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Abstract. We deployed a high-resolution proton-transfer-

reaction time-of-flight mass spectrometer (PTR-TOF-MS) to

measure biomass-burning emissions from peat, crop residue,

cooking fires, and many other fire types during the fourth Fire

Lab at Missoula Experiment (FLAME-4) laboratory cam-

paign. A combination of gas standard calibrations and com-

position sensitive, mass-dependent calibration curves was

applied to quantify gas-phase non-methane organic com-

pounds (NMOCs) observed in the complex mixture of fire

emissions. We used several approaches to assign the best

identities to most major “exact masses”, including many high

molecular mass species. Using these methods, approximately

80–96 % of the total NMOC mass detected by the PTR-TOF-

MS and Fourier transform infrared (FTIR) spectroscopy was

positively or tentatively identified for major fuel types. We

report data for many rarely measured or previously unmea-

sured emissions in several compound classes including aro-

matic hydrocarbons, phenolic compounds, and furans; many

of these are suspected secondary organic aerosol precursors.

A large set of new emission factors (EFs) for a range of glob-

ally significant biomass fuels is presented. Measurements

show that oxygenated NMOCs accounted for the largest frac-

tion of emissions of all compound classes. In a brief study

of various traditional and advanced cooking methods, the

EFs for these emissions groups were greatest for open three-

stone cooking in comparison to their more advanced counter-

parts. Several little-studied nitrogen-containing organic com-

pounds were detected from many fuel types, that together

accounted for 0.1–8.7 % of the fuel nitrogen, and some may

play a role in new particle formation.

1 Introduction

Biomass burning (BB) injects large amounts of primary, fine

carbonaceous particles and trace gases into the global atmo-

sphere and significantly impacts its physical and chemical

properties (Crutzen and Andreae, 1990; Bond et al., 2004,

2013). While BB emissions are recognized as the second

largest global atmospheric source of gas-phase non-methane

organic compounds (NMOCs) after biogenic emissions, a

significant portion of the higher molecular weight species

remains unidentified (Christian et al., 2003; Warneke et al.,

2011; Yokelson et al., 2013). It is widely accepted that the

addition of large amounts of these highly reactive species

into the atmosphere alters chemistry on local to global scales

(Andreae and Merlet, 2001; Andreae et al., 2001; Karl et

al., 2007). NMOCs particularly impact smoke evolution by

rapid formation of secondary organic aerosols (SOA) and

secondary gases including photochemical ozone (O3) (Reid

et al., 1998; Trentmann et al., 2005; Alvarado and Prinn,

2009; Yokelson et al., 2009; Vakkari et al., 2014).

The many unknowns and initial gas-phase variability of

BB emissions limit our ability to accurately model the atmo-
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spheric impacts of fire at all scales (Trentmann et al., 2005;

Mason et al., 2006; Alvarado and Prinn, 2009; Alvarado et

al., 2009; Wiedinmyer et al., 2011). Estimating or modeling

the potential of smoke photochemistry to generate secondary

aerosols or O3 requires realistic estimates of NMOC emis-

sions in fresh smoke and knowledge of the chemical pro-

cessing environment. Measurements capable of identifying

and quantifying rarely measured and presently unidentified

emissions of NMOCs, in particular the chemically complex

low volatility fraction, are vital for advancing current under-

standing of the BB impact on air quality and climate.

Proton-transfer-reaction time-of-flight mass spectrometry

(PTR-TOF-MS) is an emerging technique that simultane-

ously detects most NMOCs present in air samples, including

oxygenated organics, aromatics, alkenes, and nitrogen (N)-

containing species at parts per trillion detection limits (pptv)

(Jordan et al., 2009; Graus et al., 2010). The instrument uses

H3O+ reagent ions to ionize NMOCs via proton transfer re-

actions to obtain high-resolution mass spectra of protonated

NMOCs with a low degree of molecular fragmentation at a

mass accuracy sufficient enough to determine molecular for-

mulas (CwHxNyOz).

Although there are many advantages to PTR-TOF-MS

over conventional PTR quadrupole mass spectrometers (in-

creased mass range, high measurement frequency, and high

mass resolution) there remain several difficulties involving

PTR technology, including (1) detection being limited to

molecules with a proton affinity greater than water, (2) com-

plicated spectra due to parent ion fragmentation or cluster ion

formation, and (3) the inability of the method to isolate iso-

mers. Despite the limitations of this technology, PTR-TOF-

MS is ideal for studying complex gaseous mixtures such as

those present in BB smoke.

This study was carried out as part of a large-scale ex-

periment to characterize the initial properties and aging of

gas- and particle-phase emissions in smoke from globally

significant fuels. Experiments were conducted from Octo-

ber to November 2012 during the fourth Fire Lab at Mis-

soula Experiment (FLAME-4) as detailed by Stockwell et

al. (2014). A major goal of the study focused on the identifi-

cation and quantification of highly reactive NMOCs in order

to (1) better characterize the overall chemical and physical

properties of fresh BB emissions; (2) better understand the

distribution of emitted carbon across a range of volatilities

in fresh and aged smoke; and (3) improve the capability of

current photochemical models to simulate the climatic, ra-

diative, chemical, and ecological impacts of smoke on local

to global scales. In a companion paper, the FLAME-4 emis-

sions were compared extensively to field measurements of

fire emissions and were shown to be representative of “real-

world” BB either as is or after straightforward adjustment

procedures detailed therein (Stockwell et al., 2014). In this

work, we describe the first application (to our knowledge) of

PTR-TOF-MS technology to laboratory BB smoke to char-

acterize emissions from a variety of authentic globally sig-

nificant fuels. We report on several new or rarely measured

gases and present a large set of useful emission ratios (ERs)

and emission factors (EFs) for major fuel types that can in-

form/update current atmospheric models.

2 Experimental details

2.1 Missoula fire sciences laboratory

The US Forest Service Fire Sciences Laboratory (FSL) in

Missoula, MT houses a large indoor combustion room de-

scribed in detail elsewhere (Christian et al., 2003; Burling et

al., 2010; Stockwell et al., 2014). In short, fuels are burned on

a bed located directly below a 1.6 m diameter exhaust stack.

The room is slightly pressurized by outdoor air that gener-

ates a large flow, entraining the fire emissions up through

the stack. Emissions are drawn into sampling lines fixed in

the stack at a platform height 17 m above the fuel bed. Past

studies demonstrated that temperature and mixing ratios are

constant across the width of the stack at the platform height,

confirming well-mixed emissions (Christian et al., 2004).

Burns were conducted using two separate configurations

as described in Stockwell et al. (2014). In this paper we

will focus on 125 of the 157 burns. During these fires, well-

mixed fresh smoke was sampled directly from the combus-

tion stack by PTR-TOF-MS roughly 5 s after emission. Re-

sults obtained during the remaining burns that investigate

photochemically processed smoke composition in dual smog

chambers with a suite of state-of-the-art instrumentation are

presented elsewhere (Tkacik et al., 2014).

2.2 Biomass fuels

Descriptions and ignition methods of each fuel type burned

during FLAME-4 are detailed in Stockwell et al. (2014).

Authentic globally significant fuels were collected, includ-

ing African savanna grasses; US grasses; US and Asian crop

residue; Indonesian, temperate, and boreal peat; temperate

and boreal coniferous canopy fuels; woods in traditional

and advanced cooking stoves; shredded tires; and trash. The

range of fuel loading was chosen to simulate real-world con-

ditions for the investigated fuel types with global examples

of biomass consumption shown in Akagi et al. (2011).

2.3 Proton-transfer-reaction time-of-flight mass

spectrometer

Real-time analysis of NMOCs was performed using a com-

mercial PTR-TOF-MS 8000 instrument from Ionicon Ana-

lytik GmbH (Innsbruck, Austria) that is described in detail

by Jordan et al. (2009). The PTR-TOF-MS sampled contin-

uously at a frequency of 0.2 Hz through heated PEEK tubing

(0.0003 m o.d., 80 ◦C) positioned facing upward to limit par-

ticulate uptake. The instrument was configured with a mass

resolution (m/1m) in the range of 4000 to 5000 at m/z 21
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and a typical mass range from m/z 10 to 600. The drift tube

was operated at 600 V with a pressure of 2.3 mbar at 80 ◦C

(E/N ∼ 136 Td, with E as the electric field strength and

N as the concentration of neutral gas; 1 Td= 10−17 Vcm2).

