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Abstract. Total gaseous mercury (TGM) concentrations
were measured every 5 min in Pohang, Gyeongsangbuk-
do, Korea, during summer (17–23 August 2012), fall (9–
17 October 2012), winter (22–29 January 2013), and spring
(26 March–3 April 2013) to (1) characterize the hourly and
seasonal variations of atmospheric TGM concentrations; (2)
identify the relationships between TGM and co-pollutants;
and (3) identify likely source directions and locations of
TGM using the conditional probability function (CPF), con-
ditional bivariate probability function (CBPF) and total po-
tential source contribution function (TPSCF).

The TGM concentration was statistically significantly
highest in fall (6.7± 6.4 ng m−3), followed by spring
(4.8± 4.0 ng m−3), winter (4.5± 3.2 ng m−3) and summer
(3.8± 3.9 ng m−3). There was a weak but statistically sig-
nificant negative correlation between the TGM concentra-
tion and ambient air temperature (r =−0.08, p<0.05). Al-
though the daytime temperature (14.7± 10.0 ◦C) was sta-

tistically significantly higher than that in the nighttime
(13.0± 9.8 ◦C) (p<0.05), the daytime TGM concentration
(5.3± 4.7 ng m−3) was statistically significantly higher than
that in the nighttime (4.7± 4.7 ng m−3) (p<0.01), possibly
due to local emissions related to industrial activities and
activation of local surface emission sources. The observed
1TGM /1CO was significantly lower than that of Asian
long-range transport, but similar to that of local sources
in Korea and in US industrial events, suggesting that local
sources are more important than those of long-range trans-
port. CPF, CBPF and TPSCF indicated that the main sources
of TGM were iron and manufacturing facilities, the haz-
ardous waste incinerators and the coastal areas.
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1 Introduction

Mercury (Hg) is an environmental toxic and bioaccumulative
trace metal whose emissions to the environment have consid-
erably increased due to anthropogenic activities such as min-
ing and combustion processes (Pirrone et al., 2013; Streets
et al., 2011). Hg can be globally distributed from the sources
through atmospheric transport in a gaseous elemental form
(Bullock et al., 1998; Mason and Sheu, 2002). However, the
origins of atmospheric mercury are local and regional (Choi
et al., 2009) as well as hemispherical and global (Durnford
et al., 2010). In addition to the general background concen-
tration of Hg in the global atmosphere, local Hg emissions
contribute to the Hg burden and to the background concen-
tration, much of which represents anthropogenic releases ac-
cumulated over the decades (UNEP, 2002).

Hg in the atmosphere exists in three major inorganic
forms, including gaseous elemental mercury (GEM, Hg0),
gaseous oxidized mercury (GOM, Hg2+) and particulate
bound mercury (PBM, Hg(p)). GEM, which is the dominant
form of Hg in ambient air (> 95 %), has a relatively long resi-
dence time (0.5–2 years) due to its low reactivity and solubil-
ity (Schroeder and Munthe, 1998). However, GOM has high
water solubility and relatively strong surface adhesion prop-
erties (Han et al., 2005), so it has a short atmospheric resi-
dence time (days). PBM is associated with airborne particles
such as dust, soot, sea-salt aerosols and ice crystals (Lu and
Schroeder, 2004) and is likely produced, in part, by adsorp-
tion of GOM species such as HgCl2 onto atmospheric parti-
cles (Gauchard et al., 2005; Lu and Schroeder, 2004; Sakata
and Marumoto, 2005; Seo et al., 2012, 2015).

Atmospheric Hg released from natural (e.g., volcanoes,
volatilization from aquatic and terrestrial environments) (Pir-
rone et al., 2010; Strode et al., 2007) and anthropogenic
sources (e.g., coal combustion, cement production, ferrous
and non-ferrous metals manufacturing facilities, waste in-
cineration and industrial boilers) (Pacyna et al., 2003, 2006,
2010; Pirrone et al., 2010; Zhang et al., 2015) when intro-
duced into terrestrial and aquatic ecosystem through wet and
dry deposition (Mason and Sheu, 2002) can undergo vari-
ous physical and chemical transformations before being de-
posited. Its lifetime in the atmosphere depends on its reactiv-
ity and solubility so that, depending on its form, it can have
impacts on local, regional and global scales (Lin and Pehko-
nen, 1999; Lindberg et al., 2007). A portion of the Hg de-
posited in terrestrial environments through direct industrial
discharge or atmospheric deposition is transported to aquatic
system through groundwater and surface water runoff (Miller
et al., 2013). A previous study also reported that Hg directly
released into terrestrial and aquatic ecosystems from indus-
trial effluent has influenced surface water, sediment and bio-
logical tissue (Flanders et al., 2010). Significant spatial varia-
tions in atmospheric Hg deposition near urban and industrial
areas are due to local anthropogenic sources including mu-
nicipal waste incinerators, medical waste incinerators, elec-

tric power generating facilities and cement kilns (Dvonch
et al., 1998), ferrous and non-ferrous metal processing, iron
and steel manufacturing facilities, oil and coal combustion
(Hoyer et al., 1995), and other forms of industrial combustion
(Brown et al., 2015). Miller et al. (2013) also reported that lo-
cal sources of elemental Hg are typically industrial processes
including retort facilities used in the mercury mining indus-
try to convert Hg containing minerals to elemental Hg and
chlor-alkali facilities.

