: Greenhouse gas simulations: the predictability of CO;

and the ability to retrieve smaller spatial scales is improved
(Bruhwiler et al., 2011). Moreover, with the desire to un-
derstand the interplay between the natural and anthropogeni-
cally perturbed processes, observations near source and sink
regions become important. Such observations will be influ-
enced by atmospheric variations on diurnal, synoptic, sea-
sonal and interannual timescales. On the diurnal timescale,
the variation of CO; due to uptake by plants through photo-
synthesis in sunlit hours is strongly modulated by turbulent
transport through the planetary boundary layer (PBL), which
also evolves throughout the day. This is the so-called rectifier
effect which helps to explain the annual mean north—south
gradient of CO, (Denning et al., 1995). Specifically, the up-
take of CO, by plants during the spring growing season oc-
curs when the PBL is generally unstable and deeper, while in
winter CO» increases due to biospheric respiration can build
up when the boundary layer is stable and shallow. In addi-
tion, poleward heat transport by baroclinic disturbances is
stronger in winter in the northern extratropics, preferentially
transporting high CO, values north relative to the summer
(Chan et al., 2008). Synoptic-scale systems also influence
CO; evolution, particularly in northern midlatitudes where
advection can explain up to 70 % of day-to-day variability
(Parazoo et al., 2008). On the interannual timescale, varia-
tions in biospheric uptake can be partially attributed to cli-
mate variations (Patra et al., 2005) and flux inversion systems
are able to attribute interannual variability of the global CO;
budget to the tropical biosphere (Baker et al., 2006a). Be-
cause atmospheric observations of CO; contain the signals
of both surface fluxes and atmospheric variations, and they
are needed for data assimilation in state estimations or flux
inversions, it is important to be able to accurately character-
ize and model how the atmosphere modulates CO; evolution.

In a flux inversion system, observations of CO, concen-
tration are used to solve for surface fluxes. To relate the
surface flux to an atmospheric concentration, an offline at-
mospheric transport model is typically used. In doing so,
the mismatch between observed and modelled concentrations
can be inverted to estimate a flux increment, but the atmo-
spheric model’s transport is assumed to be perfect (Baker et
al., 2006b). The fact that it is not means that one source of
uncertainty in the inverse problem is not accounted for. For
this reason, the need to characterize “transport errors” has
been well recognized and has led to the formation in 1993
of an international group called TransCom (http://transcom.
project.asu.edu/), focused on understanding and quantifying
the contribution of transport errors to flux estimates from in-
verse models. Because different models are used by different
flux inversions, retrieved fluxes based on multiple inversions
may be more reliable than those from a given system since
the unknown transport error (if it is random) may be aver-
aged out. Moreover, the sensitivity of flux inversion results
to transport error can be identified since different models and
hence different transport errors are used. Transport error gen-
erally refers to the deviation of CO, prediction from an (un-
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knowable) true value due to the use of an imperfect trans-
port model and thus includes errors due to model formulation
(e.g. convective or boundary layer parameterizations or ad-
vection schemes), the use of imperfect meteorological anal-
yses and uncertain CO» initial conditions. Transport errors
have been found to be an important source of errors in flux in-
versions (e.g. Chevallier et al., 2014, 2010; Houweling et al.,
2010; Law et al., 1996). The sources of transport error arising
from model formulation include errors in the representation
of mixing in the planetary boundary layer (Denning et al.,
1995), vertical mixing in the free atmosphere (Stephens et
al., 2007; Yang et al., 2007), synoptic-scale and frontal mo-
tions (Parazoo et al., 2008) and convective transport (Ott et
al., 2011; Parazoo et al., 2008).

The uncertainty in meteorological analyses is also an im-
portant source of transport error (Liu et al., 2011). In an effort
to address this type of uncertainty which cannot be accounted
for in flux inversion systems, NOAA’s CarbonTracker at-
tempted to perform an ensemble of inversions using differ-
ent atmospheric analyses as well as different prior flux sets.!
With a coupled meteorological and tracer forecast model (as
used by Liu et al., 2011), the impact of meteorological uncer-
tainties on tracer transport is more easily identified. Recently,
coupled meteorological/tracer forecast models have been de-
veloped at operational centres such as the European Centre
for Medium Range Weather Forecasting (ECMWF) (Agusti-
Panareda et al., 2014) and NASA Goddard’s Global Mod-
elling and Assimilation Office (GMAO) (Ott et al., 2015). In
these operational systems, short-term predictions of green-
house gases are produced and satellite observations are as-
similated at ECMWF (Massart et al., 2016). Such products
may provide useful background or a priori information for
satellite retrievals as well as providing initial and boundary
conditions for regional flux inversions. Coupled meteorolog-
ical and CO; data assimilation systems also provide useful
information on the reliability of correlations between meteo-
rological and CO, transport errors (Kang et al., 2011) and on
the temporal propagation of the observed signal in the con-
text of transport errors (Kang et al., 2012).

The goal of this work is to better understand the compo-
nent of transport error that is due to uncertain meteorologi-
cal states. While Liu et al. (2011) have shown that meteoro-
logical forecast errors in the presence of CO, gradients pro-
duce CO; transport errors, here we consider the spatial scales
identifiable in the context of imperfect meteorological analy-
ses. Predictability concerns the study of forecast uncertainty
and thus corresponds to the study of transport model errors.
While transport errors comprise flux errors, model formu-
lation errors, initial state errors and meteorological state er-
rors, it is the latter that is the focus of this work. Using a

IThis approach was later abandoned because only one of the two
sources of atmospheric analyses provided the necessary convective
mass fluxes needed for accurate tracer transport. See http://www.
esrl.noaa.gov/gmd/ccgg/carbontracker/version.php
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coupled meteorological and tracer transport model, we first
study the loss of CO; predictability due to uncertain mete-
orological initial conditions on weather (2 weeks) and sea-
sonal timescales in order to obtain an upper limit to fore-
cast errors arising from meteorological analysis errors. Then
the spatial scales of errors in CO; arising from the use of
imperfect atmospheric analyses are determined. It is shown
that there is a spatial scale below which CO; cannot be re-
trieved simply due to the presence of meteorological anal-
ysis uncertainty. The advantage of isolating and comparing
different components of transport error for a given model is
then demonstrated. The spatial scales of model errors (such
as the lack of convective transport of tracers) are compared to
the scales retrievable in the context of imperfect atmospheric
analyses.

The article is organized as follows. In Sect. 2, we discuss
the concept of predictability for the tracer transport prob-
lem and identify the components of transport error, while in
Sect. 3 we describe a new model for greenhouse gas transport
based on an operational weather and environmental predic-
tion model. In Sect. 4, this model is assessed in terms of its
meteorology (24 h forecasts are compared to reanalyses used
in flux inversions) and its CO» transport. The component of
CO; transport model error due to meteorological initial con-
ditions is studied first in Sect. 5, considering both weather
and seasonal timescales. This is followed by a study of the
spatial scales of transport model error arising from uncertain
meteorological analyses. Results are discussed and summa-
rized in Sect. 6.

2 Predictability and transport error

Atmospheric predictability concerns the quantification of
forecast uncertainty with a weather or climate prediction
model. The limited ability to forecast weather is related to
the underlying chaotic dynamics of the atmosphere and is ev-
ident in the sensitivity of forecasts to initial conditions. How-
ever, even though the predictability of weather does not ex-
tend beyond 2 weeks, components of the climate can be pre-
dicted on seasonal and interannual timescales. The sources
of predictability on climate timescales are related to atmo-
spheric boundary conditions such as sea surface temperature,
soil moisture, snow cover, vegetation and sea ice (Shukla
and Kinter III, 2006). Because CO, is transported by the
atmosphere, the predictability of the atmosphere is directly
relevant to the predictability of CO,. However, atmospheric
CO; concentrations are also strongly influenced by surface
sources and sinks. In fact, when concentrations are globally
averaged to compute a global CO; budget, it is only these
fluxes that are relevant since atmospheric transport does not
change global mass. However, when considering the spa-
tial distribution of CO,, both surface fluxes and atmosphere
transport contribute to the quality of predictions of CO;.
While the forecast of CO; is not of such great public inter-
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est as a weather forecast, the ability to predict CO; is needed
for solving flux inversion problems. Specifically, a CO, pre-
diction is compared to atmospheric observations to retrieve
fluxes. Thus knowledge of the accuracy of the CO, predic-
tion is needed in the formulation of the model-data mismatch
error statistics needed for solving the flux inversion problem
(see Baker et al., 2006b). In addition, once the fluxes have
been inverted, the transport model is integrated and com-
pared to measurements to assess the quality of the flux in-
version. Thus the quality of the CO, prediction is assessed.

Since CO, prediction is frequently performed with a trans-
port model, particularly in the context of flux inversions,
the prediction or forecast error is called “transport error’.
There is considerable concern over the nature and quantifica-
tion of various sources of transport error (see http://transcom.
project.asu.edu/). As noted in the Introduction, atmospheric
variability on diurnal, seasonal and interannual timescales
impact CO, concentrations. Thus atmospheric predictability
on all of these timescales impact the predictability of CO;.
Indeed, transport errors on diurnal timescales due to mix-
ing in the boundary layer (Denning et al., 1995), synoptic
timescales (Chan et al., 2004; Parazoo et al., 2008), seasonal
timescales (Denning et al., 1995; Chan et al., 2008) and in-
terannual timescales (Baker et al., 2006a) have all been iden-
tified as contributing to flux estimation errors.

The error of a CO; transport model can be defined as the
departure of a CO, prediction from the true (but not known)
value. Mathematically, this is expressed as sgamport = Ckt1—
¢4, where the updated concentration at time step k+1 is
given by a transport model:

Cir1 = T k1 Xk, €, Sk s (D

where Ty k41 is the transport model which evolves the mete-
orological state, x , the concentrations, ¢y, and the flux, s at
time step k to time step k + 1. This transport error has contri-
butions from various sources which can be identified by con-
sidering the hypothetical case of a forecast obtained with per-
fect knowledge of fluxes, meteorology and initial CO; state.
Such a forecast would still be imperfect because the transport
model is imperfect:

ki = Thk (¥, e, 57 + el @
The last term is the model error which arises due to errors in
the model formulation. Various authors have investigated the
role of model errors due to boundary layer mixing (Denning
etal., 1995), vertical mixing in the free atmosphere (Stephens
et al., 2007; Yang et al., 2007), synoptic and frontal mo-
tions (Parazoo et al., 2008), convective transport (Ott et al.,
2011; Parazoo et al., 2008) and mass conservation schemes
(Agusti-Panareda et al., 2016). Note that all but the last of
these model errors also impact meteorological forecast un-
certainty in the case of a coupled meteorological and tracer
transport model. Of course, model error is only one compo-
nent of transport error. The additional error sources are due to
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errors in the meteorological state (eme‘ =Xxi— x}f“e), errors

in the initial concentration (e" =ci— c}(me) and flux errors,
(% = sx —si™). Substituting Eqs. (1) and (2) into the ex-
pression for transport error and using these additional error
definitions reveals that transport error is the convolution of

all of these error sources. In other words,

transport __ 5 ymet _met cac ) mdl
€, =M "¢~ +Mie +Me, —e¢;
+ higher order terms, 3)
where
0T k k+1
M}(net — k+ (x;(rue’ c;{ruey s}(rue) i
0x
0T k k+1
c __ s true ,true _true
k=T a0 (xk 1€ 5 S )
0T k k+1
s _ s true .true true
k_T(xk 1€ 5 Sk )

Thus, the various error subcomponents interact with each
other to produce transport error. When an offline transport
model is used in a flux inversion, the meteorological state is
assumed to be known so the first and last terms in Eq. (3)
are absent. Since the meteorological state is obtained from a
meteorological analysis (usually from a foreign assimilation
or reanalysis system) the meteorological state error evolves
from an analysis error. It is difficult to account for meteoro-
logical state errors on CO; transport errors in the flux inver-
sion problem aside from producing an ensemble of inverse
results with different meteorological forcings (e.g. from dif-
ferent reanalyses). However, with a coupled meteorological
and transport model, Liu et al. (2011) have demonstrated
that meteorological uncertainty is an important component of
transport error (1.2-3.5 ppm at the surface and 0.8—1.8 ppm
in a column mean). Since the goal of flux inversion is to at-
tribute the mismatch of CO; predictions and observations to
a flux adjustment, a good understanding of the nature and
size of all of the components of transport error is needed be-
cause only then can a successful attribution of the mismatch
to flux be made. While progress has been made on identi-
fying the role of model and flux errors on transport errors,
there is less known about the impact of meteorological state
errors on CO, predictability. With a coupled meteorological
and transport model, we are able to consider the impact of
meteorological state errors on CO, predictability and thus
on CO; transport error.

3 Model description

In order to simulate greenhouse gas evolution, we can take
advantage of the comprehensive forecast models already de-
veloped for operational environmental prediction at Environ-
ment and Climate Change Canada (ECCC). However, it was
necessary to adapt these models for the purpose of tracer
transport on multiannual timescales. Specifically, it was nec-
essary to implement a mass conservation scheme, redesign
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the tracer variables, modify the vertical mixing in the bound-
ary layer and add convective tracer transport. The basic mod-
elling tools are described in the next subsection while the
adaptations needed for this work are presented in Sects. 3.2
(mass conservation and tracer variable definitions), 3.3 (hor-
izontal diffusion), 3.4 (convective transport) and 3.5 (bound-
ary layer mixing). The coupled meteorology and tracer trans-
port forecasting system is described in Sect. 3.6.