A dynamic dilution system was set up to reduce the con-

centration of sampled smoke and minimize reagent ion de-

pletion. Mass calibration was performed by permeating 1,3-

diiodobenzene (protonated parent mass at m/z 330.85; frag-

ments at m/z 203.94 and 204.94) into a 1 mm section of

Teflon tubing used in the inlet flow system. The high mass ac-

curacy of the data allowed for the determination of the atomic

composition of protonated NMOC signals where peaks were

clearly resolved. The post-acquisition data analysis to re-

trieve counts per second based on peak analysis was per-

formed according to procedures described in detail elsewhere

(Müller et al., 2013, 2011, 2010). An initial selection of ions

(∼ 68 masses up to m/z ∼ 143) was chosen based upon in-

cidence and abundance for post-acquisition analysis. In se-

lect cases (nominally one fire of each fuel type), additional

compounds (∼ 50 masses) were analyzed and are reported

separately within this paper. A reasonable estimation proce-

dure showed that the peaks selected for analysis accounted

for > 99 % of the NMOC mass up to m/z 165 in our PTR-

TOF-MS spectra. An earlier BB study (Yokelson et al., 2013)

using mass scans to m/z 214 found that ∼ 1.5 % of NMOC

mass was present at m/z > 165.

Calibration of the PTR-TOF-MS was performed every few

days at the FSL using a bottle gas standard (Apel-Riemer

Environmental). Calibrations were performed by adding a

known quantity of calibration gas directly to the end of

the PTR-TOF-MS sample inlet. The calibration mixture in-

cluded formaldehyde (HCHO), methanol (CH3OH), acetoni-

trile (CH3CN), acetaldehyde (CH3CHO), acetone (C3H6O),

dimethyl sulfide (C2H6S), isoprene (C5H8), methyl vinyl

ketone (C4H6O), methyl ethyl ketone (C4H8O), benzene

(C6H6), toluene (C6H5CH3), p-xylene (C8H10), 1,3,5-

trimethylbenzene (C9H12), and α-pinene (C10H16).

The normalized sensitivity of the instrument

(ncps ppbv−1) was determined for calibrated compounds

based on the slope of the linear fit of signal intensities

(normalized to the H3O+ signal, ∼ 106 cps) versus a range

of volumetric mixing ratios (VMR). Multipoint calibra-

tion curves varied due to instrumental drift and dilution

adjustments accordingly, and average calibration factors

(CFs, ncps ppbv−1) were determined throughout the field

campaign as described by Warneke et al. (2011) and were

used to calculate concentrations.

Quantification of the remaining species was performed us-

ing calculated mass-dependent calibration factors based on

the measured calibration factors. Figure 1a shows the spread

in the normalized response of compounds versus mass (la-

beled by compound name) overlaid with the linearly fitted

mass-dependent transmission curve (black markers and dot-

ted line). It is clear from Fig. 1a that the oxygenated species

(blue labels) and the hydrocarbon species (green labels) ex-

hibit a slightly different mass-dependent behavior; however,

both groups show a linear increase with mass that is similar

to that observed for the transmission efficiency (Fig. 1b and

c). To reduce bias, mass-dependent calibration factors were

determined using a linear approximation for oxygenated and

hydrocarbon species separately (Fig. 1b and c). α-Pinene was

not included in the linear approximation for hydrocarbons as

this compound is well known to be susceptible to substantial

fragmentation in the drift tube. Sulfur (S)- and N-containing

compounds were considered collectively, and together they

more closely follow the trend of the oxygenated species.

Thus, in cases where a compound contains a non-oxygen

heteroatom (such as methanethiol), the mass-dependent cal-

ibration factor was determined using the relationship estab-

lished using the oxygenated species. Calibration factors were

then determined according to the exact mass for all peaks

where the chemical formula has been determined. Our ap-

proach does not yet account for the potential for ions to frag-

ment and/or cluster; however, we expect this impacts less

than 30 % of NMOC and usually to a small degree for any

individual species. These latter issues change the mass distri-

bution of observed carbon but should not have a large effect

on the total observed carbon.

It is difficult to assess the overall error introduced using

this method of calibration factor approximation, as only a

limited number of comparable measurements of calibration

factors are available. The deviation of measured calibration

factors for species contained in the gas standard from the lin-

ear approximation yields a range of errors (21± 19 %) with a

maximum of 50 % observed in all cases (excluding α-pinene

for reasons detailed above). While PTR-TOF-MS is typically

known as a soft ionization method, fragmentation is common

among higher molecular weight species and therefore needs

to be considered as a limitation of this technique. For the in-

dividual species identified it would be misleading to give a

set error based on this limited analysis; however, in the ab-

sence of any known molecular fragmentation, a maximum

error of 50 % is prescribed although larger errors are possi-

ble for compounds with N and S heteroatoms. Better meth-

ods for the calculation of mass-dependent calibration factors

by compound class should be developed in the near future to

improve the accuracy of volatile organic compound (VOC)

measurements using PTR-TOF-MS.

2.4 OP-FTIR

To enhance application of the MS data, emission ratios to

carbon monoxide (CO) were calculated where possible using

measurements from an open-path Fourier transform infrared

(OP-FTIR) spectrometer described elsewhere (Stockwell et

al., 2014). The system includes a Bruker Matrix-M IR cube

spectrometer with an open White cell that was positioned to

span the width of the stack to sample the continuously ris-

ing emissions. The spectral resolution was set to 0.67 cm−1

and spectra were collected every 1.5 s with a duty cycle
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Figure 1. (a) The normalized response of calibration factors (“CF,” ncps ppbv−1) versus mass (calibrated species labeled by name) overlaid

with the linearly fitted mass-dependent transmission curve (black markers and dotted line). Separate linear approximations of (b) oxygenated

(blue) and (c) hydrocarbon (green) species used to calculate approximate calibration factors for all observed masses where explicit calibra-

tions were not available.

greater than 95 %. Other gas-phase species quantified by

this method included carbon dioxide (CO2), methane (CH4),

ethyne (C2H2), ethene (C2H4), propylene (C3H6), formalde-

hyde (HCHO), formic acid (HCOOH), methanol (CH3OH),

acetic acid (CH3COOH), glycolaldehyde (C2H4O2), furan

(C4H4O), water (H2O), nitric oxide (NO), nitrogen diox-

ide (NO2), nitrous acid (HONO), ammonia (NH3), hydrogen

cyanide (HCN), hydrogen chloride (HCl), and sulfur dioxide

(SO2) and were obtained by multi-component fits to selected

regions of the mid-IR transmission spectra with a synthetic

calibration non-linear least-squares method (Griffith, 1996;

Yokelson et al., 2007).

The OP-FTIR system had the highest time resolution with

no sampling line, storage, fragmentation, or clustering arti-

facts; thus, for species in common with PTR-TOF-MS, the

OP-FTIR data was used as the primary data. The results from

the intercomparison (for methanol) of OP-FTIR and PTR-

TOF-MS show excellent agreement using an orthogonal dis-

tance regression to determine slope (0.995± 0.008) and the

R2 coefficient (0.789). This result is consistent with the good

agreement for several species measured by both PTR-MS

and OP-FTIR observed in numerous past studies of labora-

tory BB emissions (Christian et al., 2004; Karl et al., 2007;

Veres et al. 2010; Warneke et al., 2011).

2.5 Emission ratio and emission factor determination

Excess mixing ratios (denoted 1X for each species “X”)

were calculated by applying an interpolated background cor-

rection (determined from the pre- and post-fire concentra-

tions). The molar emission ratio (ER) for each species “X”

relative to CH3OH (1X/1CH3OH) is the ratio between

the integral of 1X over the entire fire and the integral of

1CH3OH over the entire fire. We selected CH3OH as the

species in common with the OP-FTIR to serve as an inter-

nal standard for the calculation of the fire-integrated ERs of

each species X to CO (Supplement Table S1). We do this

by multiplying the MS-derived ER (1X/1CH3OH) by the

FTIR-derived ER (1CH3OH/1CO), which minimizes er-

ror due to occasional reagent ion depletion or the different

sampling frequencies between instruments that would im-

pact calculating1X to1CO directly. Several fires have been

excluded from this calculation as data were either not col-

lected by OP-FTIR and/or PTR-TOF-MS or, alternatively,

methanol data could not be applied for the conversion be-

cause (1) the mixing ratios remained below the detection

limit or (2) methanol was used to assist ignition purposes

during a few fires. In the case of the tire fires only, the lat-

ter issue with CH3OH was circumvented by using HCOOH

(m/z 47) as a suitable, alternative internal standard. As dis-
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cussed in Sect. 2.3., ∼ 50 additional masses were analyzed

