

Corrigendum to

“Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set” published in *Atmos. Chem. Phys.*, 15, 9413–9433, 2015

S. Eckhardt¹, B. Quennehen^{2,a}, D. J. L. Olivié³, T. K. Berntsen⁴, R. Cherian⁵, J. H. Christensen⁶, W. Collins^{7,8}, S. Crepinsek^{9,10}, N. Daskalakis^{11,12}, M. Flanner¹³, A. Herber¹⁴, C. Heyes¹⁵, Ø. Hodnebrog⁴, L. Huang¹⁶, M. Kanakidou^{11,12}, Z. Klimont¹⁵, J. Langner¹⁷, K. S. Law², M. T. Lund⁴, R. Mahmood^{20,21}, A. Massling⁶, S. Myriokefalitakis^{11,12}, I. E. Nielsen⁶, J. K. Nøjgaard⁶, J. Quaas⁵, P. K. Quinn¹⁸, J.-C. Raut², S. T. Rumbold^{7,22}, M. Schulz³, S. Sharma¹⁶, R. B. Skeie⁴, H. Skov⁶, T. Uttal¹⁰, K. von Salzen¹⁹, and A. Stohl¹

¹NILU – Norwegian Institute for Air Research, Kjeller, Norway

²Sorbonne Universités, UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, UMR8190, Paris, France

³Norwegian Meteorological Institute, Oslo, Norway

⁴Center for International Climate and Environmental Research – Oslo (CICERO), Oslo, Norway

⁵Institute for Meteorology, Universität Leipzig, Leipzig, Germany

⁶ENVS Department of Environmental Science, Aarhus University, Roskilde, Denmark

⁷Met Office Hadley Centre, Exeter, UK

⁸Department of Meteorology, University of Reading, Reading, UK

⁹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA

¹⁰NOAA Earth System Research Laboratory Physical Sciences Division/Polar Observations & Processes, Boulder, Colorado, USA

¹¹Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete, Greece

¹²ICE-HT/FORTH, Patras, Greece

¹³Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USA

¹⁴Alfred Wegener Institut, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

¹⁵International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

¹⁶Climate Research Division, Atmospheric Sci. & Tech. Directorate, S & T, Environment Canada Toronto, Ontario, Canada

¹⁷Swedish Meteorological and Hydrological Institute (SMHI), 60176 Norrköping, Sweden

¹⁸National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory, Seattle, WA, USA

¹⁹Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

²⁰School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

²¹Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, Pakistan

²²National Centre for Atmospheric Science, University of Reading, Reading, UK

^anow at: Univ. Grenoble Alpes/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), 38041 Grenoble, France

Correspondence to: S. Eckhardt (sabine.eckhardt@nilu.no)

Published: 18 April 2016

Data availability

In this project data sets that have been reported to the EMEP and/or WMO-GAW monitoring programmes were used. They are openly available from the database infrastructure EBAS (<http://ebas.nilu.no/>) hosted at NILU.

Acknowledgements. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 282688 – ECLIPSE. Some of the work was conducted for and funded by the Arctic Monitoring and Assessment Programme (AMAP). French authors also acknowledge support from the CLIMSLIP-ANR project and computer resources provided by IDRIS HPC resources under the allocation 2014-017141 under GENCI. Contributions by SMHI were funded by the Swedish Environmental Protection Agency under contract NV-09414-12 and through the Swedish Climate and Clean Air research program, SCAC. Simulations with CanAM4.2 were supported by the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments (NETCARE), with partial funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). This is PMEL contribution number 4276. ECMWF gave access to their meteorological data. Environment Canada provided the sulfate data and eBC data. Shao-Meng Li (Environment Canada) provided the PAMARCMIP BC data set obtained by the EC system (SP2). We thank Stockholm University (P. Tunved) for eBC data from Zeppelin, and all contributors to the ARCTAS, ARCPAC, HIPPO and PAMARCMIP campaigns. HIPPO data products were downloaded from <http://hippo.ornl.gov/dataaccess>. Julia Schmale is acknowledged for her valuable discussion. We thank the two anonymous reviewers for their comments and suggestions. We thank W. Aas for the sulfate data measured at Zeppelin, the Finnish Meteorological Institute (FMI) for sulfate and for AAC measurements at the Pallas station. For the PSAP measurements at Barrow, the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) aerosols group (J. Ogren, A. Jefferson) is acknowledged.

Edited by: M. K. Dubey