3.1 The Canadian operational environmental
prediction models

For many decades, the Canadian Meteorological Centre
(CMC) has been producing operational weather forecasts
for public dissemination. Since 24 February 1997, these
forecasts have utilized the Global Environmental Multiscale
(GEM) model (Coté et al., 1998a, b; Girard et al., 2014).
GEM is a grid-point model which solves the hydrostatic
(global domain) or nonhydrostatic (Yeh et al., 2002) (re-
gional domain) primitive equations using a hybrid terrain-
following vertical coordinate (Girard et al., 2014). As of
February 2013, the grid spacing of the global model is
roughly 25 km, originally using a regular lat-long grid and,
since December 2015, a yin—yang grid (Qaddouri and Lee,
2011). There are 80 vertical levels spanning the surface to
0.1 hPa. The usual physical processes of radiation (Li and
Barker, 2005), boundary layer mixing (Bélair et al., 1999),
shallow (Bélair et al., 2005) and deep convection (Kain and
Fritsch, 1990; Kain, 2004), orographic gravity wave drag
(McFarlane, 1987) and nonorographic gravity wave drag
(Hines, 1997a, b) are included in all model configurations.
The land surface model and assimilation scheme are de-
scribed in Bélair et al. (2003a, b). More details of the physics
package are found in Mailhot et al. (1998).

Operational air quality forecasts have been produced by
CMC since 2001 in order to provide real-time forecasts of
the air quality health index on a limited area domain cover-
ing most of North America. As of 18 November 2009, these
forecasts have utilized GEM-MACH (Modelling Air qual-
ity and CHemistry) (Moran et al., 2010; Robichaud and Mé-
nard, 2014; Makar et al., 2015). GEM-MACH is a version
of GEM in which complete tropospheric chemistry (involv-
ing over 100 chemical reactions) is modelled online, where
“online” refers to the fact that the chemistry module is fully
integrated into the meteorological model time step. The op-
erational products involve an analysis of ground-level ozone,
fine and coarse particulate matter (PMj 5 and PMg), NO;
and SO, over a limited area domain covering North America
(Robichaud and Ménard, 2014). The grid spacing currently
used is 10 km horizontally, with 80 vertical levels from the
surface to 0.1 hPa. The operational forecasts are driven by
time evolving meteorological boundary conditions from the
operational regional deterministic prediction system (Fillion
et al., 2010; Caron et al., 2015), while the chemical bound-
ary conditions are defined using predetermined seasonally-
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averaged states. A global version of GEM-MACH is also
in development for the purpose of providing boundary con-
ditions for the regional model and a parameterized strato-
spheric chemistry model (McLinden et al., 2000) is used for
UV index forecasting.

Our primary interest is in global greenhouse gas distribu-
tions, and thus we chose to use the global GEM-MACH con-
figuration. In the future, extensions of our system for regional
greenhouse gas simulations could be based on the opera-
tional regional GEM-MACH configuration. By definition, an
operational forecasting system is constantly changing. Since
our period of interest commences in 2009 with the launch of
GOSAT on 23 January and since the upper boundary of GEM
was raised from 10 to 0.1 hPa on 22 June 2009 (Charron et
al., 2012), this stratospheric model configuration was chosen.
However, for computational expediency (especially during
the model development phase) the grid spacing was coars-
ened to 0.9° (400 x 200 grid points), which is roughly twice
the grid spacing used by CMC’s global deterministic predic-
tion system (800 x 600 grid points) in 2009. The model time
step is 15 min.

Our primary focus in this work is global carbon diox-
ide simulation, but extensions for other greenhouse gases
(methane and CO) are also being developed. For that we em-
ploy a simple parameterized climate chemistry involving a
single OH reaction for the methane and CO simulations. This
chemical module is activated from the GEM-MACH chem-
ical interface, which is also used to handle emission inputs.
This simplified model version, which only includes the treat-
ment of greenhouse gas (chemistry and transport), will be
called GEM-MACH-GHG hereafter.

3.2 Mass conservation and tracer variable definitions

The dry air mass of the atmosphere is known to be constant,
since changes in trace gases are very small (Trenberth, 1981;
Trenberth and Smith, 2005). However, as with many weather
and climate prediction models, GEM does not conserve dry
air mass. Specifically, GEM loses 0.1 hPa in global mean sur-
face pressure during a 10-day forecast, which is precisely the
same rate as that seen in the ECMWF model (Diamantakis
and Flemming, 2014). This loss is only 0.01 % of the global
mass and thus there is a negligible impact on medium-range
weather forecasts. However, for longer simulations relevant
for climate timescales, this error can accumulate. Thus GEM
(as does the ECMWEF and other models) has a parameter to
allow the global mean surface pressure to be conserved by
adding a spatially uniform adjustment to each grid cell. The
constant is determined by the constraint that the air mass at
the end of the dynamics step equal that at the start of the step.
For our simulations of tracer transport, it is necessary to use
this switch to enforce the conservation of dry air mass.

The advection scheme in GEM uses a semi-Lagrangian
approach as it affords longer time steps and the computa-
tional efficiency desirable in an operational context. How-
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ever, semi-Lagrangian schemes are well known to be non-
conservative (Williamson, 1990; Staniforth and C6té, 1991).
GEM is a grid point model, and the semi-Lagrangian ap-
proach involves first determining the upstream positions of
the grid cells (using a 3-D trajectory in our case) and then
interpolating the value of the advected field at these loca-
tions. During this first step, gradients in the wind field will
limit the accuracy of advection and during the second step,
errors associated with the interpolation of the advected field
can deteriorate species mass conservation. By combining a fi-
nite volume approach with the semi-Lagrangian scheme, it is
possible to devise inherently mass-conserving schemes such
as SLICE (Semi-Lagrangian Inherently Conserving and Ef-
ficient) (Zerroukat and Allen, 2012). Indeed, this scheme is
being investigated for implementation with GEM in the fu-
ture. In the meantime, an interim solution is needed. The ap-
proach taken here, as in Diamantakis and Flemming (2014),
is to adopt a global mass fixer. To be clear, the global mass
is obtained by summing the individual masses of carbon in
each grid box. The mass of carbon in a grid box is determined
from the mixing ratio (mass of carbon divided by the mass of
dry air) times the mass of dry air in the same box. A global
mass fixer scheme computes the global mass of tracer at the
beginning and end of the advection step and then distributes
the change in global mass among various grid cells. There is
no unique way of distributing the mass spatially, so different
choices result in different mass fixer schemes. While a few
approaches were tried and tested with a few different chem-
ical species (ozone, CH4 and CO3), the one which produced
the most physically desirable results was that by Bermejo and
Conde (2002). In this scheme, the global mass is distributed
according to the smoothness of the field. That is, mass is
preferentially adjusted where gradients are larger (and in-
terpolation error is known to be larger). The exact scheme
used in GEM is precisely that selected by ECMWEF and it is
described in Diamantakis and Flemming (2014, Sect. 3.1).
For greenhouse gas transport, the ECMWF forecast model
also uses the Bermejo—Conde scheme (Agusti-Panareda et
al., 2016).

For tracers, another issue with the interpolation step of
the semi-Lagrangian advection scheme is the potential cre-
ation of spurious subgrid-scale structure due to Gibbs ef-
fects. To avoid this problem, GEM uses a quasi-monotonic
interpolation scheme (Bermejo and Staniforth, 1992) which
combines high-order and low-order interpolation schemes
to prevent overshoots and undershoots, thereby preventing
the formation of spurious extrema. However, just as Flem-
ming and Huijnen (2011) noted, enforcing monotonicity was
found to worsen the problem of mass non-conservation be-
cause it tends to diffuse gradients. Therefore, monotonicity
was replaced by an iterative locally mass conserving (ILMC)
scheme (Sgrensen et al., 2013). The idea behind the ILMC
scheme is to locally preserve the shape of the field and its
gradients by distributing the excess (or deficit of) mass due
to spurious extrema in the cubic interpolated field to ever in-
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creasing shells around the upstream departure point but in
such a way that spurious extrema are avoided. By design, the
use of ILMC does not impact our lack of global mass con-
servation, so it is used for preserving positive definiteness
of tracer fields in place of a quasi-monotonic interpolation
scheme. The ILMC is performed first, and then the Bermejo
and Conde (2002) scheme is applied to the ILMC-corrected
field. Details on the implementation of monotonic and mass-
conservation schemes in GEM and their impact on species
transport are found in de Grandpré et al. (2016).

The primitive equations solved by GEM are naturally writ-
ten in terms of a moist density or pressure variable. How-
ever, when tracers are defined as mixing ratios with respect to
moist air, tracers become coupled to the water vapour evolu-
tion. Thus one of two options must be taken. Either the tracer
variable must be redefined every time the water vapour field
is modified in the model or the tracers must be defined as
mixing ratios with respect to dry air (e.g. Neale et al., 2010).
The latter option has the advantage that measurements of
CO; are frequently made in terms of dry mole fraction and
are thus more easily related to a mixing ratio with respect
to dry air. Since the nominal tracer equation within GEM as-
sumed a moist mixing ratio, for this work GEM was modified
to permit tracers to be defined as mixing ratios with respect to
dry air (DMR). This involved (1) modifying the global mean
surface pressure adjustment to ensure global dry air mass
conservation, (2) converting the mass fixer scheme (i.e. the
Bermejo—Conde scheme) and the ILMC to deal with DMR,
(3) modifying the vertical diffusion equation to handle DMR
and (4) ensuring emissions are correctly inserted into GEM’s
bottom model layer. Once all of these changes had been
made, the tracer mass change in a given time step was found
to still display a coupling to the water vapour change in that
same time step. The reason was found to be due to the fact
that the continuity equation in GEM does not account for the
change in surface pressure due to the change in water vapour
which occurs as a result of mass flux at the Earth’s surface
(i.e. because of precipitation or evaporation). By adding a
new adjustment to surface pressure field after the physics step
to account for the change in global water vapour mass, and
correspondingly redefining the tracer variable using a verti-
cal regridding approach similar to Jockel et al. (2001) except
for the use of dry pressure coordinates, global mass conserva-
tion of CO, was obtained during a model forecast. This defi-
ciency in GEM’s continuity equation is not unusual as it was
also present in NASA GMAO’s GEOS5 model (Takacs et al.,
2015). The adjustment to the model dynamics done here to
account for the modified continuity equation is rather similar
to that described in Sect. 2a of Takacs et al. (2015) although
our work was done independently. The main difference is that
only water vapour mass is considered here whereas cloud lig-
uid water and cloud ice mass are also considered in Takacs et
al. (2015) (although the authors note that additional masses
due to liquid and ice phases are negligible). As these authors
demonstrate, without the correction to the model’s continu-
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ity equation, dry air mass conservation is not assured. They
also note that in the context of an assimilation cycle, further
constraints on dry air mass are needed during the analysis
and initialization steps. Furthermore, they show that the im-
pact of the errors is evident in the mismatch of global water
vapour tendency based on the water vapour field itself vs. that
based on precipitation minus evaporation changes for reanal-
ysis products such as MERRA (Rienecker et al., 2011) and
ERA-Interim (Dee et al., 2011).

3.3 Horizontal diffusion

It is standard to apply an explicit high-order (typically V®)
diffusion operator to the meteorological fields in applications
involving the global GEM model. It is arguably consistent
therefore to apply the same level of diffusion to the tracer
fields. However, because the constituent variables are defined
as mixing ratios, the operator is not mass conservative. Be-
cause of the effort involved in obtaining a careful accounting
of tracer mass (described in Sect. 3.2), it was decided to not
apply any horizontal diffusion to the tracers.

3.4 Convective transport

The parameterization of deep convection most frequently
used by GEM and GEM-MACH is due to Kain and
Fritsch (1990). The Kain and Fritsch (KF) scheme is based
on a single column bulk mass flux approach. Entrainment of
ambient air into the cloud environment associated with up-
drafts and downdrafts is proportional to the corresponding
mass flux and inversely proportional to the cloud radius. So
narrower convective towers experience more entrainment of
lower-buoyancy ambient air and consequently have less in-
tensity and lower cloud tops. The KF scheme is used in sev-
eral forecast models (e.g. Japanese Meteorological Agency
model, Saito, 2012; Bologna Limited-Area Model (BO-
LAM), Lagouvardos et al., 2003; High-Resolution Limited-
Area Model (HIRLAM), Eerola, 2013; Weather Research
and Forecasting Nonhydrostatic Mesoscale Model (WRF-
NMM), Gallus Jr. and Bresch, 2006). With the KF scheme,
GEM has a good representation of convectively coupled
waves and is able to capture the Madden—Julian oscillation
(Lin et al., 2008).