for selected fires and the ERs (to CO) for these fires are in-

cluded in the bottom panels of Table S1. The combined ERs

to CO from the FTIR and PTR-TOF were then used to cal-

culate emission factors (EFs, g kg−1 dry biomass burned)

by the carbon mass-balance method (CMB) based on the

assumption that all of the burned carbon is volatilized and

that all of the major carbon-containing species have been

measured (Ward and Radke, 1993; Yokelson et al., 1996,

1999; Burling et al., 2010). EFs were previously calculated

solely from FLAME-4 OP-FTIR data as described in Stock-

well et al. (2014), and a new larger set of EFs, which in-

cludes more carbon-containing species quantified by PTR-

TOF-MS, is now shown in Supplement Table S2. With the

additional carbon compounds quantified by PTR-TOF-MS,

the EFs calculated by CMB decreased∼ 1–2 % for most ma-

jor fuels with respect to the previous EFs reported in Stock-

well et al. (2014). In the case of peat and sugar cane fires, the

OP-FTIR-derived EFs are now reduced by a range of ∼ 2–

5 % and 3.5–7.5 %, respectively. Along with these small re-

ductions, this work now provides EFs for many additional

species that were unavailable in Stockwell et al. (2014). Fi-

nally, the EFs reported in Supplement Table S3 were adjusted

(when needed) according to procedures established in Stock-

well et al. (2014) to improve laboratory representation of

real-world BB emissions. This table contains the EF we rec-

ommend other workers use and it appears in the Supplement

only because of its large size. In addition to the comparisons

considered in Stockwell et al. (2014), we find that our EFs

in Table S3 are consistent (for the limited number of overlap

species) with additional, recent field studies including Kudo

et al. (2014) for Chinese crop residue fires and Geron and

Hays (2013) for North Carolina (NC) peat fires.

Fire emissions are partially dependent on naturally chang-

ing combustion processes. To estimate the relative amount

of smoldering and flaming combustion that occurred over

the course of each fire, the modified combustion efficiency

(MCE) is calculated by (Yokelson et al., 1996)

MCE=
1CO2

1CO2+1CO
=

1(
1+

(
1CO
1CO2

)) . (1)

Though flaming and smoldering combustion often occur si-

multaneously, a higher MCE value (approaching 0.99) des-

ignates relatively pure flaming combustion (more complete

oxidation), a lower MCE (0.75–0.84) designates pure smol-

dering combustion, and thus an MCE of ∼ 0.9 represents

roughly equal amounts of flaming and smoldering. Each fire-

integrated MCE is reported in Tables S1–S3.

Figure 2. A typical full mass scan of biomass burning smoke from

the PTR-TOF-MS on a logarithmic (a) and a smaller range linear

(b) scale. The internal standard (1,3-diiodobenzene) accounts for

the major peaks ∼m/z 331 and fragments at peaks near m/z 204

and 205.

3 Results

3.1 Peak assignment

As exemplified by a typical PTR-TOF-MS spectrum of di-

luted smoke (Fig. 2a), the complexity of BB smoke emissions

presents challenges to mass spectral interpretation and ulti-

mately emissions characterization. Figure 2b shows a smaller

mass range of the smoke sample shown in Fig. 2a on a lin-

ear scale to illustrate the typical relative importance of the

masses (note the intensity of acetaldehyde (m/z 45) and

acetic acid plus glycolaldehyde (m/z 61), which together ac-

count for almost 25 % of the total signal). Although the spec-

tra are very complex, systematic treatment of the burn data,

assisted at some m/z by extensive published “off-line” anal-

yses, can generate reasonable assignments for many major

peaks and result in useful emissions quantification.

As described earlier, the PTR-TOF-MS scans have suf-

ficiently high resolution to assign molecular formulas

(CwHxNyOz) to specific ion peaks by matching the mea-

sured exact mass with possible formula candidates for the

protonated compound. Specific compound identification for

formula candidates can be unambiguous if only one species

is structurally plausible or explicit identification of the com-

pound had previously been confirmed by BB smoke analy-

sis (Akagi et al., 2011; Yokelson et al., 2013, etc.). Supple-

ment Table S4 lists every mass and formula assignment for

observable peaks up to m/z 165 and categorizes each mass

as a confirmed identity, a tentative (most likely) species as-

signment, or an unknown compound. For several confirmed

identities, the most abundant species at that exact mass is

listed with likely contributions to the total signal from the

secondary species listed in column 5. Most of the tentatively
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identified species have, to our knowledge, typically not been

directly observed in BB smoke but have been frequently ver-

ified as major products with off-line techniques in the exten-

sive literature describing biomass pyrolysis experiments of

various fuel types (Liu et al., 2012; Pittman Jr. et al., 2012;

Li et al., 2013; more citations in Table S4). Several tentative

assignments are supported by off-line analyses being pub-

lished elsewhere (Hatch et al., 2014); for example, simulta-

neous grab samples analyzed by two-dimensional gas chro-

matography (2D-GC) support tentative assignments for fu-

ran methanol, salicylaldehyde, and benzofuran. In the case of

N-containing formulas, the suggested compounds have been

observed in the atmosphere, tobacco smoke, or lab fire smoke

at moderate levels (Lobert, 1991; Ge et al., 2011; etc). Se-

lect studies supporting these assignments are referenced in

the mass table with alternative possibilities also listed. An

exhaustive list of all the many papers supporting the assign-

ments is beyond the scope of this work. Several remaining

compounds are also classified as tentative assignments as the

identities designated are thought to be the most structurally

likely. We anticipate that some or even many of the tentative

assignments (and a few of the confirmed assignments) will

be refined in future years as a result of more studies becom-

ing available. We offer the tentative assignments here as a

realistic starting point that improves model input compared

to an approach in which these species are simply ignored.

3.2 Unidentified compounds

The identities of several compounds remain unknown, es-

pecially at increasing mass where numerous structural and

functional combinations are feasible. However, compared to

earlier work at unit mass resolution (Warneke et al., 2011;

Yokelson et al., 2013), the high-resolution capability of the

PTR-TOF-MS has enhanced our ability to assign mass peaks

while always identifying atomic composition. With unit mass

resolution spectrometers, FTIR, and GC-MS grab samples,

Yokelson et al. (2013) estimated that∼ 31 to 72 % of the gas-

phase NMOC mass remained unidentified for several fuel

types. For similar, commonly burned biomass fuels (cha-

parral, grasses, crop residue, etc.), considering a PTR-TOF

range up to m/z 165, we estimate that ∼ 7 % of the detected

NMOC mass remains unidentified, while ∼ 12 % is tenta-

tively assigned using selection criteria described in Sect. 3.1.

The compounds considered in this study cover a smaller mass

range (up tom/z 165 rather thanm/z 214) than in the earlier

study, but in that earlier study the compounds in the range

m/z 165–214 accounted for only ∼ 1.5 % of the NMOC

mass (Yokelson et al., 2013). Thus, the molecular formula

assignments from the PTR-TOF aided in positive and tenta-

tive identification and quantification resulting in a reduction

of the estimate of unidentified NMOCs from∼ 31 % down to

∼ 7 %.

Calculations of unidentified and tentatively assigned emis-

sions relative to overall NMOC emissions (including FTIR

species) for several lumped fuel groups are summarized in

Table 1. Estimates of total intermediate and semivolatile gas-

phase organic compounds (IVOC+SVOC, estimated as the

sum of species at or above the mass of toluene) are also in-

cluded as these less volatile compounds are likely to gen-

erate SOA via oxidation and/or cooling. Similar to previ-

ous organic soil fire data, the percentages of unidentified

and tentatively identified NMOCs for peat burns are signifi-

cantly larger than for other fuel types (sum∼ 37 %), and they

could be a major source of impacts and uncertainty during El

Niño years when peat combustion is a major global emission

source (Page et al., 2002; Akagi et al., 2011).

4 Discussion

For all fuel types, there is noticeable variability concerning

which compounds have the most significant emissions. Fig-

ure 3 includes both FTIR and PTR emissions grouped into

the following categories: non-methane hydrocarbons, oxy-

genates containing only one oxygen, oxygenates containing

two oxygen atoms, and oxygenates containing three oxy-

gen atoms. Within these categories, the contributions from

aromatics, phenolic compounds, and furans are further in-

dicated. As shown in Fig. 3, oxygenated compounds ac-

count for the majority of the emissions for all biomass or

biomass-containing fuels (i.e. tires and plastic bags are ex-

cluded). Oxygenated compounds containing only a single

oxygen atom accounted for∼ 50 % of the total raw mass sig-

nal (>m/z 28, excluding m/z 37) on average and normally

had greater emissions than oxygenated compounds contain-

ing two oxygen atoms or hydrocarbons. Sugar cane has the

highest emissions of oxygenated compounds, as was noted

earlier in the FTIR data (Stockwell et al., 2014), and is one

of the few fuels where the emissions of compounds con-

taining two oxygens are the largest. To facilitate discussion

we grouped many of the assigned (or tentatively assigned)

mass peak features into categories including aromatic hy-

drocarbons, phenolic compounds, furans, N-containing com-

pounds, and S-containing compounds. These categories do

not account for the majority of the emitted NMOC mass but

do account for most of the rarely measured species reported

in this work. We then also discuss miscellaneous compounds

at increasing m/z.

