



## Supplement of

## Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

Ivan Kourtchev et al.

Correspondence to: Ivan Kourtchev (i.kourtchev@ucc.ie) and Markus Kalberer (markus.kalberer@atm.ch.cam.ac.uk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

| Filter #ID  |       | Day        | Time<br>(UTC, HH:MM) | <sup>1</sup> Number<br>of fires | <sup>2</sup> Benzene<br>(ppbv) | <sup>3</sup> NO <sub>y</sub><br>(ppb) |
|-------------|-------|------------|----------------------|---------------------------------|--------------------------------|---------------------------------------|
|             | Start | 05/03/2014 | 7:47                 | 0                               | 0.020                          | 0.83                                  |
| IVIP14_06   | End   | 06/03/2014 | 6:54                 | 0                               | 0.039                          |                                       |
| MD14 16     | Start | 14/03/2014 | 6:08                 | 4                               | 0.052                          | 1.64                                  |
| IVIP 14_10  | End   | 15/03/2014 | 6:02                 | 1                               | 0.053                          |                                       |
|             | Start | 15/03/2014 | 6:16                 | 4                               | 0.047                          | 1.41                                  |
| WP 14_17    | End   | 16/03/2014 | 6:38                 |                                 |                                |                                       |
| MD14 19     | Start | 16/03/2014 | 6:42                 | - 3                             | 0.04                           | 1.63                                  |
| MP14_18     | End   | 17/03/2014 | 7:21                 |                                 |                                |                                       |
| MD14 20     | Start | 18/03/2014 | 6:16                 | 0                               | 0.074                          | 2.14                                  |
| IVIF 14_20  | End   | 19/03/2014 | 6:24                 |                                 |                                |                                       |
| MD14 29     | Start | 25/03/2014 | 6:20                 | 2                               | 0.036                          | 0.76                                  |
| MP14_28     | End   | 26/03/2014 | 6:00                 |                                 |                                |                                       |
| MP14_128    | Start | 07/09/2014 | 9:25                 | 28                              | 0.069                          | 2.29                                  |
|             | End   | 09/09/2014 | 6:35                 |                                 |                                |                                       |
| MP14_129    | Start | 09/09/2014 | 6:41                 | 9                               | 0.057                          | 1.84                                  |
|             | End   | 10/09/2014 | 6:20                 |                                 |                                |                                       |
| MD14 121    | Start | 12/09/2014 | 10:05                | 15                              | 0.11                           | 2.77                                  |
| IVIF 14_131 | End   | 13/09/2014 | 11:55                |                                 |                                |                                       |
| MD14 124    | Start | 14/09/2014 | 7:14                 | - 22                            | 0.099                          | 2.78                                  |
| IVIF 14_134 | End   | 15/09/2014 | 8:41                 |                                 |                                |                                       |
| MD14 125    | Start | 15/09/2014 | 8:46                 | - 22<br>- 33                    | 0.210                          | 3.52                                  |
| IVIF 14_133 | End   | 16/09/2014 | 8:16                 |                                 | 0.219                          |                                       |
| MD1/ 138    | Start | 18/09/2014 | 11:43                | 26                              | 0.112                          | 1.39                                  |
| 111-14-138  | End   | 19/09/2014 | 6:30                 | 30                              |                                |                                       |
|             | Start | 23/09/2014 | 10:57                | 254                             | 0.108                          | 1.90                                  |
| MP14_143    | End   | 24/09/2014 | 6:12                 |                                 |                                |                                       |
| MP14_148    | Start | 27/09/2014 | 10:03                | 340                             | 0.149                          | 4.10                                  |
|             | End   | 28/09/2014 | 9:17                 |                                 |                                |                                       |
| MD14 450    | Start | 03/10/2014 | 11:29                | 69                              | 0.083                          | 1.67                                  |
| 1017 14_103 | End   | 04/10/2014 | 9:14                 |                                 |                                |                                       |

**Table SI1.** Aerosol sampling time, number of fires, average benzene and NO<sub>y</sub> concentrations

<sup>1</sup>number of fires in the radius of 200 km from the sampling station

<sup>2,3</sup>concentrations were averaged for filter sampling intervals; the instrument detection limit for

36 benzene and NO<sub>y</sub> were below 0.02 ppbv and 0.05 ppbv, respectively.

