

Supplement of

Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China

Y. Tang et al.

Correspondence to: J. An (anjl@mail.iap.ac.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

b) Beijing, (c, d) Shanghai, and (e, f) Guangzhou in August 2007. $(HONO+hv)_{net}$ means the net OH production rate from HONO photolysis (subtracting OH + NO = HONO).

Fig. S1. Correlations of the unknown daytime HONO source $(P_{unknown})$ (ppb h⁻¹) with NO₂ mixing ratios (ppb) and [NO₂] $J(NO_2)$ (ppb s⁻¹) in (a), (b) the coastal regions of China, (c), (d) the other countries, and (e), (f) the globe, respectively, based on the field experiment data shown in Fig. 1 in the revised version.

Fig. S3. Production [P(HONO)] and loss [L(HONO)] rates of HONO for cases R (dashed lines), R_p (solid lines) and sensitivity ranges (based on R_{inc} and R_{dec}) in (a), (b) Beijing, (c), (d) Shanghai, and (e), (f) Guangzhou in August 2007. Case R_{inc} includes case R_p with an increase of 25% (the maximum uncertainty range according to the previous studies above) in the slope factor (19.60); Case R_{dec} is the same as case R_p with a decrease of 25% in the slope factor (19.60).

1	Table S1. The calculated unknown daytime HONO source (Punknown), NO2 mixing ratios and photolysis frequency of NO2 [J(NO2)] from field experiments in Figure
2	1.

Site	Date	Time	P _{unknown} (ppb h ⁻¹)	[NO ₂] (ppb)	$ \overline{J(NO_2)} \\ (\times 10^{-3} \text{ s}^{-1}) $	Measurement techniques /Uncertainties	Reference
		09:30	2.36	29.65	2.31	HONO: WD/IC;	
		10:30	3.57	36.46	4.09	NO ₂ : estimated from NO and NO _v	
Xinken	2004.10.23-	11:30	4.39	39.51	5.46	(measured by the NO-O ₃	0 (1(0000)
(22.6 N,	2004.10.30	12:30	4.90	33.33	5.83	chemiluminescence detector (Kondo et	Su et al. (2008)
113.6 E)		13:30	3.96	33.54	5.93	al., 1997))/22%;	Su et al. (2011)
		14:30	2.93	32.43	4.92	J(NO ₂): TUV/18%;	
		15:30	2.46	26.94	3.85	P _{unknown} : 10~30%.	
		8:00	2.59	22.66	6.29		
	2007.00.17	10:00	1.66	22.67	8.16		
	2007.08.17	12:00	1.00	24.09	8.35		
		14:00	3.12	19.39	6.82		
		8:00	1.39	27.96	6.29		
D	2007.00.10	10:00	3.52	21.37	8.16	HONO: Annular denuders;	
Beijing	2007.08.18	12:00	4.12	16.66	8.35	NO ₂ : means of commercial ECOTECH	0 (2012)
(39.99 N,		14:00	2.06	12.90	6.82	Ltd. (Australia analyzer)/ 1%;	Spataro et al. (2013)
116.30 E)		8:00	4.38	29.50	6.29	$J(NO_2)$: calculated by $J(HONO)$;	
		10:00	5.91	37.53	8.16		
	2007.08.19	12:00	2.26	18.67	8.35		
		14:00	0.73	12.54	6.82		
		8:00	5.51	36.69	6.29		
	2007.08.20	10:00	6.57	40.94	8.16		

		12:00	2.59	18.78	8.35		
		14:00	4.18	18.79	6.82		
		10:00	2.87	27.62	5.45		
T CI		11:00	3.82	32.62	6.59	HONO: LOPAP;	
Tung Chung	2011.08.25-	12:00	5.34	31.31	7.41	NO ₂ : TEI;	$W_{1} = (2012)$
(22.30 N, 112.02 F)	2011.08.31	13:00	4.90	27.86	7.92	J(NO ₂): Optical actinometer.	wu et al. (2015)
113.93 E)		14:00	4.80	24.40	7.17		
		15:00	4.12	23.33	6.02		
		10:30	0.03	-	4.73		
		11:00	0.03	-	6.03	HONO: LOPAP;	
	2009.03.13- 2009.04.14	11:30	0.06	4.23	8.16	NO ₂ : estimated from NO and NO _y	
Alaska		12:00	0.09	-	8.81	(measured by the $NO-O_3$	
(71.32 N,		12:30	0.05	-	9.46	chemiluminescence detector;	Villena et al. (2011)
156.65 W)		13:00	0.08	-	8.69	J(NO ₂): estimated as a function of solar	
		13:30	0.07	17.31	7.63	zenith angle using the TUV radiative	
		14:00	0.05	12.24	6.33	transfer model.	
		14:30	0.03	8.85	4.79		
						HONO: LOPAP;	
Michigan						NO ₂ : Custom-built analyzer using the	
Michigan	2008.07.17-	n 00 n	0.35	1.00	Q 1Q	chemiluminescence technique;	Then $a t a (2012)$
(43.30 N, 84.70 W)	2008.08.07	HOOH	0.55	1.00	0.40	J(NO ₂): estimated as a function of UV	Zhang et al. (2012)
84.70 W)						measured by the TUV radiative transfer	
						model/10%.	
Michigan						HONO: Two-channel measurement	
(45.50 N,	2000.07.27	noon	1.60	0.13	8.48	system (Zhou et al., 1999);	Zhou et al. (2002a)
84.70 W)						NO ₂ : TEI Model.	