The annual average national anthropogenic Hg emis-
sions from South Korea in 2007 have been estimated to
be 12.8 t (range 6.5 to 20.2 t); the major emission sources
are coal combustion in thermal power plants (25.8 %),
oil refineries (25.5 %), cement kilns (21 %), incinerators
(19.3 %) including sludge incinerators (4.7 %), municipal
waste incinerators (MWIs) (3 %), industrial waste inciner-
ators (IWIs) (2.7 %), hospital/medical/infectious waste in-
cinerators (HMIWIs) (8.8 %) and iron manufacturing (7 %)
(Kim et al., 2010). Global anthropogenic Hg emissions were
estimated to be 1960 t in 2010 with east and southeast Asia
responsible for 777 t (39.7 %) (19.6 t for Japan and 8.0 t for
South Korea) (AMAP/UNEP, 2013). China is the largest Hg-
emitting country in the world, contributing more than 800 t
(−40 %) of the total anthropogenic Hg emissions (UNEP,
2008).

Background atmospheric Hg concentrations in the North-
ern Hemisphere have decreased since 1996 (Slemr et al.,
2003), as measured at the Global Atmosphere Watch (GAW)
station at Mace Head, Ireland (Ebinghaus et al., 2011), and
at the Canadian Atmospheric Mercury Network (CAMNet)
(Temme et al., 2007). In urban areas in South Korea at-
mospheric TGM concentrations have also decreased over
the last few decades due to the reduced fossil fuel (mainly
anthracite coal) consumption (Kim et al., 2016; Kim and
Kim, 2000). However, this decreasing trend is inconsistent
with steady or increasing global anthropogenic Hg emis-
sions since 1990 in the Northern Hemisphere (Streets et al.,
2011; Weigelt et al., 2015; Wilson et al., 2010). A previous
study reported that the global anthropogenic Hg emissions
are increasing with an average of 1.3 % annual growth with-
out including the artisanal and small-scale production sector
(Muntean et al., 2014).

Receptor models are often used to identify sources of air
pollutants and are focused on the pollutants’ behavior in the
ambient environment at the point of impact (Hopke, 2003). In
a previous study, the conditional probability function (CPF),
which utilizes the local wind direction, and potential source
contribution function (PSCF), which utilizes longer back-
ward trajectories (typically 3–5 days), combined with con-
centration data were used to identify possible transport path-
ways and source locations (Hopke, 2003). While PSCF has
been used primarily to identify regional sources, it has also
been used to identify local sources (Hsu et al., 2003).

The objectives of this study were to characterize the hourly
and seasonal variations of atmospheric TGM (the sum of the
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GEM and the GOM) concentrations; to identify the relation-
ships between TGM and co-pollutant concentrations; and to
identify likely source directions and locations of TGM using
CPF, the conditional bivariate probability function (CBPF)
and total PSCF (TPSCF).

2 Materials and methods

2.1 Sampling and analysis

TGM concentrations were measured on the roof of the
Korean Federation of Community Credit Cooperatives
(KFCCC) building (latitude: 35.992◦; longitude: 129.404◦;
10 m above ground) in Pohang city, in Gyeongsangbuk-do,
a province in eastern South Korea. Gyeongsangbuk-do has a
population of 2.7 million (5 % of the total population and the
third-most-populated province in South Korea) and an area
of 19 030 km2 (19 % of the total area of South Korea and
the largest province geographically in South Korea). Pohang
city has a population of 500 000 (1 % of the total population
in South Korea) and an area of 605.4 km2 (1.1 % of the to-
tal area in South Korea). It is heavily industrialized with the
third-largest steel manufacturing facility in Asia and the fifth-
largest in the world. There are several iron and steel manufac-
turing facilities including electric and sintering furnaces us-
ing coking in Gyeongsangbuk-do, including Pohang. In ad-
dition, there are several coke plants around the sampling site.
The Hyungsan River divides the city into a residential area
and the steel complex. Hg emissions data from iron and steel
manufacturing and a hazardous waste incinerator were esti-
mated based on a previous study (Kim et al., 2010) (Fig. 1).

TGM concentrations were measured every 5 min during
summer (17–23 August 2012), fall (9–17 October 2012),
winter (22–29 January 2013) and spring (26 March–
3 April 2013) using a mercury vapor analyzer (Tekran
2537B) which has two gold cartridges that alternately collect
and thermally desorb mercury. Ambient air at a flow rate of
1.5 L min−1 was transported through a 3 m long heated sam-
pling line (1/4′′ OD Teflon) into the analyzer. The sampling
line was heated at about 50 ◦C using heat tape to prevent wa-
ter condensation in the gold traps because moisture on gold
surfaces interferes with the amalgamation of Hg (Keeler and
Barres, 1999). Particulate matter was removed from the sam-
pling line by a 47 mm Teflon filter.

2.2 Meteorological data

Hourly meteorological data (air temperature, relative humid-
ity, and wind speed and direction) were obtained from the
automatic weather station (AWS) operated by the Korea Me-
teorological Administration (KMA) (http://www.kma.go.kr)
(6 km from the site). Hourly concentrations of NO2, O3, CO,
PM10 and SO2 were obtained from the National Air Quality
Monitoring Network (NAQMN) (3 km from the site) (Fig. 1).