The version of the KF scheme used for global determinis-
tic prediction, which was our starting point, had to be mod-
ified for the purpose of greenhouse gas transport. The origi-
nal parameters resulted in too frequent penetration of convec-
tion into the stratosphere in the tropics. This is because the
updraft core radius had been set to 1500km globally. This
is a reasonable value for extratropical convection over land,
and since the target region of ECCC’s forecasting systems
is Canada, it is a valid choice. However, observations (Lu-
cas et al., 1994, and references therein) show that the up-
draft core radius varies with latitude and from land to ocean.
Thus over the oceans, a value of 900 km is used in the trop-
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ics with 1000 km in the extratropics. Over tropical land grid
points, a value of 1200 km is used. With these settings, trop-
ical convection overshoots fall in the correct range (below
80 hPa). However, the model climatology is altered. The pa-
rameter changes impact land—sea contrasts which influence
stationary Rossby wave generation and the spin-up of the
Brewer—Dobson circulation in the stratosphere. They also af-
fect flow over topography, which impacts orographic wave
drag and its associated transport circulations. An animation
(Fig. S1 in the Supplement) shows a comparison of the im-
pact of changing KF parameters vs. that of adding convective
tracer transport on CO; evolution. As expected, the change
in parameters impacts the stratospheric distribution after a
few months of simulation, whereas the introduction of tracer
transport through deep convection impacts the tropical tro-
pospheric CO, distribution at all times as well as the North-
ern Hemisphere in summer. The zonal mean values are small
but so too are zonal standard deviations (both are less than
0.3 ppm). Another animation which compares the impact of
changing KF parameters to that of adding convective tracer
transport on column mean or XCO; (Fig. S2 in the Supple-
ment) reveals that the magnitude of the impact is smaller
for the change in parameters (maxima of 0.3 ppm) than for
the introduction of tracer transport through deep convection
(maxima of 0.8 ppm).

3.5 Vertical mixing

Turbulence in the PBL is important for the transport of heat,
momentum, moisture and constituent fluxes from the surface
to the atmosphere. The PBL scheme in GEM is described
in Bélair et al. (1999), Benoit et al. (1989) and Mailhot and
Benoit (1982). Since a summary of GEM’s PBL scheme was
recently presented in McTaggart-Cowan and Zadra (2015)
and Aliabadi et al. (2016), we note here only the main dif-
ferences between GEM’s PBL parameterization and those of
other models used for greenhouse transport or flux inversion.

Shallow convection also exerts a significant impact on
the tracer distribution and vertical mixing in the lower tro-
posphere (e.g. Dacre et al., 2007). The shallow convection
scheme in GEM is a modified Kuo parameterization (Kuo,
1974) developed at ECCC (Bélair et al., 2005). As with the
original Kuo scheme it does not address convective tracer
transport. However, unlike the KF scheme it is not based on
a mass flux formulation that can be easily adapted to han-
dle tracers. For this reason the version of GEM used for this
study does not include tracer transport by shallow convec-
tion.

The vertical transport of greenhouse gas fluxes follows that
of other constituents and is described by

7 A ac _
) Lafr ()] o

where C is the constituent mixing ratio on resolved scales, p
is air density, w’ is subgrid-scale vertical velocity and the
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product with an overbar is the vertical flux of constituent
due to subgrid-scale turbulence. The first equality denotes
the impact of subgrid-scale motions on the resolved con-
stituent distribution. The subgrid-scale flux is parameterized
through the second equality and is a function of the vertical
gradient of the constituent. y is a counter gradient flux rele-
vant for an unstable PBL. K is the thermal eddy diffusivity
and it depends on properties of the flow. Most models define
K diagnostically in terms of an eddy length scale and lo-
cal gradients of wind and virtual potential temperature. Such
schemes are said to invoke a first-order closure. However,
GEM’s scheme specifies K through a prognostic equation
for turbulent kinetic energy and is thus deemed a 1.5-order
closure scheme (Holtslag, 2015). When K is determined di-
agnostically through local flow properties, the case of an un-
stable or strongly convective PBL is not well represented.
Thus, an extension for non-local mixing due to large-scale
eddies is often invoked in which the counter-gradient term
represents large eddy flux and K permits eddy length scales
comparable to the PBL height in the case of unstable bound-
ary layers. CarbonTracker (Peters et al., 2004) and GEOS-
Chem (Lin and McElroy, 2010) both use such a nonlocal
scheme based on Holtslag and Boville (1993). ECMWF also
uses a diagnostic nonlocal scheme (Kohler et al., 2011). In
GEM’s 1.5-order closure scheme, K can also represent non-
local effects due to large eddies in an unstable PBL through
a careful definition of eddy length scale (Bélair et al., 1999).
One notable difference between GEM’s prognostic nonlocal
scheme and diagnostic nonlocal schemes is that the latter re-
quire PBL height as an input for determining K, whereas in
GEM’s scheme the PBL height is diagnosed from the turbu-
lent kinetic energy profile (so K is not a direct function of
PBL height).

A minimum value for eddy diffusivity of 0.1 m?s~! is im-
posed in the PBL in GEM-MACH for air quality applica-
tions. This value was empirically chosen to balance the im-
pacts on the various tropospheric reactive species (P. Makar,
personal communication, 2012). In this work, the minimum
value was raised to 10m?s~! because a value of 1 or 0.1
was found to occasionally lead to too little mixing. This was
most evident in spuriously low CO; concentrations in the
daytime during summer when biospheric fluxes are large and
negative. (Note that the eddy diffusivity is kept fully varying
in space — it is only the minimum value that is slightly al-
tered. This is in contrast to earlier versions of GEOS-Chem
in which instantaneous full mixing of emissions and mixing
ratios occurred in the PBL. See Lin and McElroy, 2010, for
example.) A negative consequence of raising the minimum
value to 10 is a reduced amplitude of the diurnal cycle of CO,
(as will be seen in Sect. 4). However, many models have dif-
ficulty in capturing the amplitude of the diurnal cycle (Law et
al., 2008; Patra et al., 2008) so this consequence was consid-
ered tolerable at present. Moreover, the comparison of model
results to measurements on sub-diurnal timescales is very
difficult, leading Law et al. (2008) to recommend that “com-

1
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parisons with observations should only be made for daily or
longer time averages, and possibly for only part of the di-
urnal cycle”. Thus, many inversion systems assimilate only
afternoon mean observations and do not attempt to capture
sub-diurnal timescales (Peters et al., 2010).

3.6 The coupled meteorology and tracer transport
forecast cycle

To transport greenhouse gases, a simulation cycle is used.
Meteorological analyses archived at the CMC are inserted
periodically to constrain the transport to reality. While op-
erational assimilation cycles use an update frequency of 6 h,
model forecasts during such a short period will be contami-
nated by spurious gravity wave generation, as evident in sur-
face pressure time series (as well as other fields) (see Daley,
1991, chap. 6). However, after 24 h, spurious gravity waves
have generally dispersed so an update frequency of 24 h was
chosen, just as in Agusti-Panareda et al. (2014). (Note that a
6 h update cycle had also been tested and the resulting CO;
evolution was very close to that obtained with a 24 h update
cycle, but because the stratospheric circulation was poorer
the 24 h update cycle is preferred.) A schematic diagram of
the transport cycle is depicted in Fig. 1. The upper half of
the figure depicts the operational system which collects me-
teorological observations over a 6h window and uses these
in a 4-D variational assimilation or 4D-Var (Gauthier et al.,
2007) to generate an estimate of the meteorological state for a
deterministic prediction. Although the operational determin-
istic prediction system now uses a hybrid approach to back-
ground error covariance estimation (Buehner et al., 2015),
the analyses used here (from 2009 to 2010) were generated
using the previously operational 4D-Var system (Charron et
al., 2012). On the cycle’s start date at 00:00 UTC, the meteo-
rological analysis is combined with an initial state for green-
house gases (here CO, only) and a 24 h coupled meteorol-
ogy and tracer forecast is produced. The 24 h tracer forecast
is subsequently combined with the meteorological analysis
for the next day at 00:00 UTC (blue boxes) to produce a new
coupled initial state for the second day’s forecast (red filled
circles). Note that no additional “initialization” or filtering
(see Daley, 1991, chap. 6, 9, 10) scheme such as a digital
filter or incremental analysis updates (Bloom et al., 1996)
is used, as the impact on the CO, field was found negligi-
ble. Also note that in our simulation cycles, no assimilation
of greenhouse gases is performed. An assimilation system is
currently in development as discussed in Sect. 6.

In Fig. 1, every time a new analysis is inserted, a new sur-
face pressure field informed by atmospheric observations is
introduced. This surface pressure analysis will differ from
the 24 h forecast of surface pressure because the model is not
perfect, so the model forecast cycle will experience an abrupt
shift in global mean surface pressure and, hence, global air
mass. The change in global air mass will then impact the
global tracer mass. To maintain global tracer mass conserva-
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Figure 1. Schematic diagram of EC-CAS forward model cycles.
Meteorological analyses were precomputed by CMC'’s operational
global deterministic prediction system using all observations col-
lected in a 6 h window centred on the analysis time. These analyses
are represented by blue boxes. CO, tracers are added to these anal-
yses to form an initial condition (solid red circles) for launching a
24 h forecast (red arrows) using the coupled meteorological/tracer
model starting at 00:00 UTC of each day.

tion across this discontinuity, it is necessary to redefine the
tracer mixing ratio for the change in air mass. The scheme
adopted follows that used by GEM for the global surface
pressure adjustment. Specifically, a spatially uniform incre-
ment in tracer mixing ratio is determined based on the con-
straint that the global tracer mass be preserved (see Ap-
pendix A for details). The adjustment so obtained is small,
with a mean value of —8 x 107> ppm and a standard devi-
ation of 0.015 ppm over a 1-year simulation. Since the sur-
face pressure analyses are stored with only 16 bit precision
(because the analysis uncertainty does not warrant more pre-
cision than this), this ultimately limits our knowledge of the
tracer mixing ratio and the local tracer mass. With our global
adjustment scheme, the adjustments are much smaller than
16 bit precision will allow, and thus the scheme is justifiable.

4 Model evaluation

We will use GEM-MACH-GHG to study the influence of un-
certain atmospheric transport on the spatial scales recover-
able in CO;, fields, but, since this model has not yet been used
for greenhouse gas transport, it is necessary to first document
its ability to transport CO».

4.1 Evaluation of meteorological fields

ECCC has been delivering operational weather forecasts for
over 40 years and the products have been based on the
GEM model for 19 years. As with many national weather
forecast centres, ECCC participates in regular intercompar-
isons of operational forecasts following WMO standards.
For the global configuration, forecasts on the medium (up
to 10 days) range are compared every month and are avail-
able at http://web-cmoi.cmc.ec.gc.ca/verification/monthly/
observations/obs_monthly_e.html. Thus the quality of GEM
transport has been documented. However, since changes
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were made to the model that affect weather prediction
(specifically, the change to the continuity equation, the im-
plementation of conservation of the dry air contribution to
the global mean surface pressure and the convective trans-
port scheme parameters) it is necessary to demonstrate the
quality of the meteorological fields for the purpose of green-
house gas transport. Since offline transport models often use
reanalyses such as ERA-Interim or MERRA to transport con-
stituents, we compare our 24 h forecasts against these prod-
ucts. In general, analyses more closely match observations
than do forecasts because models are imperfect, and reanal-
yses should be superior in quality to operational analyses be-
cause the former use a superset of observations and a single,
recent model version. Thus, our 24 h forecasts cannot be ex-
pected to be superior to any of ERAI, MERRA or JRA-55
(Kobayashi et al., 2015) reanalyses. Nevertheless, because of
the usage of a 24 h forecast cycle (Fig. 1), it is important to
verify that transport on this forecast range is reasonable, and
reanalyses serve as high-quality reference fields.

The initial meteorological fields used at the start of every
cycle (Fig. 1) come from archived operational products in-
terpolated to our lower-resolution grid and topography. Thus
our transport can only drift from reality for 24 h before it is
corrected so that, even with our modifications to GEM, sig-
nificant transport errors are not expected. Nevertheless, since
changes of several hPa in 3-day forecasts of surface pres-
sure do arise from the adjustment to the continuity equa-
tion and these could impact synoptic-scale forecasts, it is
worth verifying the quality of our modified transport. Fig-
ure 2 (left column) shows the monthly mean difference of
temperature, zonal and meridional wind differences between
GEM-MACH-GHG and ERALI fields for July 2009 based on
6-hourly difference fields. ERAI fields were obtained from
http://reanalysis.org on pressure levels in GRIB format and
interpolated to GEM’s grid at 1.5° resolution. GEM fields
were also output on the same pressure levels and resolu-
tion. The mean differences can be compared to those be-
tween other reanalyses: MERRA and ERAI (middle col-
umn) and JRA-55 and ERAI (right column). The latter differ-
ence fields were obtained from http://reanalysis.org using the
Web-based Reanalysis Intercomparison Tools (WRIT; Smith
etal., 2014) with the values saved in NetCDF format for plot-
ting. It is evident that for all fields, GEM-MACH-GHG is as
similar to ERAI as other reanalysis products although our
products are 24 h forecasts (not analyses or reanalyses). For
temperature (top row), the largest differences appear in the
stratosphere for all models. In the stratosphere where models
and observations are biased, assimilation can be challenging
(Polavarapu and Pulido, 2016), so this result is not surpris-
ing. The extratropical zonal mean stratosphere is dominated
by the slow Brewer—Dobson circulation, which is forced by
waves propagating upward from the troposphere (Andrews et
al., 1987; Vallis, 2006). The spectrum of waves from a given
model depends on parameterizations such as convection and
gravity wave drag which generate high-frequency subgrid-
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scale waves, as well as resolved waves. Therefore, differ-
ent models can be expected to have rather different spectra
and thus different forcing of the Brewer—Dobson circulation.
For wind fields, the largest differences occur in the tropics.
Zonal wind differences are greatest in the tropical strato-
sphere (middle row). The zonal mean tropical stratosphere is
dominated by the quasi-biennial oscillation (QBO), which is
driven by vertically propagating waves. Climate models have
difficulty capturing the QBO as it depends on vertical reso-
lution, gravity wave drag parameterizations and the spectrum
of waves generated by tropical convection schemes (Baldwin
et al., 2001; Campbell and Shepherd, 2005). Analyses can
capture the QBO by assimilating the few radiosonde wind
observations available in the tropics. However, the amplitude
and phase of the QBO captured may depend on the underly-
ing model and assimilation system characteristics. In general,
since few direct measurements of winds are available to con-
strain analyses, and there are no simple dynamical balances
available to infer winds from observations related to mass
fields, model biases in the tropics are difficult to correct with
data assimilation (Polavarapu and Pulido, 2016). In Fig. 2,
the meridional winds (bottom row) differ most in the tropical
troposphere where these issues of lack of measurements, and
simple dynamical balances will prevail.