		10:00	0.11	2.15	5.39		
C	2008 07 17	11:00	0.10	1.38	6.26	HONO: LOPAP/12%;	
Spain	2008.07.17-	12:00	0.08	0.95	6.76	NO ₂ : Droplet Measurement Technologies	C ∺
(37.10 N, 674.00)	2008.08.07	13:00	0.09	0.84	6.68	(Hosaynan-Beygi et al., 2011)/8%;	S orgen et al. (2011)
6.74 W)	(cloud-free)	14:00	0.08	0.79	6.03	J(NO ₂): Filter radiometers/5%;	
		15:00	0.05	0.66	4.62	P _{unknown} : 18%.	
New York (42.09 N, 77.21 W)	1998.06.26- 1998.07.14	noon	0.22	1.00	8.48	HONO: Two-channel measurement system (Zhou et al., 1999); NO ₂ : TEI Model.	Zhou et al. (2002b)
Santiago (33.45 S, 70.67 W)	2005.03.08- 2005.03.20	noon	1.70	10.00	8.00	HONO: LOPAP; NO ₂ : DOAS-OPSIS optical system; J(NO ₂): Filter radiometers.	Elshorbany et al. (2009)
		10:00	0.40	7.50	7.29		
TT (11:00	0.59	6.02	7.77	HONO: LP-DOAS/5%;	
Houston	2000 04 21	12:00	0.74	5.45	8.03	NO_2 : LP-DOAS/3%;	We may at al. (2012)
(29.70 N, 05.27 gW)	2009.04.21	13:00	0.66	4.89	8.03	$J(NO_2): SAFS;$	wong et al. (2012)
95.57 W)		14:00	0.51	5.45	7.76	$\Gamma_{unknown}$. 10~20%.	
		15:00	0.57	5.91	7.18		
		10:00	0.05	6.04	5.84		
Calarada		11:00	0.08	5.49	6.39	HONO: NI-PT-CIMS;	
	2011.02.19-	12:00	0.46	2.39	6.64	NO2: a cavity ring-down spectrometer	VandenBoer et al.
(40.03 N, 105.00 W)	2011.02.25	13:00	0.37	1.55	6.39	(Wagner et al., 2011)/5%;	(2013)
103.00 W)		14:00	0.28	1.27	6.02	J(NO ₂): Filter radiometers.	
		15:00	0.22	1.47	5.22		
Jülich	2003.07.29	noon	0.50	0.35	6.63	HONO: LOPAP;	Kleffmann et al. (2005)

(50.92 N,						NO ₂ : Chemiluminescence analyzer	
6.36 E)						equipped with a photolytic converter for	
						NO ₂ to NO conversion;	
						J(NO ₂): derived from actinic flux spectra	
						measured by a scanning	
						spectroradiometer.	
		10:00	0.42	3.91	6.31		
		11:00	0.38	3.42	7.76		
	2009.07.09-	12:00	0.52	3.14	8.08		
	2009.07.27	13:00	0.67	3.00	8.24	HONO: Wet chemical derivatization	
Dorio		14;00	0.38	3.00	7.29	(SA/NED), HPLC detection	
Paris		15:00	0.35	3.11	7.88	(NitroMAC)/12%;	Michoud et al. (2014)
(40.72 N, 2.21 GC)		10:00	0.08	10.49	1.16	NO ₂ : Luminol chemiluminescence/5%;	Michoud et al. (2014)
2.21 L)		11:00	0.11	10.49	1.80	J(NO ₂): filter radiometer/ 20–25%.	
	2010.01.15-	12:00	0.18	9.44	2.60		
	2010.02.15	13:00	0.21	8.76	2.20		
		14;00	0.20	9.12	2.34		
		15:00	0.22	9.07	1.99		

3 WD/IC: Wet Denuder sampling/Ion Chromatograph analysis system; TUV: Ultraviolet-Visible Model; TEI: Thermo Environmental Instruments; LOPAP: Long path

4 absorption photometer; LP-DOAS: Long path Differential Optical Absorption Spectroscopy instrument; SAFS: scanning actinic flux spectroradiometer;

5 NI-PT-CIMS: Negative-Ion Proton-Transfer Mass Spectrometer; SA/NED: an aqueous sulphanilamide/ N-(1-naphthyl)-ethylenediamine solution; NitroMAC: an

6 instrument developed at the laboratory (Afif et al., 2014); HPLC: High Performance Liquid Chromatography.