Meteorological Setting. Figure S1 shows the frequency of
counts of measured wind direction occurrence by season dur-
ing the sampling period. The predominant wind direction at
the sampling site was W (20.9 %) and WS (19.2 %), and calm
conditions of wind speed less than 1 m s−1 occurred 7.6 % of
the time. Compared to other seasons, however, the prevailing
winds in summer were N (17.0 %), NE (16.4 %), S (16.4 %),
and SW (15.8 %).

2.3 QA/QC

Automated daily calibrations were carried out for the Tekran
2537B using an internal permeation source. Two-point cali-
brations (zero and span) were separately performed for each
gold cartridge. Manual injections were performed prior to ev-
ery field sampling campaign to evaluate these automated cal-
ibrations using a saturated mercury vapor standard. The rel-
ative percent difference (RPD) between automated calibra-
tions and manual injections was less than 2 %. The recovery
measured by directly injecting known amounts of four mer-
cury vapor standards when the sample line was connected to
zero air ranged from 92 to 110 % (99.4± 5.2 % in average).

3 Model descriptions

3.1 Conditional probability function

CPF was originally performed to determine which wind di-
rections dominate during high concentration events to evalu-
ate local source impacts (Ashbaugh et al., 1985). It has been
successfully used in many previous studies (Begum et al.,
2004; Kim et al., 2003a, b; Xie and Berkowitz, 2006; Zhao
et al., 2004; Zhou et al., 2004). CPF estimates the probabil-
ity that the measured concentration will exceed the threshold
criterion for a given wind direction. CPF is defined as fol-
lows:

CPF1θ =
m1θ |C≥x

n1θ
, (1)

where m1θ is the number of samples from the wind sector θ
having concentration C greater than or equal to a threshold
value x, and n1θ is the total number of samples from wind
sector 1θ . In this study, 16 sectors (1θ = 22.5◦) were used
and calm winds (≤ 1 m s−1) were excluded from the analysis.
The threshold criterion was set at above the overall average
TGM concentration (5.0 ng m−3). Thus, CPF indicates the
potential for winds from a specific direction to contribute to
high air pollution concentrations.

3.2 Conditional bivariate probability function

CBPF couples ordinary CPF with wind speed as a third vari-
able, allocating the measured concentration of pollutant to
cells defined by ranges of wind direction and wind speed
rather than to only wind direction sectors.
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Figure 1. The location of sampling site in this study (a, South Korea; b, Gyeongsangbuk-do; and c, Pohang). AWS, NAQMN and PSC
represent automatic weather station, National Air Quality Monitoring Network and Pohang steel complex, respectively.

CBPF is defined as follows:

CBPF1θ,1u =
m1θ,1u|C≥x

n1θ,1u
, (2)

where m1θ,1u is the number of samples in the wind sec-
tor 1θ with wind speed interval 1u having concentration
C greater than a threshold value x, and n1θ1u is the to-
tal number of samples in that wind direction–speed interval.
The threshold criterion was set at above the overall aver-
age TGM concentration (5.0 ng m−3). The extension to the
bivariate case can provide more information on the nature
of the sources because different source types such as stack
emission sources and ground-level sources can have different
wind speed dependencies (prominent at high and low wind
speed, respectively). More detailed information is described
in a previous study (Uria-Tellaetxe and Carslaw, 2014).

3.3 Potential source contribution function

The PSCF model has been extensively and successfully used
in previous studies to identify the likely source areas (Cheng
et al., 1993; Han et al., 2004; Hopke et al., 2005; Lai et al.,
2007; Lim et al., 2001; Poissant, 1999; Zeng and Hopke,
1989). PSCF is a simple method that links residence time in
upwind areas with high concentrations through a conditional
probability field and was originally developed by Ashbaugh
et al. (1985). PSCFij is the conditional probability that an air
parcel that passed through the ij th cell had a high concen-
tration upon arrival at the monitoring site and is defined as
follows:

PSCFij =
mij

nij
, (3)

where nij is the number of trajectory segment end points that
fall into the ij th cell, and mij is the number of segment end
points in the same grid cell (ij th cell) when the concentra-
tions are higher than a criterion value as measured at the
sampling site.

High PSCF values in those grid cells are regarded as pos-
sible source locations. Cells including emission sources can
be identified with conditional probabilities close to 1 if tra-
jectories that have crossed the cells efficiently transport the
released pollutant to the receptor site. Therefore, the PSCF
model provides a tool to map the source potentials of geo-
graphical areas.