4.1 Aromatic hydrocarbons

Aromatic hydrocarbons contributed most significantly to

the emissions for several major fuel types including pon-

derosa pine, peat, and black spruce. The identities of

these ringed structures are more confidently assigned due

to the small H to C ratio at high masses. The aromat-

ics confidently identified in this study include benzene

(m/z 79), toluene (m/z 93), phenylacetylene (m/z 103),

styrene (m/z 105), xylenes/ethylbenzene (m/z 107), 1,3,5-
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Table 1. Quantities for various categories of compounds (gkg−1) and calculation of mass ratios and/or percentages for several fuel types.

Quantity or ratio Chaparral Coniferous Peat Grasses Cooking Crop Trash

canopy fires residue

6 NMOCs 13.1 23.9 40.5 5.17 8.16 29.6 7.13

6 I/SVOCs∗ 3.49 7.13 14.6 1.38 1.33 7.21 1.83

6 tentatively assigned NMOCs 1.43 2.77 7.01 0.72 0.72 4.38 0.51

6 unidentified NMOCs 1.23 1.79 7.50 0.39 0.33 2.10 0.41

6 (I/SVOCs)/6 NMOC 0.21 0.28 0.37 0.26 0.15 0.24 0.26

Percent NMOCs tentatively assigned 8.35 9.74 17.5 13.9 8.19 14.0 7.20

Percent NMOCs unidentified 7.24 6.75 19.5 7.19 3.77 6.90 5.75

Percent NMOCs tentatively + unidentified 16 16 37 21 12 21 13

∗ See Sect. 3.2 for definition.

Figure 3. The emission factors (g kg−1) of total observed hydrocarbons and total observed species oxygenated to different degrees averaged

for each fire type based on a synthesis of PTR-TOF-MS and OP-FTIR data. The patterned sections indicate the contribution to each of the

above categories by selected functionalities discussed in the text (aromatic hydrocarbons, phenolics, furans). The parenthetical expressions

indicate how many oxygen atoms are present.

trimethylbenzene (m/z 121), and naphthalene (m/z 129),

while masses more tentatively assigned include dihydron-

aphthalene (m/z 131), p-cymene (m/z 135), and methyl-

naphthalenes (m/z 143). All masses are likely to have mi-

nor contributions from other hydrocarbon species. The EFs

for aromatic species quantified during all fires are averaged

by fuel type and shown in Fig. 4a. The EF for p-cymene

was only calculated for select burns and has been included in

Fig. 4a for comprehensiveness.

Aromatic structures are susceptible to multiple oxidation

pathways and readily drive complex chemical reactions in

the atmosphere that are highly dependent on hydroxyl radi-

cal (OH) reactivity (Phousongphouang and Arey, 2002; Zie-

mann and Atkinson, 2012). Ultimately these gas-phase aro-

matic species have high yields for SOA as their physical and

chemical evolution lead to lower volatility species that con-

dense into the particle phase. SOA yields from these par-

ent aromatic HCs have been shown to strongly vary depend-

ing on environmental parameters including relative humidity,

temperature, aerosol mass concentration, and particularly the

level of nitrogen oxides (NOx) and availability of RO2 radi-

cals, further adding to the complexity in modeling the behav-

ior and fate of these compounds (Ng et al., 2007; Song et al.,

2007; Henze et al., 2008; Chhabra et al., 2010, 2011; Im et

al., 2014).

Domestic biofuel burning and open BB together comprise

the largest global atmospheric source of benzene (Andreae

and Merlet, 2001; Henze et al., 2008); thus, not surprisingly,

benzene is a significant aromatic in our data set. The ERs rel-

ative to benzene for the aromatics listed above are shown in

Table 2 and are positively correlated with benzene as demon-

strated by Fig. 4b. Henze et al. (2008) outline how ERs to

CO of major aromatics (benzene, xylene, and toluene) can

be implemented as a part of a model to predict SOA forma-
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Table 2a. Emission ratios to benzene, phenol, and furan for aromatic hydrocarbons, phenolic compounds, and substituted furans in lumped

fuel categories.

Fuel Grasses Coniferous Chaparral Peat (6) Crop

type (42) canopy (8) residue

(# burns) (14) (food, 19)

ER/benzene MCE 0.968 (0.010) 0.933 (0.032) 0.927 (0.017) 0.767 (0.074) 0.946 (0.022)

Toluene C7H8 0.44 (0.26) 2.19 (0.84) 0.49 (0.17) 0.53 (0.17) 0.70 (0.22)

Phenylacetylene C8H6 0.094 (0.022) 0.13 0.067 (0.039) – 0.65 (0.45)

Styrene C8H8 0.078 (0.025) 0.11 (0.02) 0.074 (0.020) 0.087 (0.027) 0.10 (0.03)

Xylenes/ethylbenzene C8H10 0.102 (0.058) 0.21 (0.03) 0.12 (0.03) 0.32 (0.16) 0.20 (0.08)

Trimethylbenzene C9H12 0.059 (0.045) 0.11 (0.03) 0.043 (0.023) 0.17 (0.08) 0.11 (0.05)

Naphthalene C10H8 0.18 (0.16) 0.13 (0.05) 0.10 (0.03) 0.15 (0.09) 0.20 (0.17)

Dihydronaphthalene C10H10 0.040 (0.030) 0.034 (0.016) 0.020 (0.010) 0.050 (0.019) 0.059 (0.028)

p-Cymenea C10H14 0.018 (0.013) 0.11 (0.01) 0.037 0.15 (0.12) 0.035 (0.019)

Methylnaphthalenes C11H10 0.032 (0.009) 0.053 (0.005) 0.033 (0.007) – 0.19 (0.09)

ER/phenol

Cresols (methylphenols)a C7H8O 0.52 (0.19) 0.55 (0.07) 0.49 0.29 (0.18) 0.57 (0.10)

Catechol (benzenediols)b C6H6O2 0.73 (0.41) 0.76 (0.29) 1.72 (1.28) 1.58 (1.03) 0.93 (0.45)

Vinylphenol C8H8O 0.66 (0.19) 0.33 (0.09) 0.30 (0.05) 0.18 (0.05) 0.60 (0.35)

Salicylaldehyde C7H6O2 0.18 (0.06) 0.17 (0.04) 0.15 (0.04) 0.20 (0.13) 0.18 (0.08)

Xylenol (2,5-dimethyl phenol) C8H10O 0.25 (0.09) 0.19 (0.06) 0.11 (0.06) 0.31 (0.09) 0.34 (0.07)

Guaiacol (2-methoxyphenol) C7H8O2 0.40 (0.23) 0.42 (0.12) 0.21 (0.09) 0.71 (0.36) 0.76 (0.33)

Creosol (4-methylguaiacol)a C8H10O2 0.21 (0.16) 0.21 (0.09) 0.067 0.12 (0.17) 0.19 (0.10)

3-Methoxycatechola C7H8O3 0.090 (0.072) 0.067 (0.031) 0.028 0.19 (0.04) 0.066 (0.037)

4-Vinylguaiacola C9H10O2 0.29 (0.19) 0.27 (0.12) 0.052 0.27 (0.04) 0.37 (0.19)

Syringola C8H10O3 0.13 (0.07) 0.078 (0.029) 0.21 (0.12) 0.22 (0.07) 0.16 (0.10)

ER/furan

2-Methylfuran C5H6O 0.53 (0.27) 1.02 (0.40) 0.77 (0.30) 0.34 (0.14) 1.50 (0.66)

2-Furanone C4H4O2 0.93 (0.50) 1.53 (0.80) 0.96 (0.49) 0.44 (0.36) 2.05 (1.09)

2-Furaldehyde (furfural) C5H4O2 1.61 (0.81) 1.82 (0.85) 1.35 (0.75) 1.34 (0.85) 2.78 (1.21)

2,5-Dimethylfurana C6H8O 0.27 (0.09) 0.58 (0.20) 0.615573 0.11 (0.01) 0.62 (0.77)

Furfuryl alcohol C5H6O2 0.77 (0.49) 1.23 (0.57) 0.85 (0.44) 0.25 (0.21) 1.98 (1.21)

Methylfurfuralb C6H6O2 0.42 (0.24) 1.18 (0.89) 1.95 (1.49) 0.44 (0.35) 0.98 (0.52)

Benzofuran C8H6O 0.059 (0.028) 0.11 (0.05) 0.10 (0.05) 0.017 (0.010) 0.10 (0.04)

Hydroxymethylfurfural C6H6O3 0.21 (0.16) 0.64 (0.43) 0.28 (0.19) 0.18 (0.14) 0.49 (0.35)

Methylbenzofuran isomersa C9H8O 0.67 (0.58) – – – –

tion. An identical or similar approach that incorporates the

additional aromatics detected by PTR-TOF-MS in this work

may be useful to predict the contribution of aromatics from

BB to global SOA by various reaction pathways.