7 Note that: Since J(NO₂) data of Wu et al. (2013), Zhang et al. (2012), Zhou et al. (2002b), VandenBoer et al. (2013), Kleffmann et al. (2005) were not measured,

8	they were calculated from the J(HONO) measurement data ($J(NO_2) = 5.3J(HONO)$) (Kraus and Hofzumahaus, 1998); J(NO ₂) data of Zhou et al. (2002ab) were
9	derived from the campaign of Zhang et al. (2012) (The experiments were conducted in summer and the studied sites were close to each other). J(NO2) data of
10	Spataro et al. (2013) were also calculated from the J(HONO) at noon ($J(NO_2) = 5.3J(HONO)$), then we computed the hourly J(NO ₂) (8:00~14:00 LST) through
11	multiplying by the cosine of solar zenith angle. The NO ₂ mixing ratios of Zhang et al. (2012) and Zhou et al. (2002b) were not shown and derived from NO _x mixing
12	ratios. Similarly, NO ₂ mixing ratios of Kleffmann et al. (2005) were inferred from NO mixing ratios.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	Ca	se R	Case	R _{wop}	Case	e R _p
Reaction	Rate	Contribution	Rate	Contribution	Rate	Contribution
	$(ppb h^{-1})$	(%)	$(ppb h^{-1})$	(%)	$(ppb h^{-1})$	(%)
			HO ₂ production			
OH+CO	0.785/0.203/0.576	33.42/28.27/38.26	0.932/0.227/0.637	34.63/29.12/38.73	2.573/0.506/1.001	41.34/32.93/40.82
CH ₃ O ₂ +NO	0.543/0.161/0.328	23.12/22.53/21.75	0.580/0.170/0.346	21.56/21.79/21.04	1.165/0.258/0.522	18.72/16.80/21.29
HCHO+hv	0.243/0.086/0.112	10.34/11.97/7.42	0.262/0.090/0.116	9.74//11.47/7.06	0.400/0.102/0.125	6.43/6.65/5.11
OH+HCHO	0.150/0.050/0.146	6.40/7.00/9.71	0.166/0.053/0.156	6.17/6.75/9.46	0.544/0.096/0.242	8.73/6.26/9.86
OH+OLET/OLEI	0.192/0.054/0.059	8.17/7.47/3.92	0.264/0.065/0.077	9.83/8.31/4.67	0.537/0.206/0.095	8.63/13.44/3.88
OH+H ₂	0.038/0.021/0.050	1.62/2.91/3.29	0.040/0.022/0.052	1.49/2.76/3.17	0.095/0.027/0.075	1.53/1.74/3.06
$OH+SO_2$	0.054/0.030/0.035	2.30/4.20/2.33	0.064/0.034/0.041	2.37/4.34/2.48	0.172/0.116/0.072	2.77/7.53/2.95
OH+O ₃	0.028/0.006/0.035	1.18/0.88/2.31	0.029/0.006/0.036	1.08/0.82/2.20	0.072/0.005/0.046	1.15/0.30/1.88
OH+XYL	0.052/0.022/0.023	2.21/3.10/1.50	0.066/0.026/0.029	2.46/3.34/1.75	0.141/0.078/0.045	2.27/5.11/1.84
$OH+H_2O_2$	0.015/0.008/0.027	0.63/1.14/1.77	0.016/0.008/0.029	0.59/1.08/1.78	0.040/0.010/0.043	0.65/0.66/1.74
OH+TOL	0.027/0.007/0.011	1.16/0.94/0.76	0.034/0.008/0.014	1.27/1.02/0.86	0.086/0.025/0.024	1.38/1.60/0.97
ALD2/MGLY	0.046/0.012/0.012	1.05/1.60/0.90	0.051/0.012/0.012	1 01/1 66/0 92	0 074//0 014/0 012	1 10/0 02/0 51
/ANOE+hv	0.046/0.012/0.012	1.95/1.69/0.80	0.051/0.013/0.013	1.91/1.00/0.82	0.074//0.014/0.013	1.19/0.93/0.51
OH+ETH/OPEN	0.007/0.002/0.004	0.28/0.31/0.29	0.008/0.002/0.005	0.30/0.32/0.30	0.036/0.009/0.011	0.30/0.56/0.44
O ₃ +OLET/OLEI	0.036/0.009/0.009	1.55/1.21/0.59	0.035/0.009/0.009	1.28/1.11/0.52	0.030/0.008/0.009	0.48/0.50/0.38
RO ₂ +NO	0.017/0.004/0.007	0.69/0.62/0.44	0.017/0.005/0.007	0.64/0.62/0.42	0.024/0.005/0.009	0.38/0.34/0.37
others+hv	0.020/0.007/0.007	0.86/0.94/0.47	0.025/0.008/0.008	0.92/0.96/0.50	0.046/0.010/0.008	0.74/0.63/0.33
NO+ETHP	0.013/0.003/0.005	0.54/0.44/0.31	0.013/0.003/0.005	0.47/0.42/0.30	0.019/0.004/0.007	0.30/0.26/0.28
NO+ISOPP	0.030/0.005/0.003	1.26/0.70/0.20	0.031/0.005/0.004	1.15/0.66/0.24	0.038/0.007/0.004	0.61/0.43/0.17
OH+CH ₃ OH	0.002/0.001/0.002	0.09/0.09/0.11	0.002/0.001/0.002	0.09/0.09/0.11	0.007/0.002/0.003	0.11/0.11/0.12