The criterion value of PSCF for TGM concentration was
set at above the overall average concentration (5.0 ng m−3)

to identify the emission sources associated with high TGM
concentrations and to provide a better estimation and reso-
lution of source locations during the sampling periods. The
geographic area covered by the computed trajectories was
divided into an array of 0.05◦ latitude by 0.05◦ longitude
grid cells. As will be discussed in Section 5.3, 24 h back-
ward trajectories starting at every hour at a height of 10, 50
and 100 m above ground level were computed using the verti-
cal velocity model because local sources are more important
than those of long-range transport in this study. (It should be
noted that PSCF results using 48 h backward trajectories had
similar results to the 24 h backward trajectories.) Each tra-
jectory was terminated if they exit the model top (5000 m),
but advection continues along the surface if trajectories in-
tersect the ground. To generate horizontally highly resolved
meteorological inputs for trajectory calculations, the Weather
Research and Forecast (WRF) model was used to generate
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a coarse domain at a resolution of 27 km and a nested do-
main at a horizontal resolution of 9 km, which geographi-
cally cover northeast Asia and the southern part of the Korean
Peninsula, respectively. The nested domain has 174 columns
in the east–west direction and 114 rows in the north–south di-
rection. PSCF was calculated with 9 km meteorological data.

In this study, TPSCF, which incorporates probability from
above different starting heights, was calculated since back-
ward trajectories starting at different heights traverse differ-
ent distances and pathways, thus providing information that
cannot be obtained from a single starting height (Cheng et
al., 1993).

Previous studies suggest that there are increasing uncer-
tainties as backward-trajectory distances increase (Stohl et
al., 2002) and that PSCF modeling is prone to the trailing
effect in which locations upwind of sources are also iden-
tified as potential sources (Han et al., 2004). An alternative
to back-trajectory calculations is the interpretation of atmo-
spheric trace substance measurements (Stohl et al., 2002),
although this technique does not provide much information
on source locations.

Generally, PSCF results show that the potential sources
covered wide areas instead of indicating individual sources
due to the trailing effect. The trailing effect appears since
PSCF distributes a constant weight along the path of the tra-
jectories. To minimize the effect of small nij (the number of
trajectory segment end points that fall into the ij th cell) val-
ues, resulting in high TPSCF values with high uncertainties,
an arbitrary weight function W (nij ) was applied to down-
weight the PSCF values for the cell in which the total number
of end points was less than 3 times the average value of the
end points (Choi et al., 2011; Heo et al., 2009; Hopke et al.,
1995; Polissar et al., 2001). The TPSCF value for a grid cell
was defined as follows:

P (TPSCFij )=
P(mij )10 m+P(mij )50 m+P(mij )100 m

P(nij )10 m+P(nij )50 m+P(nij )100 m
×W, (4)

where

W (nij )=


1.0, 3nave < nij
0.8, 2nave < nij ≤ 3nave
0.6, nave < nij ≤ 2nave
0.4, 0.5nave < nij ≤ nave
0.2, nij ≤ 0.5nave

.

4 Clean Air Policy Support System (CAPSS) data

In this study, the Korean National Emission Inventory es-
timated using CAPSS data developed by the National In-
stitute of Environmental Research (NIER) was used (http://
airemiss.nier.go.kr/main.jsp; last access: 9 December 2015).
CAPSS is the national emission inventory system for the air

pollutants CO, NOx , SOx , TSP, PM10, PM2.5, VOCs and
NH3 which utilizes various national, regional and local sta-
tistical data collected from about 150 organizations in Ko-
rea. In CAPSS, the source classification category (SCC) ex-
cluding fugitive dust and biomass burning based on the Eu-
ropean Environment Agency’s (EEA) CORe Inventory of
AIR emissions was classified into the following three levels
(EMEP/CORINAIR) (NIER, 2011).

1. the upper level (SCC1): 11 source categories;

2. the intermediate level (SCC2): 42 source categories;

3. the lower level (SCC3): 173 source categories.

The sectoral contributions of emissions of South Korea,
Gyeongsangbuk-do and Pohang for CO, NOx , SOx , TSP,
PM10, PM2.5, VOC and NH3 are shown in Fig. S2 (see Sup-
plement for details).

More detailed information about SCCs in CAPSS is de-
scribed in Table S1 in the Supplement.

5 Results and discussions

5.1 General characteristics of TGM

The seasonal distributions of TGM were characterized by
large variability during each sampling period (Fig. 2). The
average concentration of TGM during the complete sampling
period was 5.0± 4.7 ng m−3 (range: 1.0–79.6 ng m−3). This
is significantly higher than the Northern Hemisphere back-
ground concentration (−1.5 ng m−3) (Sprovieri et al., 2010)
and those measured in China, in Japan and other locations
in Korea but lower than those measured at Changchun, Gui
Yang and Nanjing in China (Table 1). The median TGM con-
centration was 3.6 ng m−3, which was much lower than that
of the average, suggesting that there were some extreme pol-
lution episodes with very high TGM concentrations.

The TGM concentration follows a typical log-normal dis-
tribution (Fig. S3 in Supplement). The range of 2 to 5 ng m−3

dominated the distribution, accounting for more than half of
the total number of samples (60.8 %). The maximum fre-
quency of 28.1 % occurred between 2 and 3 ng m−3. Ex-
tremely high TGM concentration events (> 20 ng m−3) were
also observed (1.7 % of the time).