In summary, the meteorological fields used to transport
CO3 in our system are similar in quality to those from re-
analyses which have been used with offline transport mod-
els. Reanalyses are not perfect and their uncertainty can be
quantified through the degree of disagreement with other re-
analysis products. Thus, when offline transport models use
reanalyses, this uncertainty impacts their transport quality.
While we use a 24 h update cycle, this subsection has demon-
strated that throughout the 24 h forecast the uncertainty is
comparable to that of an individual reanalysis product. Thus
results on the sensitivity of transport error to meteorologi-
cal uncertainty obtained with our sequence of 24 h forecasts
has direct relevance to transport errors obtained with a 6 h in-
sertion of reanalysis products. While statistics for July 2009
were shown in Fig. 2, those for December 2009, July 2010
and December 2010 are found in the Supplement (Figs. S3—
S3).

4.2 Evaluation of CO; fields

Having established that the meteorological fields that will
transport constituents are sufficiently accurate, the CO; evo-
lution can be assessed. Since the goal is to assess GEM-
MACH-GHG as a transport model, realistic surface-to-
atmosphere fluxes are required. Without realistic sources
and sinks of CO,, discrepancies with observations could
be equally attributed to erroneous fluxes as to erroneous
transport. Even with a good source of retrieved atmospheric
fluxes, the evaluation of GEM-MACH-GHG transport re-
quires care (as discussed below). For this purpose, posterior
fluxes from CarbonTracker 2013B (hereafter referred to as

Atmos. Chem. Phys., 16, 12005-12038, 2016

S. M. Polavarapu et al.: Greenhouse gas simulations: the predictability of CO;

(a) GEM-ERAI (b) MERRA-ERAI (c) JRA55-ERAI
10 10 0 B T
25
30 1 30 4 30 15
v
% 100 4 100 4 100f 0.5
& {-1.0
300 1 300 1 3001
-2.0
1000 -60 -30 0 30 60 1000 -60 -30 0 30 60 1000 -60 —3‘0 l‘)jo 60 -3.0
(d) GEM-ERAI (e) MERRA-ERAI (f) JRA55-ERAI
10 T T T T 10 T T T T 10
5
301 4 30 1 30t ' i B
@
H 1
g 100F 4 100f 4 100f
& . -
300 1 300 1 3001

1000 1000 1

n n " n n = n " " L 1000 n n n n n
-60 -30 0 30 60 -60 -30 0 30 60 -60 -30 0 30 60

N h - i N
o (@) CEMER - () MERRAERAL (1) JSSERAl
13
30F 1 30F 1 30f { Moo
o 0.5
5
2 100} 1 100} 1 100} 1
4 & . -03
A . -0.7
300} . 1 300} { J 1 300} 1 :
N i -11
N .

ML . S fo, T 4 [T W
-60 -30 0 30 60 1000 -60 -30 0 30 60 1000 -60 -30 0 30 60
Latitude Latitude Latitude

1000 |

Figure 2. Comparison of GEM-MACH-GHG meteorological anal-
yses with other reanalyses for July 2009. Monthly and zonal means
of differences with respect to ERA-Interim fields of GEM-MACH-
GHG (left column), MERRA (middle column) and JRASS (right
column) are shown for temperature in K (top row), zonal wind in
ms~! (middle row) and meridional wind in ms~! (bottom row).

CT2013B; Peters et al., 2007) were obtained and regridded in
a mass conservative way to GEM’s grid. CarbonTracker was
chosen because it is generally recognized as a good prod-
uct, is regularly monitored and updated and is readily avail-
able from http://carbontracker.noaa.gov. These fluxes were
also used for a similar purpose in Houweling et al. (2010).
CT2013B fluxes are available every 3 h, with fluxes inserted
at every model timestep. With an initial condition from Car-
bonTracker for 1 January 2009 00:00 UTC and the CT2013B
fluxes, GEM-MACH-GHG was run for all of 2009-2010.
The resulting CO; simulations are compared against obser-
vations assimilated by CT2013B (continuous observations),
observations not assimilated by CT2013B (columns from
Total Carbon Column Observing Network (TCCON) and
aircraft profiles) and gridded 3-D concentration fields from
CT2013B.

Figure 3 compares CO, time series from GEM-MACH-
GHG with CT2013B fluxes to surface observations from
ECCC’s greenhouse gas measurement network (Worthy et
al., 2005) at Alert, East Trout Lake and Sable Island. Alert
is a remote Arctic site far from CO;, sources, so it can be
used to assess long-range transport. East Trout Lake is close
to sources and will reflect diurnal variations in CO, fluxes
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Figure 3. Comparison of GEM-MACH-GHG with surface observations at Alert (top), East Trout Lake (middle) and Sable Island (bottom).
ECCC observations (black), GEM-MACH-GHG with CT2013B fluxes (blue) and CarbonTracker-2013B (green) time series are shown for

each location.

convolved with boundary layer mixing. Sable Island is down-
stream of sources on the eastern edge of the continent and ef-
fectively reveals synoptic-scale variability. The comparison
at Alert (top panel) reveals general agreement between the
model and measurements throughout the 2-year period, with
the exception of low values during the autumn of both years.
This departure can be explained by a discrepancy between
CarbonTracker’s transport and GEM-MACH-GHG’s trans-
port. CT2013B fluxes were obtained by minimizing the dif-
ference between observations and CarbonTracker’s forecasts
and thus reflect the amount of flux needed to bring Carbon-
Tracker in line with measurements. Since CarbonTracker’s
transport is not perfect, the retrieved fluxes retain a signa-
ture of CarbonTracker’s transport errors which may or may
not match GEM-MACH-GHG’s transport errors. To demon-
strate this point, GEM-MACH-GHG was run with another
set of retrieved fluxes, this time from GEOS-Chem (Deng et
al., 2016), for July 2009-December 2010 and no such au-
tumnal drift is seen (Fig. S6). Thus GEM-MACH-GHG is
potentially able to capture long and seasonal timescales of
CO, transport. The time series at East Trout Lake (middle
panel) shows that the smaller amplitude of the diurnal cycle
in winter relative to summer is captured by the model. How-
ever, CarbonTracker’s diurnal cycle amplitude in summer at
this site appears too large. The amplitude of the diurnal cy-
cle is further discussed in the context of Fig. 4. Finally, the
bottom panel compares observed and modelled time series
at Sable Island where synoptic-scale variations are more ev-
ident. It is clear that the model captures synoptic scales well,
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as expected from a weather forecast model. In particular,
variations on the 1-month timescale are seen in August and
September of 2009 and the model follows these variations
well. The ability of GEM-MACH-GHG to capture synop-
tic scales is important, since the ground-based measurement
network can resolve the global carbon budget and very large
(continental) spatial scales (e.g. Peylin et al., 2013). Then in
a data assimilation or flux inversion system, the model can
supplement the large spatial scales observable with this net-
work with realistic synoptic scales (e.g. Agusti-Panareda et
al., 2014).

The mean diurnal cycle at individual stations can reveal
more clearly the realism of a model’s boundary layer varia-
tion. Here we choose two sites close to sources and sinks be-
cause the amplitude of the diurnal cycle at such sites should
vary through the year. Figure 4 shows that the model’s mean
diurnal cycle at East Trout Lake with GEM-MACH-GHG
with CT2013B (blue) fluxes compare well to measurements
(black), whereas CT2013B (green) has a too-large ampli-
tude in April and July 2009 (consistent with Fig. 3). How-
ever, the model’s behaviour varies with location and time. At
Fraserdale, GEM-MACH-GHG’s diurnal cycle amplitude is
clearly too low in all months whereas CarbonTracker fares
better in July and October 2009. The fact that the diurnal
variability from GEM-MACH-GHG is lower than that ob-
served stems from the choice made for the minimum value of
eddy diffusivity (Sect. 3.5). Lowering this value can increase
the amplitude of the diurnal cycle, but with the increased risk
of occasional spuriously low values of CO, during summer

Atmos. Chem. Phys., 16, 12005-12038, 2016
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Figure 4. Mean diurnal cycle at East Trout Lake, Saskatchewan (top four panels), and Fraserdale, Ontario (bottom four panels), in 2009.
Each panel shows the observed mean cycle from continuous measurements (black), CT2013B (green) and GEM-MACH-GHG with CT2013B
fluxes (blue). Time is given in UTC. The four panels correspond to the months of January, July, April and October, as labelled above each
panel. The grey shaded region indicates 1 standard deviation above and below observed values while the dashed lines indicate the same for

the model run with the corresponding colour.

daytime. As noted earlier, it is difficult to compare models to
measurements on sub-diurnal timescales (Law et al., 2008;
Patra et al., 2008) and most models have difficulty in captur-
ing boundary layer evolution so flux inversions typically use
only afternoon mean measurements.

GEM-MACH-GHG transport is directly compared to Car-
bonTracker’s transport in Figs. 5 and 6. Figure 5 presents
the column mean CO; weighted by air mass on 1 July 2009
00:00 UTC and 31 December 2009 00:00 UTC from GEM-
MACH-GHG with CT2013B fluxes (top panel), CT2013B
(middle panel) and the difference between these two (bottom
panel). The higher resolution of GEM-MACH-GHG is evi-
dent particularly in July, when the largest differences occur
at small spatial scales. CT2013B has more CO;, than GEM-
MACH-GHG in both the tropics and the Northern Hemi-
sphere. However, in winter (right column) CT2013B has
more CO, mainly in the tropics. The tropical differences
in both seasons are likely related to differences in convec-
tion schemes in the two models. The increased CO; in the
northern midlatitudes in boreal summer may be due to dif-
fering meridional transport or to differing rates of vertical
mixing or a combination of both. Zonal mean fields also
reveal that the greatest differences between the two GEM-
MACH-GHG simulations and CT2013B are in the summer
(Fig. 6, top panel). Throughout the troposphere and near the
surface, CT2013B has more CO,. In winter, CT2013B has a
slight deficit near the surface compared with GEM-MACH-
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GHG. Differences in the stratosphere between the two mod-
els are also evident in Fig. 6. Since GEM-MACH-GHG has
better vertical resolution compared to CarbonTracker (80 vs.
25 levels) and GEM is designed to have a realistic strato-
sphere (Charron et al., 2012), differences in stratospheric and
mesospheric flow are to be expected. However, the mass of
CO3 in the stratosphere and mesosphere is very small, so
the column mean or surface values would be insensitive to
such differences. In summary, when GEM-MACH-GHG is
run with CT2013B fluxes, differences in transport errors be-
tween CarbonTracker and GEM-MACH-GHG are evident.
Differences are within 3 ppm in column mean and 4 ppm in
zonal mean. Neither (any) model can be expected to have per-
fect transport, so the acceptability of transport is generally
gauged through comparisons of model predictions to mea-
surements.

To assess seasonal timescales, it is useful to compare to
the TCCON measurements (Wunch et al., 2011). The data
used for this study are from the GGG2014 release, avail-
able on the network’s website http://tccon-wiki.caltech.edu.
All sites with measurements in 2009 and 2010 are selected,
as listed in Table 1. The details of how the model profiles
were converted to column-averaged dry mole fraction (Xco,)
and smoothed following Wunch et al. (2010) is provided in
Appendix B along with the precise definitions of the statis-
tics discussed here (bias, root mean square (RMS) and scat-
ter). The statistics for 2009-2010 are shown in Table 2. The

www.atmos-chem-phys.net/16/12005/2016/
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Figure 5. Column mean CO, for GEM-MACH-GHG with CT2013B fluxes (top row), CT2013B (middle row) and CT2013B minus GEM-
MACH-GHG fields (bottom row) for 1 July 2009 (left column) and 31 December 2009 (right column).

Table 1. TCCON stations used, their location and data reference.