Table S2. Daytime (06:00–18:00 LST) average HO₂ budgets in Beijing/Shanghai/Guangzhou in August 2007.

/ANOL/CRES						
HNO ₄ +hv	0.004/0.001/0.002	0.19/0.09/0.14	0.004/0.001/0.002	0.17/0.09/0.13	0.007/0.001/0.003	0.11/0.06/0.11
CH3OOH/ET HOOH+hv	0.002/0.012/0.002	0.09/0.39/0.13	0.002/0.003/0.002	0.08/0.37/0.12	0.002/0.003/0.002	0.12/0.18/0.06
O ₃ +ETH	0.003/<0.001/0.001	0.12/0.06/0.03	0.003/<0.001/0.001	0.10/0.05/0.03	0.003/<0.001/0.001	0.04/0.02/0.02
O ₃ +ISOP	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
O ₃ +others	0.001/<0.001/<0.001	0.03/0.02/0.02	0.001 / < 0.001 / < 0.001	0.03/0.02/0.02	0.001 / < 0.001 / < 0.001	0.02/0.01/0.01
NO ₃ +HCHO	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
NO ₃ +others	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/0.001/<0.001	<0.01/<0.01/<0.01
HNO ₄ dec	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
Total	2.349/0.716/1.506	100/100/100	2.691/0.780/1.644	100/100/100	6.223/1.536/2.451	100/100/100
			$HO_2 loss$			
HO ₂ +NO	2.778/0.732/1.748	99.34/99.61/98.29	2.829/0.793/1.608	99.38/99.63/98.37	7.101/1.402/2.552	99.15/99.55/98.04
HO₂+NO HO ₂ +O ₃	2.778/0.732/1.748 0.009/0.001/0.014	99.34/99.61/98.29 0.30/0.08/0.70	2.829/0.793/1.608 0.008/0.001/0.011	99.38/99.63/98.37 0.28/0.08/0.67	7.101/1.402/2.552 0.026/0.001/0.019	99.15/99.55/98.04 0.36/0.08/0.74
HO₂+NO HO ₂ +O ₃ HO ₂ +NO ₂	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72
HO ₂ +NO HO ₂ +O ₃ HO ₂ +NO ₂ HO ₂ +OH	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37
HO_2+NO HO_2+O_3 HO_2+NO_2 HO_2+OH HO_2+HO_2	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03
HO_2+NO HO_2+O_3 HO_2+NO_2 HO_2+OH HO_2+HO_2 $HO_2+CH_3O_2$	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02 0.01/<0.01/0.03	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001/<0.001 <0.001/<0.001/0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01 <0.01/<0.01/0.03	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001 0.001/<0.001/0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03 0.01/<0.01/0.04
HO_2+NO HO_2+O_3 HO_2+NO_2 HO_2+OH HO_2+HO_2 $HO_2+CH_3O_2$ $HO_2+C_2O_3$	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02 0.01/<0.01/0.03 <0.01/<0.01/0.01	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001/<0.001 <0.001/<0.001/0.001 <0.001/<0.001/<0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01 <0.01/<0.01/0.03 <0.01/<0.01/0.01	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001 0.001/<0.001/0.001 <0.001/<0.001/<0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03 0.01/<0.01/0.04 <0.01/<0.01/0.01
$HO_{2}+NO \\HO_{2}+O_{3} \\HO_{2}+NO_{2} \\HO_{2}+OH \\HO_{2}+HO_{2} \\HO_{2}+CH_{3}O_{2} \\HO_{2}+C_{2}O_{3} \\HO_{2}+RO_{2}$	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02 0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01 <0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001 0.001/<0.001/0.001 <0.001/<0.001/<0.001 <0.001<0.001/<0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03 0.01/<0.01/0.04 <0.01/<0.01/0.01 <0.01/<0.01/<0.01