Toluene, another major emission, often serves as a model

compound to study the formation of SOA from other small

ringed volatile organic compounds (Hildebrandt et al., 2009).

Black spruce yielded the greatest toluene ER (to benzene)

during FLAME-4 (3.24± 0.42) and has been linked to sig-

nificant OA enhancement during chamber photo-oxidation

aging experiments investigating open BB emissions during

FLAME-3, though toluene was not significant enough to ac-

count for all of the observed SOA (Hennigan et al., 2011).

Naphthalene is the simplest species in a class of carcino-

genic and neurotoxic compounds known as polycyclic aro-

matic hydrocarbons (PAH) and was detected from all fuels.

The rapid rate of photo-oxidation of these smaller ringed

gas-phase PAHs (including naphthalene and methylnaph-

thalenes) can have important impacts on the amount and

properties of SOA formed and yields significantly more SOA

over shorter time spans in comparison to lighter aromatics

(Chan et al., 2009). Under low-NOx conditions (BB events

generate NOx, though at lower ratios to NMOC and/or CO

than those present in urban environments) the SOA yield

for benzene, toluene, and m-xylene was ∼ 30 % (Ng et al.,

2007), while naphthalene yielded enhancements as great as

73 % (Chan et al., 2009).

In summary, many of the species identified and detected

during FLAME-4 are associated with aerosol formation un-

der diverse ambient conditions (Fisseha et al., 2004; Na et
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Table 2b. Continued.

Crop Open three- Rocket Gasifier Trash Tires Plastic

residue stone cookstoves cookstove (2) (1) bags

(feed, 9) cooking (3) (5) (1) (1)

ER/benzene; MCE 0.940 (0.017) 0.968 (0.004) 0.972 (0.015) 0.984 0.973 (0.006) 0.961 0.994

Toluene 1.00 (0.44) 0.095 (0.029) 0.98 (1.39) 0.24 0.41 (0.20) 0.056 0.69

Phenylacetylene 0.14 (0.09) 0.10 (0.05) – – – 0.020 –

Styrene 0.14 (0.05) 0.054 (0.021) 0.076 (0.023) 0.042 0.86 (0.16) 0.064 0.094

Xylenes/ethylbenzene 0.24 (0.11) 0.052 (0.034) 0.10 (0.05) 0.048 0.095 (0.017) 0.043 0.029

Trimethylbenzene 0.11 (0.06) 0.014 (0.007) 0.050 (0.048) 0.026 0.033 (0.016) 0.011 0.047

Naphthalene 0.18 (0.11) 0.21 (0.05) 0.30 (0.17) 0.12 0.10 0.19 0.059

Dihydronaphthalene 0.051 (0.021) 0.019 (0.006) – – – 9.81× 10−3 –

p-Cymenea 0.11 (0.03) 4.10× 10−3 – nm 0.018 nm nm

Methylnaphthalenes 0.057 (0.037) – – – – 0.031 –

ER/phenol

Cresols (methylphenols)a 0.61 (0.14) – 0.34 (0.28) nm nm nm nm

Catechol (benzenediols)b 0.67 (0.30) 0.74 (0.65) 1.86 (1.29) 0.49 1.12 (0.65) 0.082 0.31

Vinylphenol 0.29 (0.06) 0.18 (0.06) 0.25 (0.18) 0.14 0.34 (0.02) 0.17 0.33

Salicylaldehyde 0.11 (0.04) 0.16 (0.06) 0.27 (0.15) 0.22 0.28 (0.09) 0.17 –

Xylenol (2,5-dimethyl phenol) 0.33 (0.07) 0.18 (0.09) 0.35 (0.11) 0.11 0.23 (0.00) 0.026 –

Guaiacol (2-methoxyphenol) 0.47 (0.16) 0.52 (0.40) 1.30 (0.73) 0.31 0.54 (0.32) 0.019 2.02

Creosol (4-methylguaiacol)a 0.24 (0.07) 0.46 0.62 (0.23) nm 0.043 nm nm

3-Methoxycatechola 0.063 (0.035) 0.28 0.44 nm 0.14 nm nm

4-Vinylguaiacola 0.31 (0.11) 0.34 0.35 (0.22) nm 0.054 nm nm

Syringola 0.12 (0.02) 0.94 0.92 (0.53) nm – nm nm

ER/furan

2-Methylfuran 1.36 (0.38) 0.95 (0.33) 1.66 (1.95) 0.55 0.64 (0.02) 2.10 2.10

2-Furanone 1.16 (0.56) 0.73 (0.21) 2.37 (3.39) 1.28 1.04 (0.49) 3.02 –

2-Furaldehyde (furfural) 1.69 (0.96) 2.47 (1.84) 5.69 (8.46) 1.26 1.03 (0.29) 2.09 0.39

2,5-Dimethylfurana 0.98 (0.14) – – nm 0.2715416 nm nm

Furfuryl alcohol 1.21 (0.55) 0.86 (0.25) 1.35 0.00 0.78 (0.31) 1.06 1.03

Methylfurfuralb 0.90 (0.42) 0.59 (0.20) 1.06 (1.32) 0.37 0.38 (0.06) 1.33 0.093

Benzofuran 0.11 (0.05) 0.39 (0.57) 0.041 (0.030) 0.069 0.058 (0.018) 2.79 0.056

Hydroxymethylfurfural 0.27 (0.14) 0.20 (0.06) 0.44 (0.52) 0.30 0.39 (0.22) 0.28 –

Methylbenzofuran isomersa – – – nm – nm nm

Note: “nm” indicates not measured; blank indicates species remained below the detection limits; values in parentheses indicate one standard deviation.
a Species were only selected for a few key fires and are not considered the average of each fuel type.
b Significant contributions from both methylfurfural and catechol were reported in pyrolysis reference papers, thus there is no indication which species is the major contributor at this

mass.

al., 2006; Ng et al., 2007; Chan et al., 2009). We present

here initial emissions for a variety of aromatics from major

global fuels. A more focused study to probe the extent and

significance of SOA formation in BB plumes by these aro-

matic precursors was performed by chamber oxidation dur-

ing the FLAME-4 campaign and will be presented in Tkacik

et al. (2014).

4.2 Phenolic compounds

Phenol is detected at m/z 95. Earlier studies burning a vari-

ety of biomass fuels found that OP-FTIR measurements of

phenol accounted for the observed PTR-MS signal at this

mass even at unit mass resolution, though small contribu-

tions from other species such as vinyl furan were possible

but not detected (Christian et al., 2004). 2D-GC grab sam-

ples in FLAME-4 found that other species with the same

formula (only vinyl furan) were present at levels less than

2 % of phenol (Hatch et al., 2014). Thus, we assumed that

within experimental uncertainty, m/z 95 was a phenol mea-

surement in this study and found that phenol was one of the

most abundant oxygenated aromatic compounds detected.

Several substituted phenols were speciated for every fire and

included catechol (m/z 111), vinylphenol (m/z 121), salicy-

laldehyde (m/z 123), xylenol (m/z 123), and guaiacol (m/z

125) (Fig. 5a). Several additional species were quantified for

selected fires and included cresol (m/z 109), creosol (m/z

139), 3-methoxycatechol (m/z 141), 4-vinylguaiacol (m/z
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Figure 4. (a) The EFs of the aromatics analyzed in all fires aver-

aged and shown by fuel type. Individual contributions from benzene

and other aromatics are indicated by color. The EFs for p-cymene

are only calculated for select fires and should not be considered a

true average. (b) The correlation plots of selected aromatics with

benzene during a black spruce fire (Fire 74). Similar behavior was

observed for all other fuel types.