Site Latitude Longitude Reference

Eureka 80.05 —86.42  Strong et al. (2014)
Sodankyld 67.37 26.63  Kivietal. (2014)
Bialystok 53.23 23.02  Deutscher et al. (2014)
Bremen 53.1 8.85 Notholt et al. (2014)
Karlsruhe 49.1 8.44 Haseetal. (2014)
Orléans 47.97 2.11  Warneke et al. (2014)
Garmisch 47.48 11.06  Sussmann and Rettinger (2014)
Park Falls 45.94 —90.27  Wennberg et al. (2014a)
Lamont 36.6 —97.49  Wennberg et al. (2014b)
Izana 28.3 —16.48 Blumenstock et al. (2014)
Darwin —12.43 130.89  Griffith et al. (2014a)
Wollongong  —34.41 150.88  Griffith et al. (2014b)
Lauder —45.05 169.68  Sherlock et al. (2014)

bias is below 1 ppm for every station except Eureka, which
only had 49 h of measurements in 2010. No selection is ap-
plied when considering which sites are included in the “all”,
“mean” or standard deviation (SD) statistics. At Eureka, the
—2.66 ppm bias significantly impacts the station-to-station
SD of the bias, it is 0.3 ppm without Eureka. (Note that an
error in surface pressure was recently discovered at Eureka
and preliminary results for a correction suggest a 0.5 ppm
difference in Xco,, which would reduce the Eureka EC-
CAS bias by a corresponding amount.) Except for Eureka
and Park Falls, the station bias is positive and the overall

www.atmos-chem-phys.net/16/12005/2016/

standard deviation is 0.96 ppm with a high correlation co-
efficient of 0.95. Although we did not perform a data assim-
ilation, the posterior fluxes from CarbonTracker contain in-
formation from the observations they used, so we can com-
pare our Table 2 to Massart et al. (2016, Table 2). The biases
of individual stations are mostly lower here, as is the over-
all averaged bias. This is because the surface observations
assimilated by CarbonTracker with a long assimilation win-
dow are able to constrain the global atmospheric growth rate,
whereas the system used by Massart et al. (2016) does not
use long assimilation windows and thus does not constrain

Atmos. Chem. Phys., 16, 12005-12038, 2016
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Table 2. Statistics for the average hourly Xcp, comparison between TCCON measurements and GEM-MACH-GHG simulations: RMS
(ppm), bias (ppm), scatter (ppm) and correlation coefficient R. The “all” line shows the mean of each parameter using data from all sites
combined. “Mean” is the average of each parameter and SD is the standard deviation of the station’s bias. N is the number of data pairs (or

sites for mean and SD) used in the computation of the statistics.

Site Latitude N RMS (ppm) Bias (ppm) Scatter (ppm) R
Eureka 80.05 49 2.86 —2.66 1.08 0.77
Sodankyld 67.37 1384 1.23 0.19 1.22 098
Bialystok 53.23 1279 1.16 0.55 1.03 095
Bremen 53.10 455 1 0.48 0.88 0.95
Karlsruhe 49.10 274 1.42 0.95 1.05 0091
Orléans 47.97 910 0.76 0.27 0.71 098
Garmisch 47.48 1194 1.1 0.22 1.08 0.93
Park Falls 45.94 2427 0.97 —-0.2 0.95 0.97
Lamont 36.60 4490 0.87 0.01 0.87 0.94
Izana 28.30 221 1.13 0.45 1.04 0.84
Darwin —12.43 1704 0.67 0.28 0.61 0.88
Wollongong  —34.41 1451 0.89 0.38 0.8 0.8
Lauder —45.05 826 0.58 0.35 0.47 0.88
All 16615 0.98 0.14 0.96 0.95
Mean 14 1.13 0.1 09 091
SD 14 0.84
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Figure 6. Zonal mean CO; on 1 July 2009 (top row) and 31 De-
cember 2009 (bottom row) for GEM-MACH-GHG with CT2013B
fluxes (left column), CT2013B (middle column) and CT2013B mi-
nus GEM-MACH-GHG fields (right column).

the global growth rate as effectively. The full time series for
Park Falls (USA) and Wollongong (Australia) are shown in
Fig. 7 and the seasonal bias as well as the seasonal statistics
using data from all sites combined are shown in Table 3. Sea-
sons are defined as DJF (December, January and February),
MAM (March, April and May), JJA (June, July and August)
and SON (September, October and November). The model is
able to reproduce seasonal variations of Xco, with biases
ranging between —1 and 41 ppm (excluding Eureka) and

Atmos. Chem. Phys., 16, 12005-12038, 2016

scatter values consistently below 1 ppm. The large negative
bias at Eureka in autumn is consistent with the time series
shown in Fig. 3. Other northern stations (Sodankyld and Bia-
lystok) have similar but smaller biases. As discussed earlier,
the discrepancy of GEM-MACH-GHG transport with that of
CarbonTracker (as imprinted in the posterior fluxes) may ex-
plain this behaviour since other posterior fluxes do not have
this particular issue (Fig. S6).

The vertical structure of model CO5 is compared to NOAA
aircraft profiles (Sweeney et al., 2015) over Canada and the
USA in Fig. 8. Following Agusti-Panareda et al. (2014),
mean model profiles at the nearest model grid point and
timestep to the profile location were averaged over all pro-
files for a season. Both observed and model values were
binned into 1km layers. The observations are from Ob-
sPack2013 (2013) (Masarie et al., 2014) and include only
profiles from Canada or the contiguous USA. The annually
averaged model profiles are shown in panel a. In the annual
average, GEM-MACH-GHG has good agreement with these
independent measurements while CT2013B has a very slight
positive bias. Both models are quite good compared to the
ensemble of models shown in Stephens et al. (2007, Fig. 2b).
However, the other panels reveal that GEM-MACH-GHG’s
excellent annual result in the free troposphere is because of
compensating errors in different seasons. The boreal winter
season (DJF) is not shown because December 2008 was not
simulated. However, the behaviour of the model in boreal
winter 2009 (based on January—February) and 2010 is qual-
itatively similar to its behaviour in spring (panel b). Panels
b—d reveal that GEM-MACH-GHG agrees quite well with
observations from 3 to 6 km in all seasons. However, from

www.atmos-chem-phys.net/16/12005/2016/
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1 to 3km, vertical gradients are too sharp but of opposing
directions in boreal spring (panel b) and summer (panel c).
In autumn (panel d) the gradient is slightly too large, while
CT2013B is almost perfect. Thus, the vertical mixing just
above the boundary layer is too weak, as with most models
(see Yang et al., 2007). A possible reason for the overestima-
tion of vertical gradient with GEM-MACH-GHG is the lack
of tracer transport through shallow convection. These biases
in vertical gradients will be relevant for regional flux inver-
sions (see Stephens et al., 2007) that may use GEM-MACH-
GHG results as boundary conditions.

5 The predictability of CO; in the context of uncertain
atmospheric analyses

Having established that GEM-MACH-GHG can simulate
CO, reasonably well, we turn our attention to the question
of how atmospheric transport modulates the CO, distribu-
tion. The evolution of CO, can be described by the species
transport equation and thus may be considered to be perfectly
predictable. However, this is only true if the advecting fields
are perfectly known, and this is never the case. With a cou-
pled meteorology and forecast model, the impact of the un-
certainty of meteorological fields on CO» transport can be ex-
plored. In a data assimilation or flux inversion system, when
the fluxes are well constrained by observations, the ability to
estimate the CO; fields using observations will ultimately be
limited by the loss of meteorological predictability, just as the
quality of weather forecasting products are. Thus it is useful
to identify these limits on the spatial scales that can be re-
trieved in analyses of CO;, because these predictability lim-
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its can then be compared to the spatial scales of CO; retriev-
able in the presence of meteorological analysis uncertainty.
In this section, we use GEM-MACH-GHG to determine the
predictability of CO, on weather and climate timescales with
the latter referring to subseasonal to seasonal scales. In other
words, we isolate and study the component of transport error
due to meteorological state (initial condition or analysis) er-
rors. In Sect. 5.1, the classic weather predictability problem
of uncertainty in meteorological initial conditions is consid-
ered, whereas longer timescales and the transport errors due
to uncertain meteorological analysis errors and model errors
are considered in Sect. 5.2.

5.1 Weather timescales

Although flux inversion systems focus on retrieving rela-
tively long timescale signals (than 2 weeks), it is useful to
first consider CO; predictability on weather timescales be-
fore considering errors o longer timescales (next subsection).
Specifically, we isolate the impact of the loss of meteorolog-
ical predictability on CO; predictability. The meteorologi-
cal predictability problem on weather timescales is related to
forecast sensitivity to initial conditions, but the atmospheric
variability of COy on diurnal (Law et al., 2008), synoptic
(Chan et al., 2004; Agusti-Panareda et al., 2014) and sea-
sonal and interannual (Gurney et al., 2002, 2004; Baker et al.,
2006a; Le Quéré et al., 2015) timescales is largely governed
by the terrestrial biospheric fluxes and hence is determined
by sensitivity to boundary rather than initial conditions. Nev-
ertheless, the CO, predictability error arising from loss of
meteorological predictability on weather timescales has not
to our knowledge been identified, and it can be used to iden-
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Observations (black curves) are from

obspack_co2_1_PROTOTYPE_v1.0.4_2013-11-25 for locations over continental USA and Canada, only. Observed and modelled profiles
are binned over (a) 2009, (b) March to May 2009, (c) June to August 2009 and (d) September to November 2009. CarbonTracker 2013B
mole fractions (green) and GEM-MACH-GHG with CT2013B posterior fluxes (blue curves) are shown in all panels. The shaded grey re-
gions indicate plus or minus 1 standard deviation for the observations while the dashed coloured lines indicate the same quantities but
for the different model runs. Note that the x axis range differs in each panel and that ticks are every 5 ppm except for (b) where they are
every 2 ppm. Sites used are Beaver Crossing, Nebraska; Bradgate, lowa; Briggsdale, Colorado; Cape May, New Jersey; Charleston, South
Carolina; Dahlen, North Dakota; East Trout Lake, Saskatchewan; Estevan Point, British Columbia; Fairchild, Wisconsin; Harvard Forest,

Massachusetts; Homer, Illinois; Oglesby, Illinois; Park Falls, Wisconsin; Poker Flat, Alaska; Sinton, Texas; Southern Great Plains, Oklahoma;
Trinidad Head, California; West Branch, Iowa; Worcester, Massachusetts.

tify an upper limit on forecast errors. This may be relevant for
operational data assimilation or forecasting systems such as
those at ECMWF (Agusti-Panareda et al., 2014) and NASA
Goddard (Ott et al., 2015), which use update cycles of 12
or 24 h and also examine the quality of short-term forecasts.
It will also serve as an upper limit for transport error aris-
ing from the presence of uncertain meteorological analyses
in Sect. 5.2.

Predictability of weather normally refers to the sensitivity
of forecast errors to initial conditions such that any infinites-
imal perturbation will lead to diverging forecasts in a finite
length of time. This is the so-called butterfly effect and it
occurs because of the underlying nonlinear chaotic dynam-
ics of the governing equations (Palmer, 2006). To compute
predictability error of meteorological variables on weather
timescales, one can simply start with a reference simula-
tion and perturb the initial conditions. Eventually, the fore-
casts will diverge, but the error will saturate at climatologi-
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cal levels. Once saturation has been reached, the statistics of
this predictability error can be determined. However, with a
transported tracer such as CO», the model forecast requires
regular insertion of wind fields. During our forecast cycle,
the meteorology is constrained by analyses every 24 h and
departure from reality will represent at most a 24 h forecast
error. Thus for transported constituents, the definition of the
predictability experiment is slightly different. The reference
simulation will be taken as the GEM-MACH-GHG 2-year
run with CT2013B fluxes. Then a comparable “climate cy-
cle” is run in which the model, initial conditions, CO, fluxes
and surface forcing are identical to those used in the refer-

ence cycle. However, with the second and all subsequent cy-

cles, the meteorological fields are not replaced by analyses

but are instead copied from the 24 h forecast fields. Thus the

meteorology fields used to transport the CO, field in this “cli-
mate cycle” are never updated with observations (analyses)
and will thus depart from those used in the reference cycle

www.atmos-chem-phys.net/16/12005/2016/
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Table 3. Seasonal bias (ppm) for the hourly averaged Xcp, comparison between TCCON measurements and GEM-MACH-GHG simula-
tions. The mean (using data from all sites) bias (ppm), scatter (ppm) and correlation coefficient (R) are also shown under “all”. Seasons with

fewer than 10 pairs are not included in the “all” calculations.

Site Latitude N  Bias (ppm) N Bias (ppm) N  Bias (ppm) N Bias (ppm)
DJF MAM JJA SON
Eureka 80.05 0 - 0 - 35 —2.18 14 —3.86
Sodankylid 67.37 56 0.83 450 1.04 610 0.06 262 —1.04
Bialystok 53.23 92 038 557 0.82 537 0.49 93 —0.61
Bremen 53.1 34 0.72 237 0.72 123 0.02 61 0.36
Karlsruhe 49.1 5 1.32 59 1.09 113 0.96 97 0.85
Orléans 47.97 73 -0.27 310 0.38 236 0.66 291 —0.03
Garmisch 4748 107 02 254 0.4 439 0.29 394 0.03
Park Falls 4594 311 —-0.22 668 —0.13 676 —-042 772 —0.06
Lamont 36.6 850 —0.03 983 —0.05 1602 —0.16 1055 0.34
Izafia 28.3 25 —0.65 44 —0.56 103 0.76 49 1.28
Darwin —12.43 310 —-0.04 391 0.1 126 0.5 877 0.44
Wollongong ~ —34.41 445 0.11 185 0.42 332 096 489 0.23
Lauder —45.05 168 0.01 142 0.39 192 0.44 324 0.45
All
N 2471 4280 5124 4778
Bias (ppm) 0.02 0.33 0.12 0.15
Scatter (ppm) 0.78 0.88 1.11 0.86
R 0.93 0.92 0.94 0.93

in the first 2 weeks. The divergence of the CO; field in the
“climate cycle” from that in the reference cycle, once the er-
ror has saturated, defines the CO, predictability error arising
from the loss of meteorological predictability.