$\begin{array}{c} \textbf{HO}_{2} + \textbf{NO} \\ HO_{2} + O_{3} \\ HO_{2} + NO_{2} \\ HO_{2} + OH \\ HO_{2} + HO_{2} \\ HO_{2} + CH_{3}O_{2} \\ HO_{2} + C_{2}O_{3} \\ HO_{2} + RO_{2} \\ HO_{2} + XO_{2} \end{array}$	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02 0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 0.02/<0.01/0.04	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001/<0.001 <0.001/<0.001/0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01 <0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001 0.001/<0.001/0.001 <0.001/<0.001/<0.001 <0.001<0.001/<0.001 0.002/<0.001/0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03 0.01/<0.01/0.04 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 0.03/<0.01/0.05
HO_2+NO HO_2+O_3 HO_2+NO_2 HO_2+OH HO_2+HO_2 $HO_2+CH_3O_2$ $HO_2+C_2O_3$ HO_2+RO_2 HO_2+XO_2 HO_2+AO_2 HO_2+AO_2	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02 0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 0.02/<0.01/0.04 <0.01/<0.01/0.01	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001/<0.001 <0.001/<0.001/0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01 <0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 0.01/<0.01/0.04 <0.01/<0.01/0.01	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001 0.001/<0.001/0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03 0.01/<0.01/0.04 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 0.03/<0.01/0.05 <0.01/<0.01/0.01
HO_2+NO HO_2+O_3 HO_2+NO_2 HO_2+OH HO_2+HO_2 $HO_2+CH_3O_2$ $HO_2+C_2O_3$ HO_2+RO_2 HO_2+XO_2 HO_2+AO_2 HO_2+AO_2 HO_2+AO_2 HO_2+AO_2 HO_2+AO_2 HO_2+AO_2	2.778/0.732/1.748 0.009/0.001/0.014 0.007/0.002/0.009 0.001/<0.001/0.004 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.34/99.61/98.29 0.30/0.08/0.70 0.28/0.29/0.60 0.06/0.02/0.30 <0.01/<0.01/0.02 0.01/<0.01/0.03 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 <0.01/<0.01/0.01 <0.01/<0.01/<0.01	2.829/0.793/1.608 0.008/0.001/0.011 0.007/0.002/0.010 0.002/<0.001/0.005 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.38/99.63/98.37 0.28/0.08/0.67 0.25/0.27/0.58 0.06/0.02/0.28 <0.01/<0.01/0.01 <0.01/<0.01/0.03 <0.01/<0.01/0.01 0.01/<0.01/<0.01 <0.01/<0.01/0.01 <0.01/<0.01/0.01	7.101/1.402/2.552 0.026/0.001/0.019 0.023/0.005/0.019 0.008/<0.001/0.010 <0.001/<0.001/0.001 0.001/<0.001/0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001 <0.001/<0.001/<0.001	99.15/99.55/98.04 0.36/0.08/0.74 0.32/0.33/0.72 0.11/0.03/0.37 <0.01/<0.01/0.03 0.01/<0.01/0.04 <0.01/<0.01/0.01 <0.01/<0.01/<0.01 0.03/<0.01/0.05 <0.01/<0.01/<0.01 <0.01/<0.01/<0.01