5.2 Seasonal variations

The TGM concentration was statistically significantly higher
in fall (6.7± 6.4 ng m−3) (p<0.01), followed by spring
(4.8± 4.0 ng m−3), winter (4.5± 3.2 ng m−3) and summer
(3.8± 3.9 ng m−3) (Table 2). The highest concentrations
(TGM > 10 ng m−3) were measured more frequently in fall
(24.7 %), and the lowest concentrations (TGM < 3 ng m−3)

mainly occurred in summer (49.7 %). The low TGM con-
centration in summer is likely because of increased mixing

www.atmos-chem-phys.net/16/10215/2016/ Atmos. Chem. Phys., 16, 10215–10228, 2016
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Table 1. Comparison with previous studies for TGM concentrations.

Country Location Sampling period TGM conc. Classifications Reference
(ng m−3)

China Mt. Hengduan, Qinghai–Tibet Plateau Jul 2010–Oct 2010 2.5 Remote Fu et al. (2015)
China Nanjing, Jiangsu Jan 2011–Oct 2011 7.9 Urban Hall et al. (2014)
China Mt. Dinghu, Guangdong Oct 2009–Apr 2010 5.1 Rural Chen et al. (2013)
China Guangzhou, Guangdong Nov 2010–Nov 2011 4.6 Urban Chen et al. (2013)
China Gui Yang, Guizhou Jan 2010–Feb 2010 8.4 Urban Feng et al. (2004)
China Changchun, Jilin Jul 1999–Jul 2000 13.5–25.4 Urban Fang et al. (2004)
Japan Fukuoka Jun 2012–May 2013 2.3 Urban Marumoto et al. (2015)
Japan Tokai-mura Oct 2005–Aug 2006 3.8 Suburban Osawa et al. (2007)
Japan Tokyo Apr 2000–Mar 2001 2.7 Urban Sakata and Marumoto (2002)
Korea Seoul 1987–2013 3.7 Urban Kim et al. (2016)
Korea Gangwon-do, Chuncheon 2006–2009 2.1 Rural Han et al. (2014)
Korea Seoul Feb 2005–Feb 2006 3.2 Urban Kim et al. (2009)
Korea Seoul Feb 2005–Dec 2006 3.4 Urban Choi et al. (2009)
Korea Seoul 19–29 Sep 1997 3.6 Urban Kim and Kim (2001)

27 May 1998–Jun 1998
Korea Gyeongsangbuk-do, Pohang 17–23 Aug 2012 5.0 Urban This study

9–17 Oct 2012
22–29 Jan 2013
26 Mar 2013–3 Apr 2013

height (Friedli et al., 2011) and gas phase oxidation (Choi
et al., 2013; Huang et al., 2010; Lynam and Keeler, 2006) at
higher temperatures particularly at this sampling site, which
is close to the ocean (2 km), where oxidation involving halo-
gens may be enhanced (Holmes et al., 2009; Lin et al., 2006).
The high TGM concentrations in fall were due to different
wind direction (see Fig. S1), sources, relationships with other
pollutants and meteorological conditions. More detailed in-
formation can be found in Sect. 5.4.

The average concentrations of NO2, O3, CO, PM10
and SO2 during the complete sampling period were
23.1± 10.8 ppbv, 24.6± 12.5 ppbv, 673.7± 487.3 ppbv,
55.5± 26.4 µg m−3 and 6.7± 4.3 ppbv, respectively. NO2,
O3, CO, PM10 and SO2 concentrations were highest in
spring (Table 2). There was a statistically significant positive
correlation between the TGM and PM10 (r = 0.10, p<0.01).
However, the TGM concentration was not significantly
correlated with NO2, CO or SO2 concentrations, suggesting
that combustion associated with space heating was not a
significant source of TGM (Choi et al., 2009).

5.3 Relationship between TGM and CO

CO has a significant anthropogenic source and is consid-
ered to be an indicator of anthropogenic emissions (Mao et
al., 2008). A previous study has reported that TGM and CO
have a strong correlation because they have similar emission
sources (combustion processes) and similar long atmospheric
residence times (Weiss-Penzias et al., 2003).

There was a weak positive correlation between TGM and
CO in this study (r = 0.04, p = 0.27). However there was
a statistically significant correlation between TGM and CO

in winter (r = 0.25, p<0.05), suggesting that TGM and
CO were affected by similar, possibly distant, anthropogenic
emission sources in winter.

On the other hand, there were no statistically significant
correlations between TGM and CO in spring (r = 0.02, p =
0.78), in summer (r = 0.13, p = 0.08) or in fall (r =−0.03,
p = 0.69), indicating that TGM and CO were affected by dif-
ferent anthropogenic emission sources in these seasons.

Previous studies identified the long-range transport of
mercury using the 1TGM /1CO enhancement ratio (Choi
et al., 2009; Jaffe et al., 2005; Kim et al., 2009; Weiss-
Penzias et al., 2003; Weiss-Penzias et al., 2006). Kim et
al. (2009) and Choi et al. (2009) investigated high con-
centration events which were defined as at least a 10 h
period with hourly average TGM and CO concentrations
higher than the monthly average TGM and CO concen-
trations. They reported that long-range transport events
were characterized by high values of TGM /CO ratio
(1TGM /1CO) (0.0052–0.0158 ng m−3 ppb−1) and high
correlations (r2>0.5), whereas local events showed low
1TGM /1CO (0.0005 ng m−3 ppb−1 in average) and weak
correlations (r2<0.5).