151), and syringol (m/z 155). The EFs for these additional

phenolic compounds were calculated for select burns and are

included in Fig. 5a with the regularly analyzed compounds.

Significant emissions of these compounds are reported in Ta-

ble 2 relative to phenol, and the selected compounds shown

in Fig. 5b demonstrate the tight correlation between these

derivatives and phenol.

Phenol, methoxyphenols (guaiacols), dimethoxyphenols

(syringol), and their derivatives are formed during the pyroly-

sis of lignin (Simoneit et al., 1993) and can readily react with

OH radicals leading to SOA formation (Coeur-Tourneur et al,

2010; Lauraguais et al., 2014). Hawthorne et al. (1989, 1992)

found that phenols and guaiacols accounted for 21 and 45 %

of aerosol mass from wood smoke, while Yee et al. (2013)

noted large SOA yields for phenol (24–44 %), guaiacol (44–

Figure 5. (a) The distribution in average fuel EF for several phe-

nolic compounds, where compound-specific contributions are in-

dicated by color. The EFs for compounds additionally analyzed a

single time for select fires are included but are not a true average.

(b) The linear correlation of select phenolic compounds with phenol

during an organic hay burn (Fire 119).

50 %), and syringol (25–37 %) by photo-oxidation chamber

experiments under low-NOx conditions (<10 ppb).

Softwoods are considered lignin-rich and are associated

predominately with guaiacyl units (Shafizadeh, 1982). Thus

not surprisingly, guaiacol emissions were significant for pon-

derosa pine. Peat, an accumulation of decomposing vegeta-

tion (moss, herbaceous, woody materials), has varying de-

grees of lignin content depending on the extent of decom-

position, sampling depth, water table levels, etc. (Williams

et al., 2003). The peat burns all emitted significant amounts

of phenolic compounds, with noticeable compound-specific

variability between regions (Indonesia, Canada, and North

Carolina). It is also noteworthy that sugar cane, which also

produced highly oxygenated emissions based on FTIR and

PTR-TOF-MS results, had the greatest total emissions of

phenolic compounds.

The photochemical formation of nitrophenols and ni-

troguaiacols by atmospheric oxidation of phenols and sub-

stituted phenols via OH radicals in the presence of NOx is
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a potential reaction pathway for these compounds (Atkin-

son et al., 1992; Olariu et al., 2002; Harrison et al., 2005;

Lauraguais et al., 2014). Nitration of phenol in either the gas

or aerosol phase is anticipated to account for a large portion

of nitrophenols in the environment. Higher nitrophenol lev-

els are correlated with increased plant damage (Hinkel et al.,

1989; Natangelo et al., 1999) and consequently are linked

to forest decline in central Europe and North America (Rip-

pen et al., 1987). Nitrophenols are also important compo-

nents of brown carbon and can contribute to SOA forma-

tion in BB plumes (Kitanovski et al., 2012; Desyaterik et

al., 2013; Mohr et al., 2013; Zhang et al., 2013). Nitrated

phenols including nitroguaiacols and methyl-nitrocatechols

are suggested as suitable BB molecular tracers for secondary

BB aerosol considering their reactivity with atmospheric ox-

idants is limited (Iinuma et al., 2010; Kitanovski et al., 2012;

Lauraguais et al., 2014). The oxidation products from the

phenolic compounds detected in fresh smoke here have not

been directly examined and would require a more focused

study beyond the scope of this paper.

As with the aromatic compounds, the ERs provided in Ta-

ble 2 can be used to estimate initial BB emissions of pheno-

lic species, both rarely measured or previously unmeasured,

from a variety of fuels in order to improve atmospheric mod-

eling of SOA and nitrophenol formation.

4.3 Furans

Other significant oxygenated compounds include furan and

substituted furans which arise from the pyrolysis of cellulose

and hemicellulose. The substituted furans regularly quan-

tified included 2-methylfuran (m/z 83), 2-furanone (m/z

85), furfural (m/z 97), furfuryl alcohol (m/z 99), methylfur-

fural (m/z 111), benzofuran (m/z 119), and hydroxymethyl-

furfural (m/z 127), while 2,5-dimethylfuran (m/z 97) and

methylbenzofurans (m/z 133) were occasionally quantified.

The ERs to furan for these compounds are summarized in

Table 2, and Fig. 6a shows the average EF for the regularly

quantified masses and the individual fire EFs for the occa-

sionally quantified compounds.

Furan and substituted furans are oxidized in the atmo-

sphere primarily by OH (Bierbach et al., 1995), but also

by NO3 (Berndt et al., 1997) or Cl atoms (Cabañas et al.,

2005; Villanueva et al., 2007). Photo-oxidation of furan, 2-

methylfuran, and 3-methylfuran produces butenedial, 4-oxo-

2-pentenal, and 2-methylbutenedial (Bierbach et al 1994,

1995). These products are highly reactive and can lead to

free radical (Wagner et al., 2003), SOA, or O3 formation. In

fact, aerosol formation from photo-oxidation chamber exper-

iments has been observed for furans and their reactive inter-

mediates listed above (Gomez Alvarez et al., 2009; Strollo

and Ziemann, 2013). Even less is known concerning SOA

yields from furans with oxygenated functional groups, which

comprise the majority of the furan emissions in this study.

Alvarado and Prinn (2009) added reaction rates for furans

Figure 6. (a) The distribution in average fuel EF for furan and

substituted furans, where individual contributions are indicated by

color. The EFs for substituted furans additionally analyzed a single

time are not true averages (b) The linear correlation of furan with

select substituted furans for an African grass fire (Fire 49).

based on 2-methylfuran and butenedial values (Bierbach et

al., 1994, 1995) to model O3 formation in an aging savanna

smoke plume. Although a slight increase in O3 was observed

after 60 min, it was not large enough to account for the ob-

served O3 concentrations in the plume. The furan and sub-

stituted furan ERs compiled here may help explain a portion

of the SOA and O3 produced from fires that cannot be ac-

counted for based upon previously implemented precursors

(Grieshop et al., 2009).

Furfural was generally the dominant emission in this

grouping, consistent with concurrent 2D-GC measurements

(Hatch et al., 2014), while emissions from 2-furanone and

furan also contributed significantly. Friedli et al. (2001) ob-

served that ERs of alkyl furans linearly correlated with fu-

ran and concluded that these alkylated compounds likely

break down to furan. Our expanded substituted furan list in-

cludes a variety of functionality ranging from oxygenated

substituents to those fused with benzene rings for diverse

fuel types. Similar to the behavior observed for alkylated fu-
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rans, the emissions of our substituted furans linearly corre-

late with furan as shown in Fig. 6b. As noted for phenolic

compounds, sugar cane produced the largest emissions of fu-

rans excluding Canadian peat, supporting sugar cane as an

important emitter of oxygenated compounds. The emissions

from furan, phenol, and their derivatives reflect variability

in cellulose and lignin composition of different fuel types.

Cellulose and hemicellulose compose∼ 75 % of wood while

lignin only accounts for∼ 25 % on average (Sjöström, 1993).

Accordingly, the 6 furans/6 phenols for initially analyzed

compounds indicate that furans are dominant in nearly every

fuel type.

4.4 Nitrogen-containing compounds

Many N-containing peaks were not originally selected for

post-acquisition analysis in every fire. However, the ad-

ditional analysis of selected fires included a suite of N-

containing organic compounds to investigate their potential

contribution to the N budget and new particle formation

(NPF). Even at our mass resolution of ∼ 5000, the mass

peak from N compounds can sometimes be overlapped by

broadened 13C “isotope” peaks of major carbon-containing

emissions. This interference was not significant for the fol-

lowing species that we were able to quantify in the standard

or added analysis: C2H3N (acetonitrile, calibrated), C2H7N

(dimethylamine; ethylamine), C2H5NO (acetamide), C3H9N

(trimethylamine), C4H9NO (assorted amides), C4H11NO

(assorted amines), and C7H5N (benzonitrile). As illustrated

by the multiple possibilities for some formulas, several quan-

tified N-containing species were observed but explicit sin-

gle identities or relative contributions could not be con-

firmed. The logical candidates we propose are based upon

atmospheric observations and include classes of amines and

amides shown in Table S4 (Lobert et al., 1991; Schade and

Crutzen, 1995; Ma and Hays et al., 2008; Barnes et al., 2010;

Ge et al., 2011). Additional N-containing compounds were

clearly observed in the mass spectra such as acrylonitrile,

propanenitrile, pyrrole, and pyridine, but they were often

overlapped with isotopic peaks of major carbon compounds;

thus a time-intensive analysis would be necessary to provide

quantitative data. For the species in this category, quantifica-

tion was possible for select fires by 2D-GC-MS and they are

reported by Hatch et al. (2014) for the FLAME-4 campaign.