27 ETHP: ethylperoxy; ISOPP: lumped peroxyradical of isoprene.

28

	Case	e R	Case	R _{wop}	Case	e R _p
Reaction	Rate	Contribution	Rate	Contribution	Rate	Contribution
	$(ppb h^{-1})$	(%)	$(ppb h^{-1})$	(%)	$(ppb h^{-1})$	(%)
			RO ₂ production			
OH+OLET/OLEI	0.192/0.054/0.060	22.45/21.07/14.88	0.264/0.065/0.077	25.81/22.92/17.10	0.537/0.110/0.114	25.62/22.20/16.73
OH+ETH	0.157/0.030/0.041	18.36/11.91/10.24	0.197/0.036/0.049	19.26/12.61/11.00	0.484/0.068/0.080	21.98/13.73/11.78
OH+CH ₄	0.103/0.057/0.135	12.09/22.44/33.97	0.109/0.059/0.142	10.65/20.81/31.55	0.260/0.115/0.223	11.46/23.33/32.73
OH+AONE	0.092/0.018/0.045	10.76/7.09/11.24	0.109/0.020/0.049	10.65/6.99/10.87	0.323/0.047/0.081	13.65/9.55/11.95
OH+XYL	0.052/0.022/0.023	6.06/8.74/5.69	0.066/0.026/0.029	6.45/9.21/6.42	0.141/0.046/0.044	6.63/9.32/6.52
AONE/ETH+hv(C ₂ O ₃)	0.037/0.011/0.011	4.37/4.24/2.71	0.042/0.012/0.012	4.07/4.10/2.67	0.062/0.013/0.012	2.83/2.68/1.74
O ₃ +OLET/OLEI(C ₂ O ₃)	0.031/0.007/0.008	3.63/2.90/1.89	0.029/0.007/0.007	2.87/2.61/1.62	0.025/0.007/0.008	1.33/1.32/1.15
others+ $hv(C_2O_3)$	0.020/0.007/0.007	2.29/2.58/1.67	0.024/0.007/0.008	2.35/2.59/1.75	0.045/0.010/0.008	1.98/1.92/1.11
O ₃ +OLET/OLEI(otherR O ₂)	0.018/0.004/0.004	2.05/1.66/1.07	0.017/0.004/0.004	1.63/1.49/0.91	0.014/0.004/0.004	0.75/0.76/0.65
OH+TOL	0.027/0.007/0.011	3.20/2.66/2.89	0.034/0.008/0.014	3.32/2.80/3.13	0.086/0.015/0.023	3.88/3.13/3.45
OH+ISOP	0.019/0.004/0.002	2.21/1.64//0.49	0.020/0.004/0.003	1.96/1.54/0.60	0.017/0.007/0.003	0.91/1.35/0.46
O ₃ +OLET/OLEI(XO ₂)	0.015/0.003/0.004	1.70/1.36/0.89	0.014/0.003/0.003	1.35/1.22/0.76	0.012/0.003/0.004	0.62/0.62/0.54
AONE/ETH+hv(CH ₃ O ₂)	0.014/0.003/0.004	1.68/1.10/0.92	0.016/0.003/0.004	1.54/1.00/0.83	0.019/0.002/0.003	0.87/0.49/0.49
O ₃ +OLET/OLEI(CH ₃ O ₂)	0.016/0.004/0.004	1.91/1.52/0.99	0.015/0.004/0.004	1.51/1.37/0.86	0.013/0.003/0.004	0.70/0.70/0.61
OH+PEROXID	0.010/0.011/0.014	1.18/4.37/3.40	0.011/0.004/0.014	1.08/4.13/3.23	0.022/0.020/0.022	1.02/4.04/3.28
OH+C ₂ H ₆	0.005/0.002/0.004	0.57/0.87/1.03	0.007/0.003/0.005	0.68/0.93/1.03	0.015/0.005/0.007	0.70/1.03/0.97
NO ₃ +OLET/OLEI (otherRO ₂)	0.005/0.001/0.002	0.53/0.41/0.56	0.005/0.001/0.002	0.45/0.39/0.51	0.005/0.001/0.003	0.24/0.19/0.41
O ₃ +OLET/OLEI (ETHP)	0.008/0.002/0.002	0.97/0.77/0.51	0.008/0.002/0.002	0.77/0.70/0.43	0.007/0.002/0.002	0.35/0.35/0.31

Table S3. Daytime (06:00–18:00 LST) average RO₂ budgets in Beijing/Shanghai/Guangzhou in August 2007.