The observed 1TGM /1CO was 0.0001 ng m−3 ppb−1

in spring, 0.0005 in summer, −0.0007 in fall and
0.0011 ng m−3 ppb−1 in winter, which are significantly lower
than that indicative of Asian long-range transport (0.0046–
0.0056 ng m−3 ppb−1) (Friedli et al., 2004; Jaffe et al., 2005;
Weiss-Penzias et al., 2006), suggesting that local sources are
more important than those of long-range transport in this
study. The 1TGM /1CO in winter (0.0011 ng m−3 ppb−1)

was similar to that of a site impacted by local sources in Ko-

Atmos. Chem. Phys., 16, 10215–10228, 2016 www.atmos-chem-phys.net/16/10215/2016/



Y.-S. Seo et al.: Characteristics of total gaseous mercury concentrations 10221

Figure 2. Time series of TGM concentrations in this study.

rea (Kim et al., 2009) and in US industrially related events
(0.0011 ng m−3 ppb−1) (Weiss-Penzias et al., 2007).

There are also uncertainties from the potential mixing be-
tween Hg associated with long-range transported airflows
and local air making it difficult to distinguish between dis-
tant and local source impacts. However, it is possible that the
1-week sampling period in each season did not capture the
long-range transport events, and more can be learned using a
larger dataset than just using the 1-week sampling period to
confirm these results.

5.4 Diurnal variations

Diurnal variations of TGM (Fig. 3), co-pollutants concen-
trations and meteorological data were observed (Fig. S4).
TGM, O3, CO, SO2 and temperature in the daytime (06:00–
18:00 LT (local time)) were higher than those in the nighttime
(18:00–06:00 LT) (p<0.05), except for PM10 (p = 0.09)
(Fig. S5). However, NO2 during the nighttime because of

relatively lower photochemical reactivity with O3 was higher
than that in the daytime (p<0.05) (Adame et al., 2012).

The daytime TGM concentration (5.3± 4.7 ng m−3)

was higher than that in the nighttime (4.7± 4.7 ng m−3)

(p<0.01), which was similar to several previous studies
(Cheng et al., 2014; Gabriel et al., 2005; Nakagawa, 1995;
Stamenkovic et al., 2007) but different than another study
(Lee et al., 1998). Previous studies reported that this dif-
ference is due to local sources close to the sampling site
(Cheng et al., 2014; Gabriel et al., 2005), a positive corre-
lation between TGM concentration and ambient air tempera-
ture (Nakagawa, 1995) and increased traffic (Stamenkovic et
al., 2007). However, another study suggested that the higher
TGM concentration during the night was due to the shallow-
ing of the boundary layer, which concentrated the TGM near
the surface (Lee et al., 1998).

In a previous study the daytime TGM concentration was
relatively lower than that in the nighttime because the sea
breeze transported air containing low amounts of TGM from
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Table 2. Summary of atmospheric concentrations of TGM and co-pollutants, and meteorological data. Note that TGM was measured every
5 min, and other pollutants and meteorological data were measured every 1 h.

TGM NO2 O3 CO PM10 SO2 Temperature Wind speed Humidity Solar radiation
(ng m−3) (ppb) (ppb) (ppb) (µg m−3) (ppb) (◦) (m s−1) ( %) (MJ m−2)

Spring N 2139 189 215 215 215 215 216 216 216 216
Average 4.8± 4.0 25.3± 9.0 29.4± 14.2 766.5± 505.2 70.1± 26.0 7.6± 3.8 10.5± 4.2 2.2± 1.2 56.2± 16.8 0.82± 1.09
Range 1.9–45.3 8–55 2–58 300–3100 28–204 5–35 1.1–21.6 0.4–6.2 19.0–94.0 0–3.44

Summer N 1863 187 188 187 188 188 186 180 186 141
Average 3.8± 3.9 18.3± 9.2 18.9± 10.1 697.3± 689.7 35.1± 15.8 6.5± 6.2 26.6± 4.2 2.2± 1.1 82.5± 13.9 0.40± 0.69
Range 1.2–75.9 4–44 5–48 200–3300 12–87 2–27 19.7–34.1 0.1–6.4 43–98 0–2.92

Fall N 2226 212 212 212 212 211 216 216 216 216
Average 6.7± 6.4 25.0± 7.8 23.7± 13.1 662.7± 350.2 58.1± 17.8 5.3± 3.5 17.4± 3.2 2.1± 0.8 54.5± 14.7 0.62± 0.90
Range 1.0–79.6 9–53 6–69 300–2900 20–145 3–39 11.7–25.2 0.5–4.5 12–79 0–2.90

Winter N 1917 188 187 188 188 186 192 192 192 192
Average 4.5± 3.2 23.5± 14.7 26.1± 8.7 556.4± 298.9 56.3± 30.5 7.4± 2.5 1.1± 4.3 2.8± 1.1 46.3± 24.5 0.43± 0.71
Range 1.3–66.4 5–74 1–41 200–2400 18–161 5–24 −0.65–10.1 0.5–6.0 11–90 0–2.34