We present in Supplement Table S5 the abundance of each

N-containing gas quantified by PTR-TOF-MS and FTIR rel-

ative to NH3 for selected fires. The additional N-containing

organic gases detected by PTR-TOF-MS for these 29 fires

summed to roughly 22± 23 % of NH3 on average and ac-

counted for a range of 0.1–8.7 % of the fuel N. These com-

pounds contributed most significantly to fuel N for peat and

this varied by sampling location. This is not surprising since

environmental conditions and field sampling depths varied

considerably. Stockwell et al. (2014) reported large differ-

ences for N-containing compounds quantified by FTIR be-

tween FLAME-4 and earlier laboratory studies of emissions

from peat burns. In any case, the additional NMOCs (includ-

ing N-containing compounds) speciated by PTR-TOF-MS

substantially increases the amount of information currently

available on peat emissions.

The relevance of the N-containing organics to climate and

the N cycle is briefly summarized next. Aerosol particles act-

ing as cloud condensation nuclei (CCN) critically impact cli-

mate by production and modification of clouds and precipita-

tion (Novakov and Penner, 1993). NPF, the formation of new

stable nuclei, is suspected to be a major contributor to the

amount of CCN in the atmosphere (Kerminen et al., 2005;

Laaksonen et al., 2005; Sotiropoulou et al., 2006). Numer-

ous studies have suggested that organic compounds contain-

ing N can play an important role in the formation and growth

of new particles (Smith et al., 2008; Kirkby et al., 2011; Yu

and Luo, 2014). The primary pathways to new particle for-

mation include (1) the reaction of organic compounds with

each other or atmospheric oxidants to form higher molec-

ular weight, lower volatility compounds that subsequently

partition into the aerosol phase or (2) rapid acid/base re-

actions forming organic salts. The observation of signifi-

cant emissions of N-containing organic gases in FLAME-

4 could improve understanding of the compounds, proper-

ties, and source strengths contributing to new particle forma-

tion and enhance model predictions on local to global scales.

The identities and amounts of these additional N-containing

emissions produced by peat and other BB fuels are also im-

portant in rigorous analysis of the atmospheric N budget.

4.5 Sulfur, phosphorous, and chlorine-containing

compounds

S emissions are important for their contribution to acid depo-

sition and climate effects due to aerosol formation. Several S-

containing gases have been detected in BB emissions includ-

ing SO2, carbonyl sulfide (OCS), dimethyl sulfide (DMS),

and dimethyl disulfide (DMDS); DMS is one of the most sig-

nificant organosulfur compounds emitted by BB and is quan-

tified by PTR-TOF-MS in our primary data set (Friedli et

al., 2001; Meinardi et al., 2003; Akagi et al., 2011; Simp-

son et al., 2011). The signal at m/z 49 had a significant mass

defect and is attributed to methanethiol (methyl mercaptan,

CH3SH), which to our knowledge has not been previously

reported in real-world BB smoke, though it has been ob-

served in cigarette smoke (Dong et al., 2010) and in emis-

sions from pulp and paper plants (Toda et al., 2010). Like

DMS, the photochemical oxidation of CH3SH leads to SO2

formation (Shon and Kim, 2006), which can be further oxi-

dized to sulfate or sulfuric acid and contribute to the aerosol

phase. The emissions of CH3SH are dependent on the fuel S

content and are negatively correlated with MCE. The greatest

EF (CH3SH) in our additional analyses arose from organic

alfalfa, which had the highest S content of the selected fuels
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and also produced significant emissions of SO2 detected by

FTIR.

Other organic gases containing chlorine and phosphorous

were expected to be readily detectable because of their large,

unique mass defects and possible enhancement by pesticides

and fertilizers in crop residue fuels. However, they were not

detected in significant amounts by our full mass scans. Fuel P

and Cl may have been emitted primarily as aerosol, ash, low

proton affinity gases, or as a suite of gases that were evidently

below our detection limit.

4.6 Miscellaneous (order of increasing m/z)

m/z 41:

The assignment of propyne is reinforced by previous obser-

vations in BB fires, and it is of some interest as a BB marker

even though it has a relatively short lifetime of ∼ 2 days

(Simpson et al., 2011; Akagi et al., 2013; Yokelson et al.,

2013). Considering that propyne was not detected in every

fuel type, a level of uncertainty is added to any use of this

compound as a BB tracer, and in general the use of multiple

tracers is preferred when possible.

m/z 43:

The high-resolution capabilities of the PTR-TOF-MS al-

lowed propylene to be distinguished from ketene fragments

at m/z 43. The propylene concentrations are superseded in

our present data set by FTIR measurements; however, the two

techniques agree well.

m/z 45:

PTR technology has already been reported as a reliable way

to measure acetaldehyde in BB smoke (Holzinger et al.,

1999; Christian et al., 2004). Photolysis of acetaldehyde can

play an important role in radical formation and is the main

precursor of peroxy acetyl nitrate (PAN) (Trentmann et al.,

2003). A wide range in EF (acetaldehyde) (0.13–4.3 g kg−1)

is observed during FLAME-4 and reflects variability in fuel

type. The detailed emissions from a range of fuels in this data

set can aid in modeling and interpretation of PAN formation

in aging BB plumes of various regions (Alvarado et al., 2010,

2013). Crop-residue fuels regularly had the greatest emis-

sions of acetaldehyde, which is important considering many

crop-residue fires evade detection and are considered both

regionally and globally underestimated. Sugar cane burning

had the largest acetaldehyde EF (4.3± 1.4 g kg−1) and had

significant emissions of oxygenated and N-containing com-

pounds; consequently it is likely to form a significant amount

of PAN.

m/z 57:

The signal at m/z 57 using unit-mass resolution GC-PTR-

MS was observed to be primarily acrolein with minor contri-

butions from alkenes (Karl et al., 2007). In the PTR-TOF-

MS, the two peaks at m/z 57 (C3H5O+ and C4H+9 ) are

clearly distinguished and acrolein is often the dominant peak

during the fire with the highest emissions from ponderosa

pine and sugar cane.

m/z 69:

The high resolution of the PTR-TOF-MS allowed three peaks

to be distinguished at m/z 69, identities attributed to car-

bon suboxide (C3O2), furan (C4H4O), and mostly isoprene

(C5H8) (Fig. 7). Distinguishing between isoprene and furan

is an important capability of the PTR-TOF-MS. The atmo-

spheric abundance and relevance of carbon suboxide is fairly

uncertain and with an atmospheric lifetime of ∼ 10 days

(Kessel et al., 2013), the reactivity and transport of C3O2

emitted by fires could have critical regional impacts. The

emissions of C3O2 by BB will be interpreted in detail at a

later date (S. Kessel, personal communication, 2014).

m/z 75:

Hydroxyacetone emissions have been reported from both

field and laboratory fires (Christian et al., 2003; Akagi et al.,

2011; Yokelson et al., 2013; St. Clair et al., 2014). Christian

et al. (2003) first reported BB emissions of hydroxyacetone

and noted very large quantities from burning rice straw. The

EF (C3H6O2) for rice straw was noticeably high (1.1 g kg−1)

in the FLAME-4 data set and only sugar cane had greater

emissions.

m/z 85, 87:

The largest peak at m/z 85 was assigned as pentenone as it

was monitored/confirmed by PIT-MS/GC-MS in an earlier

BB study (Yokelson et al., 2013). Pentenone was a substan-

tial emission from several fuels with ponderosa pine having

the greatest EF. By similar evidence the minor peak at m/z

87 was assigned to pentanone but was only detected in a few

of the fires in the second set of analyses with the most signif-

icant emissions arising from Indonesian peat.

m/z 107:

Benzaldehyde has the same unit mass as xylenes, but is

clearly separated by the TOF-MS. Greenberg et al. (2006)

observed benzaldehyde during low-temperature pyrolysis ex-

periments with the greatest emissions from ponderosa nee-

dles (ponderosa pine produced the greatest EF in our data set,

with a range of 0.1–0.28 g kg−1). Benzaldehyde emissions

were additionally quantified by GC-MS during a laboratory

BB campaign and produced comparable EF to that of xylenes
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Figure 7. Expanded view of the PTR-TOF-MS spectrum at m/z 69

demonstrating the advantage over unit mass resolution instruments

of distinguishing multiple peaks, in this instance separating carbon

suboxide (C3O2), furan (C4H4O), and mostly isoprene (C5H8) in

ponderosa pine smoke (fire 70).