$OH+C_2H_6$	0.002/0.001/0.002	0.29/0.27/0.48	0.003/0.001/0.002	0.29/0.27/0.48	0.008/0.002/0.004	0.35/0.33/0.54
OH+CH ₃ OH/AN OL/CRES	0.002/0.001/0.001	0.20/0.20/0.23	0.002/0.001/0.001	0.20/0.20/0.23	0.007/0.001/0.002	0.31/0.30/0.30
O_3 +others(C_2O_3)	0.001/<0.001/<0.001	0.07/0.05/0.05	0.001/<0.001/<0.001	0.06/0.04/0.04	0.001/<0.001/<0.001	0.04/0.03/0.04
others+hv(XO ₂)	<0.001/<0.001/<0.001	0.05/0.04/0.05	<0.001/<0.001/<0.001	0.04/0.03/0.04	<0.001/<0.001/<0.001	0.02/0.01/0.03
$H_2O_2+hv(XO_2)$	<0.001/<0.001/<0.001	0.02/0.01/0.01	<0.001/<0.001/<0.001	0.02/0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/0.01
O_3 +ISOP(C_2O_3)	<0.001/<0.001/<0.001	0.02/0.01/<0.01	<0.001/<0.001/<0.001	0.01/0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
others+hv(CH ₃ O ₂)	<0.001/<0.001/<0.001	0.03/0.01/<0.01	<0.001/<0.001/<0.001	0.02 / < 0.01 / < 0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
O ₃ +others(CH ₃ O ₂)	<0.001/<0.001/<0.001	0.01 / < 0.01 / < 0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
H ₂ O ₂ +hv (ETHP)	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
others+hv (ETHP)	<0.001/<0.001/<0.001	0.01/<0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/0.01
$NO_3 + AONE/ETH(C_2O_3)$	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
NO ₃ +others(C ₂ O ₃)	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	$<\!0.01/\!<\!0.01/\!<\!0.01$	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
O_3 +others(XO ₂)	<0.001/<0.001/<0.001	0.01 / < 0.01 / < 0.01	<0.001/<0.001/<0.001	0.01 / < 0.01 / < 0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
O ₃ +ISOP(XO ₂)	<0.001/<0.001/<0.001	0.02/0.01/<0.01	<0.001/<0.001/<0.001	0.01/0.01/<0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
OH+others	0.028/0.005/0.016	3.22/2.06/4.13	0.030/0.006/0.018	2.93/1.98/3.91	0.077/0.014/0.029	3.34/2.61/4.20
Total	0.854/0.254/0.397	100/100/100	0.852/0.283/0.449	100/100/100	2.183/0.494/0.680	100/100/100
			RO ₂ loss			
CH ₃ O ₂ +NO	0.543/0.161/0.328	94.56/95.28/96.07	0.580/0.170/0.346	94.68/95.24/96.06	1.165/0.258/0.522	95.76/96.27/96.30
RO ₂ +NO	0.016/0.004/0.007	2.81/2.64/1.93	0.017/0.005/0.007	2.80/2.69/1.93	0.024/0.005/0.009	1.96/1.94/1.68
NO+ETHP	0.013/0.003/0.005	2.19/1.86/1.36	0.013/0.003/0.005	2.07/1.84/1.36	0.019/0.004/0.007	1.54/1.48/1.25
otherRO2 term	0.002/<0.001/0.001	0.32/0.22/0.27	0.002/<0.001/0.001	0.32/0.22/0.28	0.005/0.001/0.002	0.43/0.29/0.28
CH ₃ O ₂ term	<0.001/<0.001/0.001	0.04/<0.01/0.15	<0.001/<0.001/0.001	0.04/<0.01/0.15	0.001/<0.001/0.001	0.08/<0.01/0.20
HO_2+RO_2	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01	<0.001/<0.001/<0.001	$<\!0.01/\!<\!0.01/\!<\!0.01$	<0.001/<0.001/<0.001	0.01 / < 0.01 / 0.01
XO ₂ term	<0.001/<0.001/<0.001	0.07 / < 0.01 / 0.02	<0.001/<0.001/0.001	0.07/<0.01/0.19	0.002/<0.001/0.001	0.18/0.02/0.26
C_2O_3 term	<0.001/<0.001/<0.001	0.01/<0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/0.02	0.001/<0.001/<0.001	0.05/0.01/0.03

ETHP term	<0.001/<0.001/0.001	<0.01/<0.01/0.19	<0.001/<0.001/<0.001	<0.01/<0.01/0.01	<0.001/<0.001/<0.001	<0.01/<0.01/<0.01
Total	0.574/0.169/0.341	100/100/100	0.613/0.1/9/0.360	100/100/100	1.216/0.268/0.542	100/100/100
30 Species	s in braces for reactions mean	main products.				
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						

53	Reference

54

58

63

- Afif, C., Jambert, C., Colomb, A., Eyglunent, G., Borbon, A., Daële, V., Doussin, J.
 F., and Perros, P. E.: NitroMAC: an instrument for the measurement of HONO.
 Intercomparison with LOPAP, Water Air Soil Poll., in preparation, 2014.
- Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G.,
 Gramsch, E., Rickard, A. R., Pilling, M. J., Kleffmann, J.: Oxidation capacity of
 the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 9(6),
 2257-2273, 2009.
- Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams,
 J., Brookes, D. M., Monks, P. S., and Lelieveld, J.: Oxidation photochemistry in
 the Southern Atlantic boundary layer: unexpected deviations of photochemical
 steady state, Atmos. Chem. Phys., 11, 8497–8513, doi:10.5194/acp-118497-2011, 2011.
- Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp,
 L.,Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: a
 major source of OH radicals in a forest, J. Geophys. Res. Lett., 32(5), doi:
 10.1029/2005GL022524, 2005.
- 74

79

69

Kondo, Y., S. Kawakami, M. Koike, D. Fahey, H. Nakajima, Y. Zhao, N. Toriyama,
M. Kanada, G. Sachse, and G. Gregory.: The performance of an aircraft
instrument for the measurement of NO_y. J. Geophys. Res., 102, 28,663–28,671,
1997.

- Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M.,
 Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A.,
 Furger, M., Dupont, J. C., Haeffelin, M., Doussin, J. F.: Study of the unknown
 HONO daytime source at a European suburban site during the MEGAPOLI
 summer and winter field campaigns. Atmospheric Chemistry and Physics, 14(6),
 2805-2822, 2014.
- 86
- Sörgel, M., Regelin, E., Bozem, H., Diesch, J. M., Drewnick, F., Fischer, H., Harder,
 H., Held, A., Hosaynali-Beygi, Z., Martinez, M., Zetzsch, C.: Quantification of
 the unknown HONO daytime source and its relation to NO₂, Atmospheric
 Chemistry and Physics, 11(20), 10433-10447, 2011.
- 91
- Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., Hu, M.: Occurrence of
 atmospheric nitrous acid in the urban area of Beijing (China), Science of the
 Total Environment, 447, 210-224, 2013.
- 95

Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., Andreae, M. 96 O., Cheng, P., Zhang, Y., Pöschl, U.: Soil nitrite as a source of atmospheric 97 HONO and OH radicals, Science, 333(6049), 1616-1618, 2011. 98 99 100 Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang, 101 Y. H., Wiedensohler, A.: Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE - PRD experiment in China, Journal of Geophysical 102 Research: Atmospheres (1984–2012), 113(D14), 2008. 103 104 VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J., Pszenny, 105 A. A. P., Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R., Wagner, N. L., 106 107 Riedel, T. P., Thornton, J. A., Wolfe, D. E., Dub & W. P., Özt ürk, F., Brock, C. 108 A., Grossberg, N., Lefer, B., Lerner, B. Middlebrook, A. M., Roberts, J. M.: Understanding the role of the ground surface in HONO vertical structure: High 109 resolution vertical profiles during NACHTT-11. Journal of Geophysical 110 Research: Atmospheres, 118, 10,155–10,171, doi:10.1002/jgrd.50721, 2013. 111 112 113 Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Hornbrook, R. S., Knapp, D., Kosciuch, E., Mauldin, R. L., McGrath, J. A., Montzka, D., 114 Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R. 115 M., Liao, J., Huey, L. G., and Kleffmann, J.: Nitrous acid (HONO) during polar 116 spring in Barrow, Alaska: a net source of OH radicals?, J. Geophys. Res. 117 -Atmos., 116(D14), doi: 10.1029/2011JD016643, 2011. 118 119 120 Wagner, N. L., Dubé, W. P., Washenfelder, R. A., Young, C. J., Pollack, I. B., Ryerson, T. B., Brown S. S.: Diode laser-based cavity ring-down instrument for 121 122 NO₃, N₂O₅, NO, NO₂ and O₃ from aircraft, Atmos. Meas. Technol., 4, 1227-1240, 2011. 123 124 Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren, 125 X., Luke, W., Stutz, J.: Daytime HONO vertical gradients during SHARP 2009 126 in Houston, TX, Atmospheric Chemistry and Physics, 12(2), 635-652, 2012. 127 128 129 Wu, J., Xu, Z., Xue, L., and Wang, T.: Daytime nitrous acid at a polluted suburban 130 site in Hong Kong: indication of heterogeneous production on aerosol, in: 131 Proceedings of 12th international conference on atmospheric sciences and 132 applications to air quality, Seoul, Korea, 3–5 June 2013, 52, 2013. 133 Zhang, N., Zhou, X., Bertman, S., Tang, D., Alaghmand, M., Shepson, P. B., Carroll, 134 M. A.: Measurements of ambient HONO concentrations and vertical HONO flux 135 136 above a northern Michigan forest canopy. Atmospheric Chemistry and Physics, 137 12(17), 8285-8296, 2012. 138 Zhou, X., Qiao, H., Deng, G., Civerolo, K.: A method for the measurement of 139

140	atmospheric HONO based on DNPH derivatization and HPLC analysis. Environ.
141	Sci. Technol., 33, 3672–3679, 1999
142	
143	Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., Demerjian, K. Summertime
144	nitrous acid chemistry in the atmospheric boundary layer at a rural site in New
145	York State, Journal of Geophysical Research: Atmospheres (1984-2012),
146	107(D21), ACH-13, 2002a.
147	
148	Zhou, X., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman, S. B.:
149	Photochemical production of nitrous acid on glass sample manifold surface,
150	Geophys. Res. Lett., 29, 26-1 – 26-4, doi: 10.1029/2002GL015080, 2002b.
151	
152	