37 source: http://www.dpi.inpe.br/proarco/bdqueimadas/

38 The samples MP14\_06 to MP14\_28 correspond to 'wet' (IOP1) period and MP14\_128 to

39 MP14\_153 to 'dry' (IOP2) period.

40

41

- 43 Table SI2. Average percent occurrence of formula groups to all peaks assigned molecular
- 44 formulae in the mass spectra during IOP1 and IOP2 periods.

| Elemental    | Percent occurrence |      |  |  |
|--------------|--------------------|------|--|--|
| constituents | IOP1               | IOP2 |  |  |
| C,H,O        | 58                 | 63   |  |  |
| C,H,O,N      | 30                 | 25   |  |  |
| C,H,O,S      | 10                 | 10   |  |  |
| C,H,O,N,S    | 2                  | 2    |  |  |













Figure SI1. 72 h back air mass history ('footprints') arriving at the T3 station for the periods 59 of the analysed filters (labelled as e.g. MP14-06, MP14-16, MP14-17). Warmer colours 60

- indicate a greater probability of a particle passing near the surface in a grid box. The 61
- sampling site is indicated by a cross symbol. Manaus and Manacupuru cities are indicated 62
- as triangles (far right and below of the sampling site, respectively). 63



Figure SI2. Relative humidity (RH) at the T3 sampling site during (a) IOP1 and (b) IOP2 The
arrows indicate sample collection periods. Atmospheric Radiation Measurement (ARM) data
source http://www.archive.arm.gov. The continuous dashed line indicates the lowest and

69 highest RH vales during both seasons.

70

65

71



72

Figure SI3. Correlation between benzene and CO average concentrations during IOP1 and
 IOP2 sampling periods at sampling T3 site. The data was averaged for aerosol filter

75 sampling intervals. Filled markers correspond to the average data points from the IOP1 and

rempty circles correspond to that from the IOP2 period.



78 Figure SI4. Average CO concentration during IOP1 and IOP2 sampling periods at T3 site.

Final Field Teach Teach



Figure SI5. H/C vs m/z plot for CHON containing formulae in the samples from the periods with (a) low (b) moderately high and (c) very high incidents of fires. The marker areas reflect relative ion abundance in the sample. The colour code shows aromaticity equivalent (Xc) in the individual molecular formula. Molecular formulae with Xc<2.5 are shown as grey markers. The largest grey circles in the panel 'a' correspond to the ions at m/z 187.11357 with a neutral molecular formula  $C_9H_{17}NO_3$  and m/z 281.26459 with a neutral molecular formula C<sub>18</sub>H<sub>35</sub>NO. The largest grey circles in the panels 'b' and 'c' correspond to the ions at m/z 154.0146, m/z 168.03023 and m/z 152.03532 with neutral molecular formulae C<sub>6</sub>H<sub>5</sub>NO<sub>4</sub>, C<sub>7</sub>H<sub>7</sub>NO<sub>4</sub> and C<sub>7</sub>H<sub>7</sub>NO<sub>3</sub>, respectively.



Figure SI6. H/C vs m/z plot for CHO containing compounds in the samples from the periods with (a) low (b) moderately high and (c) very high incidents of fires. The marker areas reflect relative ion abundance in the sample. The colour code shows aromaticity equivalent (Xc) in the individual molecular formula. Molecular formulae with Xc<2.5 are shown as grey markers.

93



Figure SI7. H/C vs m/z plot for CHON containing compounds in the samples from the 102 periods with (a) low (b) moderately high and (c) very high incidents of fires. The marker 103 areas reflect relative ion abundance in the sample. The colour code shows double bond 104 105 equivalent (DBE) the individual molecular formula. Molecular formulae with DBE<5 are shown as grey markers. The largest grey circles in panel 'a' correspond to ions at m/z106 107 186.11357 and m/z 280.26459 with neutral molecular formulae C<sub>9</sub>H<sub>17</sub>NO<sub>3</sub> and C<sub>18</sub>H<sub>35</sub>NO, respectively. The yellow circles in panels 'b' and 'c' correspond to the ions at *m*/*z* 154.0146, 108 m/z 168.03023 and m/z 152.03532 with molecular formulae C<sub>6</sub>H<sub>5</sub>NO<sub>4</sub>, C<sub>7</sub>H<sub>7</sub>NO<sub>4</sub> and 109 C<sub>7</sub>H<sub>7</sub>NO<sub>3</sub>, respectively, which are known biomass burning marker compounds (see 110 discussion in the main text). 111

- 112
- 113