Starting from 1 January 2009 00:00 UTC, the reference
and climate cycles are run for 1 month with fields saved
every 6 h. The differences between the corresponding fields
from the two cycles are computed for temperature, zonal
and meridional wind components, CO; and surface pressure.
Vorticity and divergence fields are computed from the wind
difference fields. Then the global mean of the zonal standard
deviation of each difference field is computed after first sub-
tracting the zonal mean. The resulting global mean values
are called predictability errors and they have the same units
as the corresponding forecast field. In order to get a compara-
ble scale for all variables, the errors were normalized by the
global mean of the zonal standard deviation for a reference
state. The choice of this state is arbitrary but has implica-
tions on the maximum values attained (as will be discussed
below). The reference field was taken as the initial state used
to launch both the control and climate cycles and corresponds
to 1 January 2009 00:00 UTC. Figure 9 shows the time and
height variation of the predictability error normalized by the
variability of the reference state for all four variables. When
the predictability error approaches the variability of the refer-
ence state, values approach 1. Thus predictability is expected
only when the relative error is much less than 1. In Fig. 9,
we see that temperature loses predictability within 10 days,
as expected (i.e. the normalized error reaches 0.8). However,
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CO; loses predictability in the troposphere within 2-3 days
except very near the surface, where it reaches 5 days. The
predictability of CO, more closely resembles that of the wind
(vorticity and divergence) fields which also lose predictabil-
ity in fewer than 5 days in the troposphere. This makes sense
because the wind fields are used to transport the CO; field.
The difference in evolution of the CO; field in the reference
and climate cycles (figures not shown) reveals largest val-
ues to be associated with gradients created by large fluxes
(whether natural or anthropogenic). This ability of the un-
certainty in wind analyses to act on CO; gradients and to
spread the uncertainty downstream was previously illustrated
by Liu et al. (2011) using an ensemble of wind fields. CO,
is more predictable in the stratosphere, with the loss of pre-
dictability occurring after 5 days in the lower stratosphere.
The extended predictability of CO; in the lower stratosphere
is similar to that seen in the vorticity field (bottom left panel).
The reason that the vorticity field is more predictable than the
divergence field (with a loss of predictability occurring after
3—4 days in the troposphere) is because the vorticity field is
associated with slower rotational modes whereas the diver-
gence field is often associated with higher-frequency waves.
The atmospheric kinetic energy spectrum is dominated by ro-
tational motions in the troposphere (Koshyk et al., 1999; Ska-
marock et al., 2014). In the stratosphere, the zonal mean flow
in winter is driven by very large-scale vertically propagat-
ing planetary waves (Andrews et al., 1987; Vallis, 2006) so
large-scale rotational modes dominate the energy spectrum
and extended predictability in vorticity and CO; results.

Atmos. Chem. Phys., 16, 12005-12038, 2016
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Figure 9. Predictability on weather timescales during January 2009.
Predictability error is defined here as the global mean zonal stan-
dard deviation of the difference in evolution of a control cycle from
a climate cycle. This value is normalized by the global mean zonal
standard deviation of the corresponding field in the initial condition.
Predictable regimes are ones for which this ratio is much less than
1. The normalized predictability error fields for (a) CO,, (b) tem-
perature, (c) vorticity and (d) divergence are plotted as a function of
model vertical level (converted to approximate pressure with a ref-
erence surface pressure of 1000 hPa) and time in days since 1 Jan-
uary 2009. The layers labelled with white text in each panel will be
used for computing the layer mean averages shown in Fig. 10.

While predictability is considered lost when its normal-
ized error approaches 1, sometimes the relative error is much
greater than 1. This occurs because of the arbitrary choice
taken for the normalization. In our case, the reference state
corresponds to the initial state, which corresponds to a rela-
tively quiescent synoptic situation since January 2009 marks
the strongest and most prolonged stratospheric major warm-
ing on record (Manney et al., 2009). The criteria for a
stratospheric sudden warming (SSW) were met on 24 Jan-
uary 2009 when zonal mean easterlies replaced the clima-
tologically normal westerlies at 10 hPa. However, easterlies
were noted in the mesosphere prior to this date (Manney
et al., 2009). This pattern is consistent with the appearance
of anomalously large predictability error in relative vortic-
ity in the mesosphere prior to 24 January and the appearance
of anomalously large errors in the stratosphere (layer 6) af-
ter 15 January. Although global mean values are shown, it
is zonal standard deviation that is computed, and the depar-
ture from a zonal mean will be large during a wave 2 vortex
splitting event such as occurred in 2009. Thus zonal stan-
dard deviations are anomalously large throughout much of
the Northern Hemisphere because the climate cycle does not
capture this event whereas the reference cycle does. The ex-
tent of the disturbance in the Northern Hemisphere is large

Atmos. Chem. Phys., 16, 12005-12038, 2016

S. M. Polavarapu et al.: Greenhouse gas simulations: the predictability of CO;

enough to influence the global mean values. Anomalously
large CO, predictability error appears in the mid-stratosphere
around 20 January 2009. The disturbance of CO, due to the
SSW is to be expected since the disturbance of CO in the
mesosphere, NoO in the mid-stratosphere and H,O in the
lower stratosphere as the vortex deformed and split was evi-
dent in MLS (Microwave Limb Sounder) observations (Man-
ney et al., 2009).

Figure 10 compares the layer mean normalized pre-
dictability error for different variables for the layers indicated
by the dashed lines in Fig. 9 and labelled in white text at
the left edge of each panel. Near the surface, the normalized
CO» predictability error closely follows that of the specific
humidity field (for about 3 days). Both moisture and CO,
fields are advected by the wind fields and are similarly af-
fected by the predictability of the wind fields. In this bot-
tom layer, CO, and moisture are more predictable than the
wind field presumably because of their dependence on sur-
face fluxes, although the normalization, which is layer de-
pendent, cannot be ruled out as a contributing factor. How-
ever, they are both less predictable than the temperature field
(Fig. 10a). In the troposphere, the loss of CO, predictability
is similar to the loss of predictability in vorticity (panels b,
¢) for the first few days. After that, the loss of predictability
for CO» is faster than that for the vorticity and divergence
fields. While the normalization may play a role in this re-
sult, it is also worth noting that the predictability of vorticity
and divergence fields will differ from that of wind compo-
nents because very smooth wind field errors generate little
error in vorticity and divergence fields. Throughout the atmo-
sphere, temperature loses predictability at a slower rate than
CO; does. While both moisture and CO, are transported by
wind fields, moisture is also a dynamic variable; thus the loss
of predictability for specific humidity is not the same as that
for CO; in the lower to mid-troposphere (panels b, ¢) beyond
day 5. Predictability error increases from day 1 to reach sat-
uration levels in 10-15 days for all levels except the upper
stratosphere (Fig. 10f), which is affected by the SSW. Thus
in the next section, climatological levels of predictability er-
ror will be discussed for periods longer than 1 month in the
troposphere.

Waves of 24 h in period are seen, particularly, in the vor-
ticity and divergence plots in Fig. 10. This occurs because
the forecasts in the reference cycle are abruptly corrected ev-
ery 24 h with the insertion of a new analysis. When the pre-
dictability error of the 24 h forecast error is large compared
to that of the analysis valid at the same time, we see stripes at
the 24 h period. Thus we conclude that the normalized 24 h
forecast error of the wind field is much larger than that of the
temperature field. This makes sense because the global ob-
serving system is dominated by information about the mass
field with relatively sparse direct observations of the wind
field (Baker et al., 2014). In addition, the mass field (which
is reflected in the temperature field) is a much smoother field
and is thus more easily observable with a given network rel-
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Figure 10. Time series of layer mean normalized predictability error during January 2009 for CO; (black curves), temperature (red curves),
vorticity (blue curves), divergence (green curves) and specific humidity (cyan curves). For clarity, no curves for specific humidity are plotted
in the bottom row of panels. The normalized errors are averaged over 12 model levels; the top and bottom levels used in the average are
given in approximate pressure above each panel. The layer numbers are associated with the layers defined by dashed horizontal lines in Fig. 9
and correspond to the near surface (layer 1, a), the lower troposphere (layer 2, b), the mid-troposphere (layer 3, ¢), the upper troposphere

(layer 4, d), the lower stratosphere (layer 5, e) and the upper stratosphere (layer 6, f).

ative to fields which are dominated by smaller spatial scales
(such as vorticity or divergence).

In summary, the global predictability of CO; due to un-
certain meteorological initial conditions is very short in the
free troposphere and is associated with the predictability of
wind fields. This predictability limit refers only to sensitivity
to meteorological initial conditions and it will be counter bal-
anced by the predictability coming from biospheric fluxes on
diurnal and synoptic scales. It is important to note (and this is
discussed more fully in Sect. 6) that the predictability diag-
nostic used here is dependent on an arbitrary normalization
and an arbitrary threshold to define predictability so absolute
results are not expected. Instead, the relative predictability
between variables or between atmospheric layers is expected
to be more reliable. To improve this type of predictability,
more observations will be needed where the wind fields have
finer spatial scales and where convection is occurring. The
current global meteorological measurement network is rel-
atively sparse in the tropics where convection is important,
but new observations from space-borne lidars may be able to
remedy this problem (Baker et al., 2014).

5.2 Seasonal timescales

As noted earlier, CO; observations contain information on
seasonal to interannual timescales. Specifically, the global
surface network used in flux inversions is able to constrain
the global CO, budget and capture seasonal and interan-
nual variability of the global fluxes (e.g. Baker et al., 2006a;
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Peylin et al., 2013). The source of predictability on sub-
seasonal to seasonal and longer timescales partially derives
from climate predictability on those scales but also from
long timescale information contained in terrestrial biospheric
fluxes which are, in turn, influenced by climate variability
(Patra et al., 2005). In this section, we explore the predictabil-
ity of CO, on longer timescales and compare these to CO,
simulation errors due to the use of uncertain meteorological
analyses.

The predictability experiment in Sect. 5.1 represents an
extreme case in which no information from observations is
present in the wind fields after the initial time. In reality, in
our CO; transport cycle (Fig. 1), the wind fields are con-
strained to observations by the insertion of a meteorological
analysis every 24 h. However, the analyses are not perfect
and have a certain level of uncertainty. To simulate this un-
certainty, we could perturb the analyses every 24 h with an
analysis error. In a variational data assimilation system such
as that used at ECCC, it is possible to estimate the analysis
error covariance matrix but it is expensive to do so, and such
estimates are not routinely made. In contrast, a simple per-
turbation such as random spatially uncorrelated errors will
not be useful as they will primarily generate unbalanced mo-
tions. What is more relevant is a perturbation of the size and
shape of the 6 h analysis error, given the use of a 6h fore-
cast cycle in operations. (Reanalyses are also available at 6 h
intervals and these are sometimes used to constrain flux in-
versions.) Thus, in order to simulate a coherent 6 h analysis
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Figure 11. Spectra of various fields as a function of total wavenumber. Spectra are averaged over 1 month for July 2009 (top row) and
December 2009 (bottom row) and over 12 model levels. The lower and upper model levels averaged are indicated above each frame. Ap-
proximate pressure is obtained from model level by multiplying by 1000 (which corresponds to assuming a reference surface pressure of
1000 hPa). The CO, reference state spectra (blue curves), predictability error (black curves) and error due to a 6 h shift in analysis fields (red

curves) are shown.

error, we simply insert the analysis state valid 6h prior to
the actual analysis time (i.e. the one from 18:00 UTC of the
day before, instead of the correct one from 00:00 UTC), rela-
belling the date and time to the correct ones. In addition, be-
cause the shift in the diurnal cycle for the meteorology would
impact the CO; predictability, the diurnal cycle is removed
from the perturbations by subtracting the monthly mean of
each synoptic hour. Then, the deviation of the CO; field from
this perturbed analysis cycle from the reference cycle defines
the error due to the use of uncertain meteorological analyses.
This error should be much smaller than the predictability er-
ror arising from uncertain meteorological initial conditions.
However, it should be larger than an actual analysis error be-
cause of the additional component corresponding to the evo-
lution of the true state in 6 h. Thus it is an overestimate of
analysis error.