Figure 8. Expanded view of the PTR-TOF-MS spectrum of NC peat

(fire 61) at m/z 137 showing multiple peaks.

(Yokelson et al., 2013). During FLAME-4 the EF (benzalde-

hyde) was comparable to EF (xylenes calibrated as p-xylene)

as seen earlier, except for peat burns where xylenes were sig-

nificantly higher.

m/z 137:

At unit mass resolution, the peak at m/z 137 is commonly

recognized as monoterpenes, which can further be speciated

by GC-MS. However, as shown in Fig. 8 there can be up

to three additional peaks at this mass that presently remain

unidentified oxygenated compounds. As anticipated, the hy-

drocarbon monoterpene peak is significant for coniferous fu-

els such as ponderosa pine but much smaller for grasses. In

this work we calibrated for α-pinene, which has been re-

ported as a major monoterpene emission from fresh smoke

(Simpson et al., 2011; Akagi et al., 2013).

4.7 Cookstoves

Trace gas emissions were measured for four cookstoves

including a traditional three-stone cooking fire, the most

widely used stove design worldwide; two “rocket” type de-

signs (Envirofit G3300 and Ezy stove); and a “gasifier” stove

(Philips HD4012). Several studies focus on fuel efficiency

of cookstove technology (Jetter et al., 2012), while the de-

tailed emissions of many rarely measured and previously

unmeasured gases are reported here and in Stockwell et

al. (2014) for FLAME-4 burns. For cooking fires, ∼ 3–6 %

of the NMOC mass remained unidentified, with the Envirofit

rocket stove design generating the smallest percentage in the

study. To improve the representativeness of our laboratory

open cooking emissions, the EFs of smoldering compounds

reported for three-stone cooking fires were adjusted by mul-

tiplying the mass ratio of each species “X” to CH4 by the

literature-average field EF (CH4) for open cooking in Akagi

et al. (2011). Flaming compounds were adjusted by a sim-

ilar procedure based on their ratios to CO2. The preferred

values are reported in Table S3. With these adjustments, the

emissions of aromatic hydrocarbons (Fig. 9a), phenolic com-

pounds (Fig. 9b), and furans (Fig. 9c) distinctively increased

with the primitiveness of design; thus, three-stone cooking

fires produced the greatest emissions. The advancement in

emissions characterization for these sources will be used

to upgrade models of exposure to household air pollution

and the ERs/EFs should be factored in to chemical-transport

models to assess atmospheric impacts.

BB is an important source of reactive N in the atmosphere,

producing significant emissions of NOx and NH3 while non-

reactive HCN and CH3CN are commonly used as BB marker

compounds (Yokelson et al., 1996, 2007; Goode et al., 1999;

de Gouw et al., 2003). The FTIR used in FLAME-4 pro-

vided the first detection of HCN emissions from cooking

fires and the HCN/CO ER was about a factor of 5 lower

than most other BB fuels burned (Stockwell et al., 2014).

Similarly, acetonitrile emissions were measured for the first

time for cooking fires by PTR-TOF-MS in this study, and the

CH3CN/CO ERs from cooking fires are much lower (on aver-

age a factor of∼ 15) than those from other fuels. This should

be considered when using CH3CN/CO ERs to drive source

apportionment in areas with substantial emissions from bio-

fuel cooking sources.

5 Conclusions

We investigated the primary BB NMOC emissions from lab-

oratory simulated burns of globally significant fuels using

a PTR-TOF-MS instrument. In this first PTR-TOF-MS de-

ployment dedicated to fires, we encountered some specific

challenges. The fast change in concentration necessitated a

fast acquisition rate, which decreased the signal to noise for

the emissions above background. The large dynamic con-
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Figure 9. Emission factors (g kg−1) of aromatic hydrocarbons (a),

phenolic compounds (b), and furans (c) for traditional and advanced

cookstoves. The EFs for traditional stoves were adjusted from orig-

inal lab data (Sect. 4.7).

centration range necessitated dilution to minimize reagent

ion depletion at peak emissions and the dilution further re-

duced the signal to noise ratio. Positive identification of some

species by co-deployed grab sampling techniques will be

explored further in a separate paper, but is challenged by

the difficulty of transmitting some important fire emissions

through GC columns (Hatch et al., 2014). We attempted to

enhance compound identification by switching reagent ions

(O+2 and NO+); however, this approach with two broadly

sensitive ions in a complex mixture resulted in complex spec-

tra for which comparative analysis is beyond the scope of

the present effort. Future experiments might consider instead

using a less broadly sensitive reagent ion such as NH+3 as

the alternate reagent ion. We were limited to our pre-chosen

calibration mixture based primarily on gases previously ob-

served in smoke. For future experiments we suggest adding

more standards to generate more accurate calibration factors,

specifically including major species such as furan and phenol

and more compounds with S and N heteroatoms. In addition,

measuring the fragmentation, if any, of more of the species

identified in this work would be of great value. Despite these

practical limitations, the experiment produced a great deal of

useful new information.

The PTR-TOF-MS obtains full mass scans of NMOCs

with high enough resolution to distinguish multiple peaks

at the same nominal mass and high enough accuracy to as-

sign chemical formulas from the “exact” masses. This aided

in compound identification and more than 100 species were

categorized as a confirmed identity, a tentative (most likely)

assignment, or unidentified but with a chemical formula.

Chemical identification was aided by observations of com-

pounds reported in smoke emissions, pyrolysis experiments,

and those species at relevant concentrations in the atmo-

sphere. This allowed the identification of more masses up

to m/z 165 than in earlier work at unit mass resolution, al-

though an estimated range of 12–37 % of the total mass still

remains unidentified and tentatively identified. The analy-

sis provides a new set of emission factors for ∼ 68 com-

pounds in all fires plus ∼ 50 more in select fires, in addition

to species previously quantified by FTIR (Stockwell et al.,

2014) and other techniques during FLAME-4 (Hatch et al.,

2014). While significant variability was observed between

fuels, oxygenated compounds collectively accounted for the

majority of emissions in all fuels, with sugar cane producing

the highest EF of oxygenated species on average, possibly

due to its high sugar content.

We also report emission ratios to benzene, phenol, or

furan for the aromatic hydrocarbons, phenolic compounds,

and substituted furans, respectively. Reporting emissions of

previously unmeasured or rarely measured compounds rela-

tive to these more regularly measured compounds facilitates

adding several new compounds to fire emissions models. To

our knowledge this is the first on-line, real-time characteri-

zation of several compounds within these “families” for BB.

Observed emissions varied considerably between fuel types.

Several example compounds within each class (toluene, gua-

iacol, methylfuran, etc.) have been shown, by chamber ex-

periments, to be highly reactive with atmospheric oxidants

and contribute significantly to SOA formation. The ERs and

EFs characterized by PTR-TOF-MS of fresh BB smoke are

presented in Tables S1–S3 and (especially the recommended

values in Table S3) should aid model predictions of O3 and

SOA formation in BB smoke and the subsequent effects on

air quality and climate on local–global scales.

A large number of organic N-containing species were de-

tected with several identities speculated as amines or amides.

These N-containing organic gases may play an important role

in new particle formation by physical, chemical, and photo-

chemical processes, though a more focused study is neces-

sary to measure NPF yields from these compounds and pro-

cesses. The additional N-containing gases detected here ac-

count for a range of 1–87 % of NH3 dependent on fuel type

with the most significant contribution of additional N species

to fuel N arising from peat burns. The ERs of acetonitrile to

CO for cooking fires were significantly lower than other fu-

els and should be factored into source apportionment models
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in regions where biofuel use is prevalent if CH3CN is used

as a tracer.

The S-containing compounds detected by PTR-TOF-

MS included dimethyl sulfide and methanethiol, where

methanethiol was detected for the first time in BB smoke to

our knowledge. These compounds may play a role in acid

deposition and aerosol formation, though to what extent has

yet to be extensively studied. Phosphorous- and chlorine-

containing organic gases were not readily observed in our

data set, which may indicate that these species were below

our detection limit.

Using full mass scans from a high-resolution PTR-TOF-

MS to characterize fresh smoke has aided in identifying sev-

eral compounds and provided the chemical formula of other

organic trace gases. The additional NMOCs identified in this

work are important for understanding fresh BB emissions

and will improve our understanding of BB atmospheric im-

pacts. The subsequent oxidation products of these gases are

the focus of a companion paper probing BB aging. Taken

together, this work should improve BB representation in at-

mospheric models, particularly the formation of ozone and

secondary organic aerosol at multiple scales.

The Supplement related to this article is available online

at doi:10.5194/acp-15-845-2015-supplement.
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