Total N 8145 776 802 802 803 800 810 804 810 765
Average 5.0± 4.7 23.1± 10.8 24.6± 12.5 673.7± 487.3 55.5± 26.4 6.7± 4.3 13.8± 9.9 2.3± 1.1 59.4± 22.1 0.59± 0.90
Range 1.0–79.6 4–74 1–69 200–3300 12–204 2–39 −6.5–34.1 0.1–6.4 11–98 0–3.44

the ocean during the daytime, whereas the land breeze trans-
ported air containing relatively high concentrations of TGM
from an urban area during the nighttime (Kellerhals et al.,
2003). Although it is possible that the land–sea breeze may
affect diurnal variations in TGM concentrations since the
sampling site was near the ocean and lower TGM were
also observed during the daytime, the higher concentra-
tions in the daytime than those in nighttime were due to
local emission sources because the daytime temperature
(14.7± 10.0 ◦C) was statistically significantly higher than
that in the nighttime (13.0± 9.8 ◦C) (t test, p<0.05), and
there was a weak but statistically significant negative cor-
relation between TGM concentration and ambient air tem-
perature (r =−0.08, p<0.05). In addition, there are several
known Hg sources such as iron and steel manufacturing fa-
cilities including electric and sintering furnaces using coking
between the sampling site and the ocean.

As shown in Figs. 3 and S4, there was a weak but negative
relationship between the TGM concentrations and O3 con-
centrations (r =−0.18, p<0.01), suggesting that oxidation
of GEM in the oxidizing atmosphere during periods of strong
atmospheric mixing was partially responsible for the diurnal
variations of TGM concentrations. In addition, oxidation of
GEM by bromine species in the coastal area (Obrist et al.,
2011) or by chloride radicals in the marine boundary layer
(Laurier et al., 2003) might play a significant role. If oxida-
tion of GEM occurred, GOM concentrations would increase.
However there are uncertainties on the net effects on TGM
(the sum of the GEM and the GOM) since we did not mea-
sure GOM concentrations.

TGM concentration was negatively correlated with ambi-
ent air temperature (r =−0.08, p<0.05) because high am-
bient air temperature in the daytime will increase the height
of the boundary layer and dilute the TGM, and the rela-
tively lower boundary layer at nighttime could concentrate

Figure 3. The diurnal variations of TGM concentrations during the
sampling periods. The error bars represent standard error.

the TGM in the atmosphere (Li et al., 2011). Although
there was a statistically significant negative correlation be-
tween the TGM concentration and ambient air temperature,
there was a rapid increase in TGM concentration between
06:00 and 09:00, when ambient temperatures also increased
possibly due to local emissions related to industrial activi-
ties, increased traffic and activation of local surface emis-
sion sources. Similar patterns were found in previous studies
(Li et al., 2011; Stamenkovic et al., 2007). Nonparametric
correlations revealed that there is a weak positive correla-
tion between TGM and ambient air temperature (rs = 0.11,
p = 0.27) between 06:00 and 09:00. The TGM concentra-
tion was negatively correlated with O3 (rs =−0.33, p<0.01)
but positively correlated with NO2 (rs = 0.21, p<0.05), sug-
gesting that the increased traffic is the main source of TGM
during these time periods.

Atmos. Chem. Phys., 16, 10215–10228, 2016 www.atmos-chem-phys.net/16/10215/2016/



Y.-S. Seo et al.: Characteristics of total gaseous mercury concentrations 10223

Figure 4. CPF, CBPF and TPSCF plots for TGM higher-than-average concentration. The radial axes of CPF and CBPF are the probability
and the wind speed (m s−1), respectively.

Compared to other seasons, significantly different diur-
nal variations of TGM were observed in fall. The daytime
TGM concentrations in fall were similar to those in other
seasons; however, the nighttime TGM concentrations in fall
were much higher than those in other seasons. As described
earlier in Sect. 5.2, the high TGM concentrations in fall
were possibly due to the relationship between other pollu-
tants and meteorological conditions as well as different wind
direction and sources. The nighttime TGM concentrations
in fall were simultaneously positively correlated with PM10
(r = 0.26, p<0.05) and CO (r = 0.21, p<0.05) concentra-
tions and wind speed (r = 0.35, p<0.01), suggesting that the
combustion process is an important source during this period.

TGM generally showed a consistent increase in the early
morning (06:00–09:00) and a decrease in the afternoon
(14:00–17:00), similar to previous studies (Dommergue et
al., 2002; Friedli et al., 2011; Li et al., 2011; Liu et al., 2011;
Mao et al., 2008; Shon et al., 2005; Song et al., 2009; Sta-
menkovic et al., 2007). Significantly different diurnal pat-
terns have been observed at many suburban sites with the
daily maximum occurring in the afternoon (12:00–15:00),

possibly due to local emission sources and transport (Fu et
al., 2008, 2010; Kuo et al., 2006; Wan et al., 2009). Other
studies in Europe reported that TGM concentrations were rel-
atively higher early in the morning or at night possibly due
to mercury emissions from surface sources that accumulated
in the nocturnal inversion layer (Lee et al., 1998; Schmolke
et al., 1999).

Based on the above results, the diurnal variations in TGM
concentration are due to a combination of (1) reactions with
an oxidizing atmosphere, (2) changes in ambient tempera-
ture and (3) local emissions related to industrial activities. To
supplement these conclusions, CPF and CBPF were used to
identify source directions, and TPSCF was used to identify
potential source locations.