Figure 11 shows the monthly mean spatial spectra of var-
ious difference fields averaged over several model levels for
July (top row) and December (bottom row) of 2009. The
spectra refer to the spherical harmonics (Boer, 1983) of a
scalar field multiplied by its complex conjugate and summed
over zonal wavenumbers. The x axis then defines a total
wavenumber. While spectra were computed for each day
at 00:00 UTC, these were averaged over the month to filter
some noise and identify a robust signal. In addition, they
were averaged over 12 model levels to get representative
spectra for a few atmospheric layers, namely the bottom 4
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layers shown in Fig. 9. The blue curves in Fig. 11 depict
mean spectra of the CO, state from the reference cycle sim-
ilarly averaged in time and in the vertical dimension. The
black curves represent the predictability error arising from
uncertain meteorological initial conditions. This error is very
small at the end of the first cycle (on 2 January 2009) but
rapidly increases during the first 2 weeks to saturate at cli-
matological levels (Sect. 5.1). Since we are interested in this
saturated level of error, we do not consider the first month
of errors. The 2 months chosen in Fig. 11 represent the vari-
ation seen in various months of the year. The predictability
error is seen to be lower than the reference state itself for very
large spatial scales but quickly equals (around wavenum-
ber 10) and then surpasses the power in the reference state.
The reason that the power in the predictability error can be
larger than that in the state itself is that it involves the dif-
ference of two fields. In the limit where two fields become
uncorrelated, the variance of the difference equals the sum of
the variances. If the two fields have the same climatological
variance, the variance of the difference is twice the clima-
tological variance. Thus it is not surprising that the power
in the predictability error should surpass that in the refer-
ence state for small spatial scales. What is more intriguing
is that some information is still retained in the largest scales
(wavenumbers less than 5) even after 6 or 12 months of sim-
ulation. The source of this predictability at very large scales
is mainly due to surface fluxes of CO, which are the same
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Figure 12. As in Fig. 11 but for spectra as a function of zonal wavenumber.

for both the reference and climate cycles. However, it might
also be partially from the surface forcing of meteorological
fields. Subseasonal to seasonal predictability is manifested
in modes of variability such as the Madden—Julian oscilla-
tion (MJO), the Pacific North American (PNA) pattern, mid-
latitude blocking events and the North Atlantic Oscillation
(NAO) (Waliser, 2006) and their predictability derives from
atmospheric boundary conditions, namely sea surface tem-
perature, soil moisture, snow cover, vegetation and sea ice
(Shukla and Kinter III, 2006). These ocean and land surface
conditions influence fluxes of moisture and sensible and la-
tent heat into the atmosphere which may change low-level
atmospheric convergence and lead to atmospheric heating
anomalies, which influence the large-scale flow. To see if
long timescales in the meteorological analyses play a role
in the large-scale predictability seen in Fig. 11, an experi-
ment was run in which the predictability experiment was re-
peated, but this time incorrect surface fields (from 3 months
later) were used. With no information from atmospheric ob-
servations as well as a seasonally shifted error in the surface
forcing, the predictability error is worsened at these largest
scales, particularly in the summer (June, July and August)
near the surface (Fig. S7) and in the lower troposphere (not
shown). The differences in CO, evolution in the two pre-
dictability experiments during boreal summer are largest in
the northern extratropics (not shown). This confirms that the
ocean and land surface are playing a role in predictabil-
ity of the system at the largest scales in the lower tropo-
sphere in boreal summer. In the mid- and upper troposphere,
smaller impacts are seen but the impact is largest in the spring
(not shown). In Fig. S7, the remaining predictability seen at

www.atmos-chem-phys.net/16/12005/2016/

wavenumbers below 10 for all months is then attributed to the
common CO; fluxes used by the reference and predictability
experiments. Thus Fig. S7 confirms that the dominant source
of predictability at large scales seen in Fig. 11 is due to sur-
face fluxes.

In summary, a direct impact of climate predictability
on CO, predictions through the ocean and land surface is
seen through the worsened predictability in boreal summer
months when biospheric CO; fluxes are largest. Since CO;
fluxes were specified, and were the same in the reference
and predictability experiments, this climate signal is retained
and explains most of the CO; predictability at large scales in
Figs. 11 and S7. Finally, it is worth noting that a shift of 1
month in surface fields resulted in no real deterioration of the
predictability error since there is still significant correlation
among surface fields due to a 1-month lag.

The red curves in Fig. 11 depict the spectra due to analysis
uncertainty. As expected, these spectra are reduced compared
to predictability errors because meteorological analyses are
used in this cycle, although they are 6 h out of date. In partic-
ular, significant error reduction at large scales is seen. How-
ever, the red curves also intersect the reference state spec-
tra at increasingly smaller wavenumbers as height increases.
Thus, if analysis uncertainty is considered, there is a gain of
information over climatological error levels defined by the
predictability error but only for the larger spatial scales. The
analysis perturbations used here overestimate analysis error
so we can expect that the spatial scales resolved are a con-
servative estimate. However, whatever the size of the error,
there will be a limit to the spatial scales resolved because
of meteorological analysis imperfections. At the very least,
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Figure 13. As in Fig. 11 but for spectra in April 2009 and now errors due to the removal of convective tracer transport are shown as cyan
curves. Spectra are shown as a function of total wavenumber (top row) or zonal wavenumber (bottom row). Note that only wavenumbers up

to 40 are shown.

the meteorological observing system has a given spatial res-
olution and, moreover, meteorological assimilation systems
(like ECCC’s) may compute analysis increments at a coarser
resolution than that of the model. Beyond the point where the
red and blue curves intersect, there is no useful information
in the CO», field at these scales due to meteorological analy-
sis uncertainty because the power in the CO; prediction error
is larger than that in the CO; state. In fact, the CO, predic-
tions with analysis uncertainty (red curves) asymptote to the
predictability error spectra for large wavenumbers. For these
spatial scales, using the updated meteorological analysis is
no better than having no updates at all. Near the surface, there
is the greatest gain of information, but in the upper tropo-
sphere the spectra of CO; errors due to analysis uncertainty
are less than that of the reference state only for wavenumbers
lower than 30. Thus the fact that the meteorological analysis
has information on only certain spatial scales places limits on
the spatial scales that can be retrieved in a transported field
such as CO;.

Another view of the spectra can be obtained by summing
over total wavenumber and plotting with respect to zonal
wavenumber (Fig. 12) because zonal wavenumber spectra
are more indicative of the tropical signal. In this figure, it
is evident that there is almost no information retained in the
predictability error (i.e. the black curve lies above the blue
one). In other words, predictability error spectra surpass that
of the reference state at all levels except near the surface for
the first few zonal wavenumbers. When a 3-month shift in
surface fields is included in the predictability experiment, all
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predictability is lost in July and August since the power in
the predictability error (red curves) exceeds that of the refer-
ence state (black curves) for all wavenumbers (Fig. S8). Pre-
dictability is mostly lost in September as well. Thus using
the correct land and ocean surface fields may be relevant for
capturing predictability in July, August and September in the
tropics. The dominant mode of tropical subseasonal variabil-
ity is the MJO, which is characterized by very large scales
(zonal wavenumbers 1 and 2 in wind and rainfall fields) in
the tropics (Waliser, 2006); GEM can capture predictability
associated with this mode (Lin et al., 2008), supporting the
notion that GEM has predictive skill in the tropics on sea-
sonal scales. However, since predictability was already close
to lost even with the correct land and ocean surface (power in
predictability error is same order of magnitude as that for ref-
erence state), the worsened predictability in July to Septem-
ber with incorrect land and ocean surface fields is not a clear
indication of their influence in the tropics. Indeed, outside of
these 3 months, shifting the land and ocean surface fields by
3 months has little impact (red and black curves are similar in
Fig. S8). This suggests that most of the information retained
at the largest scales (seen in Fig. 11) in the predictability ex-
periment is coming from the extratropics or signals with lati-
tudinal structure for these months. Indeed, the CO, evolution
(not shown) in the reference and predictability experiments
differs the most in northern hemispheric extratropics. Thus
the large-scale predictability seen in the northern extratropics
is due to large CO; variability during October to May associ-
ated with biospheric fluxes, but from June to September the

www.atmos-chem-phys.net/16/12005/2016/



S. M. Polavarapu et al.: Greenhouse gas simulations: the predictability of CO,

ocean and land forcing of GEM’s climate is also important.
When analysis uncertainty is simulated (red curves), there is
a gain of information over predictability error but fewer than
20 zonal waves are resolved in the mid-troposphere (Fig. 12,
layers 2 and 3). In the lowest layer, about 40 waves are re-
solved. Compared to Fig. 11, there are significantly fewer
waves being resolved. Thus structure in the meridional direc-
tion is better resolved in analyses than structure in the zonal
direction is.

It is also useful to examine other sorts of model errors in
terms of their impact on CO, predictions. Figure 13 shows
the spectra of errors due to the inclusion (or not) of con-
vective tracer transport (cyan curves). The impact of adding
convective tracer transport is primarily at large scales and ex-
ceeds CO, errors due to imperfect wind analyses (red curves)
only in the mid-troposphere for wavenumbers less than 5.
Spectra for April 2009 were shown in Fig. 13 because the
impact of adding convective tracer transport was largest in
spring months. The impact is always less than that due to im-
perfect wind analyses if zonal wavenumber spectra are con-
sidered (bottom row). Thus, for our model, this type of model
error is exceeded by transport error due to uncertain meteoro-
logical analyses for most spatial scales. This type of analysis
in which components of transport error are compared may
thus be useful in diagnosing the dominant sources of trans-
port error for a given transport model.

6 Summary and discussion

A new capability for simulating CO, using ECCC’s oper-
ational weather and environmental prediction models has
been developed. The adaptations required for greenhouse
gas simulation include the implementation of a global mass
fixer for the semi-Lagrangian tracer transport scheme, the
implementation of a mixing ratio defined with respect to
dry air for tracer variables, the addition of convective tracer
transport and modification of a parameter in the boundary
layer scheme. A sequence of 24 h meteorological forecasts
is used to transport CO, fields in a forecast cycle involv-
ing a coupled meteorological and tracer transport model. The
24 h meteorological forecasts are as similar to the ERA In-
terim reanalyses as other reanalyses are (MERRA and JRA-
55). That means that throughout the sequence of 24 h fore-
casts, the meteorological uncertainty is comparable to that
of a reanalysis dataset which could be used to constrain an
offline transport model. Using prescribed posterior fluxes
from NOAA’s CarbonTracker (CT2013B), the transport of
the model has been assessed. The CO, fields compare well
to observations assimilated in the posterior fluxes (surface
hourly measurements) as well as to independent observations
(within 2 ppm for TCCON and NOAA aircraft profiles) and
to CarbonTracker mole fractions (within 3 ppm in column
means). Synoptic and seasonal timescales are well captured
but, as with most transport models, the diurnal cycle ampli-
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tude is too low in summer. The vertical gradient in the mid-
troposphere is slightly overestimated but the gradient from
1 to 3km does not agree as well with observations and the
error in the gradient changes with season.

The predictability of CO; concerns forecast uncertainty.
CO,, forecasts or predictions are implicitly used in flux inver-
sions when computing the model-data mismatch. The fore-
cast or prediction error of a transport model is often referred
to as “transport error” and transport error is a significant com-
ponent of posterior flux errors from flux inversions. Transport
error is comprised of meteorological state, CO state, flux
and model formulation errors. While considerable research
has been devoted to better understanding the nature of model
formulation and flux errors on CO, predictability (or CO;
transport error), much less is known about the nature of me-
teorological state errors and their impact on CO; transport er-
rors. Liu et al. (2011) have shown that transport errors due to
meteorological uncertainty are 1.2-3.5 ppm near the surface
and 0.8—1.8 ppm in the column mean. Here we examine the
atmospheric processes and scales implicated in such impacts.
Of course, flux and model formulation errors are a significant
component of transport error and the various contributions to
transport error do not act in isolation. However, isolating this
impact provides new insight into transport error processes.
Moreover, it permits the identification of the spatial scales
of CO; that can be trusted in the context of meteorological
analysis uncertainties.

The fact that weather becomes unpredictable beyond
2 weeks has implications for CO, transport. With an exper-
imental design developed to isolate the impact of weather
predictability due to imperfect initial conditions on CO2, we
have demonstrated that CO; also has limited predictability.
That is, uncertainty in meteorological initial conditions is
evident in CO, simulations when other sources of transport
error are removed. This is a newly identified source of un-
certainty which is primarily of pedagogical interest because
transport models always have updated information from me-
teorological analyses. However, isolating this error process
leads to insights into the processes which couple CO; and
meteorological errors. Moreover, this type of error forms the
upper limit of transport errors due to uncertain meteorologi-
cal analyses. The predictability of CO» due to uncertain me-
teorological initial conditions is found to be short (just a
few days) and is comparable to that of the wind field during
this time. After a few days, CO; loses predictability faster
than the wind field. Predictability is greatest near the surface
and in the lower stratosphere. Reduced predictability in the
stratosphere was seen during the prolonged and strong SSW
of January 2009. Predictability of CO, is shorter than that
for temperature at all levels but is similar to that of the spe-
cific humidity field for the first few days, after which CO;
becomes less predictable than moisture. The predictability
measure used is based on zonal variability. In addition, the
measure is normalized by the variability of the initial state
so that loss of predictability by different variables could be
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compared. Since there is an arbitrariness in the choice of
the normalization state, and in choosing a threshold to de-
fine predictable states, absolute times for predictability can-
not be obtained. Rather, it is the relative predictability that
is expected to be more reliable. Specifically, the greater loss
of predictability for CO; than the temperature, humidity or
wind fields (the latter after a few days) and the increased pre-
dictability of CO, near the surface and lower stratosphere
compared to that in the free troposphere are the new results.
While these results are model specific (as are predictability
results in general) and metric specific, there are reasons to
expect more generality of the results. Increased predictabil-
ity of CO; near the surface can be explained by the constraint
of fluxes near the bottom boundary. Increased predictabil-
ity of CO» in the lower stratosphere makes sense because of
dominance of slow rotation motions in that layer of the at-
mosphere. Nevertheless, these results need to be confirmed
by other models and metrics. Massart et al. (2016) have
computed the predictability of Xco, forecasts obtained from
analyses which assimilated GOSAT observations and found
predictability up to 5 days globally. Results were neither pro-
duced for CO; at various altitudes nor compared with those
for meteorological variables. However, the predictability of
Xco, was computed for different regions. Predictability was
greater in the tropics than in the extratropics. The measure
used was an anomaly correlation wherein forecasts anoma-
lies with respect to a climatology are correlated with anal-
ysis anomalies. This measure of predictability is useful for
identifying predictability of a given forecast system at spe-
cific dates and forecast ranges. However, as with all metrics
there are known deficiencies. In particular, the anomaly cor-
relation can be optimistic where observation density is poor
because forecasts and analysis anomalies will be perfectly
correlated in the extreme case of no observations. Thus, the
predictability results of Massart et al. (2016) are not directly
comparable with those obtained here.

Even with no information from meteorological analyses,
the predictability of CO, was seen on seasonal timescales for
very large spatial scales and was found to be primarily due
to surface fluxes. However, worsened predictability of CO,
was seen on these scales in the northern extratropics in bo-
real summer if the surface atmospheric forcings were incor-
rectly specified. In other words, the land and ocean surface
also play a role in CO; predictability on seasonal timescales.
The proposed mechanism is that the land and ocean surface
perturb atmospheric circulations which transport CO; and
the impact is greatest where CO; gradients are largest: in the
northern midlatitudes in boreal summer.

Our predictability error is defined by the error due only to
imperfect meteorological initial conditions. Thus compared
to a reference cycle, the perturbed cycle has no updates of
meteorology with analyses. The more realistic situation of
imperfect meteorological information was addressed by per-
turbing the meteorological analyses used in a reference cycle
with errors. Ideally, meteorological analysis errors should be
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used but, as these are not available for our system during the
time period of interest, a proxy was used. The proxy is based
on the closest available analysis (i.e. one available 6 h prior to
that used in the reference cycle), so perturbations involved a
difference of analyses. The diurnal cycle was removed from
the perturbations by first removing the monthly mean of each
synoptic hour from the analyses. Since the resulting pertur-
bations include the time evolution of the meteorology during
6 h as well as analysis errors, such a perturbation is expected
to be larger than that due to an actual analysis error. By de-
composing the departure of the CO; evolution in the per-
turbed cycle from that in the reference cycle into spherical
harmonics, the spatial scales of the differences were com-
puted. It is seen that the spatial spectra of CO, differences
due to imperfect meteorological analyses exceeds that due to
the CO» state itself for some scales. Thus, for spatial scales
smaller than this crossover point, CO; is not predictable, sim-
ply due to the presence of meteorological uncertainties. The
spatial scales so identified are specific to our model’s domain
and resolution and the monthly timescale used for averaging
spectra. The spectra of the difference due to imperfect meteo-
rology are seen to asymptote to the predictability error spec-
tra, meaning that, for small enough spatial scales, the CO,
field is seeing no updated information from the meteorology
at all. Thus, transport error is impacted by meteorological
state errors with the error being greatest for the smallest spa-
tial scales. By comparing spectra in terms of total and zonal
wavenumbers, it is seen that more information is retained in
the CO3, field in north—south direction as opposed to the zonal
direction. Note that the spatial scales identified as predictable
depend on the choice of fluxes used in both reference and
perturbed simulations.

These experiments demonstrate that the predictability of
CO;, is limited by the presence of meteorological analysis er-
rors as well as flux and model errors. The CO; observing sys-
tem determines the spatial scales that can be resolved in CO,
state estimate and in CO, flux estimates. However, the mete-
orological observing system also imposes limits on the spa-
tial scales that can be resolved. Here these limits are found to
be well below those imposed by the CO; observing system.
However, the unresolved spatial scales are shown to increase
with altitude. As the CO, observation density increases (for
example with satellite data from GOSAT, OCO-2 and future
planned missions) knowing these limits will become increas-
ingly important.

Other components of transport error can also be isolated
and compared. Considerable work has been done on identi-
fying the contribution of model formulation errors to trans-
port errors. Looking at the CO; spatial scales resolved by
different model configurations provides a new tool for iden-
tifying the most important model errors. As an example, a
model error was introduced by removing the transport of
tracers through deep convection in a perturbed CO, simula-
tion. The impact of convective tracer transport on CO; fields
is seen to be largest in boreal spring but exceeds errors due to
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the use of imperfect atmospheric analyses only in the tropo-
sphere and only for wavenumbers below 5. Thus for all but
wavenumbers below 5, transport errors due to imperfect me-
teorology are larger than those due to the lack of convective
tracer transport. In other words, by comparing components
of transport error, the limiting source of error for a given
spatial scale can be determined. An important application of
this diagnostic is as follows. With realistic flux perturbations,
transport errors due to flux uncertainties could be compared
to transport error due to meteorological state uncertainties. In
doing so, the spatial scales of transport error dominated by
flux errors and those dominated by meteorological state er-
rors could be identified. Alternatively, if prior fluxes are used
to define a reference simulation then various posterior fluxes
could be used to define flux analysis increments. Specifically,
the spatial scales resolved by various observing systems (e.g.
GOSAT or OCO-2 vs. the surface network) could be com-
puted and compared to the scales resolvable in the context of
imperfect meteorological analyses. Indeed, such experiments
are in progress and will be described in a subsequent article.

By definition, predictability experiments use a reference
simulation against which perturbed simulations are com-
pared. Thus the errors obtained here are system dependent,
but if the system is representative then results are likely to be
representative of other systems. Indeed, being an operational
weather forecast model, GEM is routinely evaluated and we
have shown that 24 h forecasts with our modified version of
GEM are comparable to reanalysis products. In contrast, sea-
sonal predictability is model dependent and is most likely re-
lated to model parameterization of subgrid-scale processes,
particularly convection (Shukla and Kinter III, 2006). Sub-
seasonal predictability is limited by the fact that most mod-
els do not capture the MJO (Waliser, 2006). Even if they did
capture it, and the initial state had a strong MJO signal, fore-
cast skill may still not be improved because of the complex
interplay between MJO and other modes of variability (Lin
et al., 2008). Thus, it may be useful for individual models to
be able to characterize CO; predictability error, particularly
on longer timescales, as well as the spatial scales definable
in the presence of imperfect meteorological analyses.
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In this work, the focus of predictability (transport) error
assessment was on the random component. This is because
the bias of the transport error was found to be small com-
pared to the random component for all timescales considered
here. This occurs because of the use of a control simulation
when defining errors. That is, model formulation and repre-
sentativeness errors are absent from such error calculations.
In addition, we isolate various contributions to transport error
by holding fixed other sources of error such as flux error. In
reality, when comparing CO, model predictions to measure-
ments all of these error sources are present and the mean er-
ror (or bias) is an important concern. Thus our methodology
of isolating components of transport error provides insight
into the component that is largest for a given spatial scale but
may not shed light on biases that develop when all of these
errors interact.

A limitation of this study is that the impact of uncertain
meteorological analyses on CO; simulations was assessed
using a 6h shift in analysis states as a proxy for 6h anal-
ysis errors. This was done because such estimates of mete-
orological analysis errors are not available but a perturba-
tion of the approximate size and shape of a 6 h analysis er-
ror was desired. While other proxies for 6 h analysis errors
could be devised, none would be any more valid. However,
it is possible to directly obtain analysis and forecast errors
by implementing an ensemble Kalman filter for CO, state
estimation. Indeed, a greenhouse gas data assimilation sys-
tem based on an augmented state (meteorology, constituent
and fluxes) ensemble Kalman filter is now under develop-
ment. This new system is called EC-CAS (ECCC Carbon
Assimilation System) and also uses existing tools developed
at ECCC, namely the operational global ensemble prediction
system (Houtekamer et al., 2014). With EC-CAS, the atmo-
spheric modulation of CO; forecast uncertainty would be di-
rectly simulated and the impact on flux estimate uncertainties
could then be determined.
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Appendix A: Adjusting tracer mass due to changes in
surface pressure

Every 24h when a new surface pressure analysis becomes
available, there will be a sudden change in local and global
mean surface pressure when the 24 h forecast is replaced by
the analysis. Here we derive the scheme used to ensure that
the tracer mass is not affected by this change in surface pres-
sure. First we define some global mass quantities. The global
dry air mass is

ZAPI ]k( Qia,j,k) AAI"J" (Al)

ljk

Mdry—air
the global mass of tracer in the forecast is

[ 1 f [ f
M= EZciyj’kAp;j’kO —qi,j’k) AA; ;. (A2)
i,j.k

and the global mass of tracer after adjustment is given by
1 . .
:gz&j’kApij’k (l—qi‘l’j’k) AA; ;. (A3)
ijk

Here i, j, k are longitude, latitude and vertical grid indices,
AA; ; is the area of grid box (i, j), Ap; j« is the vertical
pressure difference across the grid box at level k, ¢; j « is the
mass mixing ratio with respect to dry air at the centre of grid
box (i, j, k), g is specific humidity and g is the gravitational
constant. The superscripts a and f refer to the analysis and
forecast, respectively. We seek a spatially invariant adjust-
ment (&) to the tracer mixing ratio:

f
ik =CijxtE (A4)

The adjustment parameter (¢) is determined from the con-
straint that the global adjusted tracer mass equals that of
the forecast tracer. Equation (A4) has the nice property of
exactly conserving spatial gradients. For a tracer with large
background value (like CO») this adjustment is much smaller
than field itself and is negligible when comparing to analysis
errors. However, this additive adjustment scheme may have
undesirable effects for tracers with a large dynamic range.
Substituting Eq. (A4) into Eq. (A3) yields

M? = Mc* +8Mgry-air’ (AS)
where
chjkAp”k( — ) A, (A6)
z J.k
Solving for & with the constraint that M2 = M| [ yields
Mf— M
=M (A7)
dry-air
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Appendix B: Model comparisons to TCCON
observations

For a fair comparison to TCCON observations, GEM-
MACH-GHG Xco, simulations are smoothed using the TC-
CON a priori profiles and averaging kernels to account for the
sensitivity of the measurements. The vertical column (VC) of
CO;, is defined as

VCco, = Z JCOi p (B1)

i=1 gmdlrl

with N being the number of layers in the profile and fco,,i
the mean mole fraction in the ith layer of pressure thick-
ness Ap; and mean molecular weight of air mgir;. g is
the Earth acceleration due to gravity and is kept constant
(g =9.80616 ms~%). GEM-MACH-GHG produces profiles

fc02

of CO, dry mole fraction fCdr = o as well as specific

[k
humidity g = [EHZO Considering ﬂ =1 dg we can ex-
press Eq. (B1) as "
Y (1= f1,04) fO,
VCco, = Z 2! Ap;
im1 8Mair, i
dry
(- %) fco
= Z 2L A (B2)

malr i

and the VC weighted by the TCCON column averaging ker-
nels is

N (1—qi) fo0, sai
VCco,y.a = Z—dryz’lA i (B3)
i=1 M yir i

The column-averaged dry mole fraction Xco, is the ratio of
the VC of CO; and the VC of dry air. Finally the smoothed
GEM-MACH-GHG X0, is obtained as

model
CCOz a

vy

air

a priori
Xmodel _ Xa priori VCC02 a

CO, — CO,

(B4)

GEM-MACH-GHG CO; profile simulations extend from
2009 to 2010 with an output frequency of 15 min. Aver-
age hourly Xco, is considered for the comparisons and
all TCCON sites with observations in 2009-2010 are used.
There are both 120HR and 125HR measurements at Lauder
in 2009-2010, with the 125HR dataset starting 2 Febru-
ary 2010; only the 125HR data are used. Several statistical
parameters are derived: N is the number of pairs (hours) for
which there are TCCON measurements. The bias is the aver-
age difference between the model and TCCON:

N
del TCCON
> (Xl - XTGCON)
bias = =" o

N (B5)
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The RMS of the differences is

N 2
model TCCON

; (XCOZ —Xco, )(i)

= . (B6)

RMS =
N

The scatter is the standard deviation of the differences:

N 2

del TCCON :

; |:(Xfcn826 - X¢o, )(i) - b1asj|

scatter = | = . B7)
N —1

The mean bias is, with Ng, the number of stations:

Ns
1
biasmean = —  _ bias). (B8)
Ns =
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The standard deviation of a station’s bias is useful for es-
timating the variability of the bias from station to station:

Ns
> (bias() — biasmean)>
i=1

SD = (B9)
Ns —1
Finally, R is the Pearson’s correlation coefficient:
R =
N
p2 (et ) - xeel ) (XEGEON )~ XEEN L) B10)

N 2 [N 2
model  __ yrmodel TCCON  _ yTCCON
z (XCOZ @ ~Xco, mean) \/ z (Xcoz o~ Xco, mean)
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