5.5 CPF, CBPF and TPSCF results of TGM

Conventional CPF, CBPF and TPSCF plots for TGM con-
centrations higher than the average concentration show high
source probabilities to the west in the direction of large
steel manufacturing facilities and waste incinerators (Fig. 4).
The CPF only shows high probabilities from the west and
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provides no further information; however, the CBPF shows
groups of sources with the high probabilities from the west
and the northeast. CBPF shows that the high probabilities
from the west occurred under high wind speed (> 3 m s−1) in-
dicative of emissions from stacks as well as low wind speed
(≤ 3 m s−1) indicative of non-buoyant ground level sources
(Uria-Tellaetxe and Carslaw, 2014).

As described in Sect. 5.3, correlations between TGM and
CO revealed that TGM and CO were affected by similar an-
thropogenic emission sources in winter but affected by dif-
ferent sources in spring, summer and fall, which is supported
by Fig. S6, which shows significantly different seasonal pat-
terns of CPF and CBPF for TGM concentrations. However,
compared to Fig. 4, the CPF and CBPF patterns in fall were
similar to those during the whole sampling periods. In par-
ticular, the nighttime TGM concentration in fall was simulta-
neously positively correlated with PM10 (r = 0.26, p<0.05)
and CO (r = 0.21, p<0.05) concentrations and wind speed
(r = 0.35, p<0.01), indicating that the combustion process
from the west is an important source during this period.

Since TGM showed a significant correlation with CO (r =
0.25, p<0.05) and showed a weak positive correlation with
PM10 (r = 0.08, p = 0.33) in winter with high wind speed,
combustion sources from the west are likely partially respon-
sible for this result.

TPSCF identified the likely sources of TGM as the iron
and manufacturing facilities and the hazardous waste incin-
erators which are located to the west of the sampling site. A
previous study reported that the waste incinerators (9 %) and
iron and steel manufacturing (7 %) were relatively high Hg
emissions sources in Korea (Kim et al., 2010). Waste incin-
erator emissions were due to the high Hg content in the waste
(Lee et al., 2004). Emissions from iron and steel manufactur-
ing are due to the numerous electric and sintering furnaces
using coking, which emits relatively high mercury concen-
trations (Lee et al., 2004) in Gyeongsangbuk-do, including
Pohang. There are several coke plants around the sampling
site (http://www.poscoenc.com/upload/W/BUSINESS/PDF/
ENG_PLANT_2_1_3_5.pdf; last access: 9 December 015).
They are essential parts of the iron and steel manufacturing,
and the major source of atmospheric mercury related to the
iron and steel manufacturing is from coke production (Pa-
cyna et al., 2006).

The coastal areas east of the sampling site where there
are large ports were also identified as the likely source ar-
eas of TGM. A previous study reported that the emissions of
gaseous and particulate pollutants were high during vehicular
operations in port areas and from marine vessel and launches
(Gupta et al., 2002). Another possibility is that significant
amount of GEM are emitted from the ocean surface because
of photochemically and microbiologically mediated photo-
reduction of dissolved GOM (Amyot et al., 1994; Zhang and
Lindberg, 2001). The northeast direction including the East
Sea was also identified as potential source areas likely be-
cause this is an area with lots of domestic passenger ship

routes. The area south of the sampling site was also identi-
fied as a likely source area of TGM where Ulsan metropolitan
city, South Korea’s seventh-largest metropolis with a popula-
tion of over 1.1 million, is located. It includes a large petro-
chemical complex known as a TGM source (Jen et al., 2013).

6 Conclusions

During the sampling periods, the average TGM concentra-
tion was higher than the Northern Hemisphere background
concentration, albeit considerably lower than those near ur-
ban areas in China and higher than those in Japan and other
locations in Korea. The median concentration of TGM was
much lower than that of the average, suggesting that there
were some extreme pollution episodes with very high TGM
concentrations. The TGM concentration was highest in fall,
followed by spring, winter and summer. The high TGM con-
centration in fall is due to transport from different wind di-
rections than during the other periods. The low TGM con-
centration in summer is likely due to increased mixing height
and gas phase oxidation at higher temperatures particularly at
this sampling site, which is close to the ocean (2 km), where
oxidation involving halogens may be enhanced.

TGM consistently showed a diurnal variation with a max-
imum in the early morning (06:00–09:00) and minimum in
the afternoon (14:00–17:00). Although there was a statisti-
cally significant negative correlation between the TGM con-
centration and ambient air temperature, the daytime TGM
concentration was higher than those in the nighttime, sug-
gesting that local emission sources are important. There was
a negative relationship between the TGM concentrations and
O3 concentrations, indicating that the oxidation was partially
responsible for the diurnal variations of TGM concentrations.
The observed 1TGM /1CO was significantly lower than
that indicative of Asian long-range transport, suggesting that
local sources are more important than those of long-range
transport. CPF only shows high probabilities to the west of
the sampling site where there are large steel manufacturing
facilities and waste incinerators. However, CBPF and TPSCF
indicated that the dominant sources of TGM were the haz-
ardous waste incinerators and the coastal areas in the north-
east as well as the iron and manufacturing facilities in the
west. The domestic passenger ship routes in the East Sea
were also identified as possible source areas.
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