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Abstract. This paper presents a quantitative comparison of

the four most commonly used receptor models, namely ab-

solute principal component scores (APCS), pragmatic mass

closure (PMC), chemical mass balance (CMB) and positive

matrix factorization (PMF). The models were used to pre-

dict the contributions of a wide variety of sources to PM2.5

mass in Halifax, Nova Scotia during the experiment to quan-

tify the impact of BOReal forest fires on Tropospheric oxi-

dants over the Atlantic using Aircraft and Satellites (BOR-

TAS). However, particular emphasis was placed on the ca-

pacity of the models to predict the boreal wildfire smoke

contributions during the BORTAS experiment. The perfor-

mance of the four receptor models was assessed on their

ability to predict the observed PM2.5 with an R2 close to 1,

an intercept close to zero, a low bias and low RSME. Us-

ing PMF, a new woodsmoke enrichment factor of 52 was

estimated for use in the PMC receptor model. The results

indicate that the APCS and PMC receptor models were not

able to accurately resolve total PM2.5 mass concentrations

below 2 µg m−3. CMB was better able to resolve these low

PM2.5 concentrations, but it could not be run on 9 of the 45

days of PM2.5 samples. PMF was found to be the most ro-

bust of the four models since it was able to resolve PM2.5

mass below 2 µg m−3, predict PM2.5 mass on all 45 days and

utilise an unambiguous woodsmoke chemical tracer. The me-

dian woodsmoke relative contributions to PM2.5 estimated

using PMC, APCS, CMB and PMF were found to be 0.08,

0.09, 3.59 and 0.14 µg m−3 respectively. The contribution

predicted by the CMB model seemed to be clearly too high

based on other observations. The use of levoglucosan as a

tracer for woodsmoke was found to be vital for identifying

this source.

1 Introduction

It has been estimated that between 1990 and 2011, wildfires

have consumed a median 1.7 million hayr−1 of Canadian

boreal forest (data from Natural Resources Canada). The

burning of these forests is a significant source of gases and

airborne particulate matter (PM) of different size fractions

(Drysdale, 2008).

The tropospheric trace gases and PM generated by wild-

fires are transported long distances with the potential to

harm health and the environment 1000 km from their source

(Palmer et al., 2013; Naeher et al., 2007; Franklin et al.,

2014). During July 2011, the BORTAS (quantifying the im-

pact of BOReal forest fires on Tropospheric oxidants over

the Atlantic using Aircraft and Satellites) experiment was

conducted out of Halifax, Nova Scotia, Canada to investigate
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the impact of North American wildfires on the atmospheric

chemistry of the troposphere (Palmer et al., 2013). Central

to BORTAS-B was the operation of the UK BAe-146-301

Atmospheric Research Aircraft over eastern Canada, which

was used to characterise size-resolved particulate matter and

trace gases in wildfire plumes advecting within the outflow

from North America (Palmer et al., 2013). Column profile

flights were also made above Halifax. In addition to the air-

craft measurements there were a number of continuous and

integrated surface and column observations of trace gases

and size-resolved PM composition made at Dalhousie Uni-

versity in Halifax. A description of the instrumentation and

measurements made at the Dalhousie University Ground Sta-

tion (DGS) are provide in Palmer et al. (2013), Gibson et

al. (2013b) and Franklin et al. (2014).

This paper explores the source attribution of boreal wild-

fire smoke (and other sources) to surface fine PM ≤ 2.5 µm

(PM2.5) during the BORTAS-B experiment using four com-

monly used receptor models.

A number of different receptor modelling approaches are

utilised for the source apportionment of PM2.5, e.g. mul-

tivariate least squares factor analysis approaches such as

positive matrix factorization (PMF), pragmatic mass closure

(PMC) methods and chemical mass balance (CMB) source

profile techniques (Gibson et al., 2013b; Gibson et al., 2009;

Ward et al., 2004; Gugamsetty et al., 2012; Harrison et al.,

2011). The US Environmental Protection Agency’s (USEPA)

CMB receptor model has been used in many PM2.5 source

apportionment studies (Subramanian et al., 2007). The CMB

receptor model uses a solution to linear equations that ex-

presses each receptor chemical concentration as a linear sum

of products of source fingerprint abundances and contribu-

tions (Ward et al., 2006b; Watson et al., 1994). The advan-

tage of CMB is that it can be applied to individual 24 h PM

mass and chemical composition. The disadvantage is that

the technique relies heavily on available source profiles be-

ing representative of regional sources impacting the recep-

tor, which is not always the case (Hellén et al., 2008; Ward

et al., 2006b). One assumption of the CMB model is that

chemical species emitted from a source are conserved dur-

ing sampling and do not react with each other (Ward et al.,

2006b). CMB is well suited for apportioning local or up-

wind sources of primary aerosols (those emitted directly as

particles). To account for secondary aerosol contributions to

PM2.5 mass, ammonium sulfate and ammonium nitrate are

normally expressed as “pure” secondary source profiles and

represented by their chemical form (Ward et al., 2006b). The

USEPA CMB model has been applied to numerous urban and

rural PM2.5 source apportionment studies in environments

impacted by woodsmoke (Ward et al., 2012; Bergauff et al.,

2009; Gibson et al., 2010; Ward et al., 2006b).

Pragmatic mass closure is a very simple method and works

well for the mass closure of the major PM2.5 components,

e.g. sea salt, secondary ions, surficial fugitive dust and or-

ganic and elemental carbon (Gibson et al., 2009). A number

of studies have used PMC to apportion the major chemical

species to PM mass (Yin and Harrison, 2008; Harrison et al.,

2003; Gibson et al., 2009; Dabek-Zlotorzynska et al., 2011).

Another receptor model used extensively in PM2.5 source

apportionment studies is absolute principal component

scores (APCS) (Song et al., 2006). APCS is a multivariate

factorization-based model developed by Thurston and Spen-

gler (1985) that is still widely used for the source apportion-

ment of PM.

However, APCS can occasionally return negative mass

contributions (Paatero and Tapper, 1994). In order to over-

come the negative source mass contribution problem, Paatero

and Hopke (2003) introduced a PMF source apportionment

method in the late 1990s (Paatero and Tapper, 1994). PMF

has since been applied widely to indoor, outdoor, urban, ru-

ral and regional PM2.5 source apportionment studies (Gibson

et al., 2013b; Harrison et al., 2011; Larson et al., 2004).

Chemical tracers can also be important when conduct-

ing source apportionment. Both APCS and PMF rely on ex-

pert, a priori knowledge of chemical tracers found within

the PM2.5 chemical composition to identify the source of

each PM2.5 component factor; e.g. high factor loadings of Al,

Si, Ca and Fe are indicative of crustal re-entrained material

(Song et al., 2006; Hopke, 1991; Gibson et al., 2013b). Many

studies use levoglucosan (1,6-anhydro-β-D-glucopyranose)

as an unambiguous chemical tracer of wildfire and residen-

tial woodsmoke (Gibson et al., 2010; Ward et al., 2012; Si-

moneit et al., 1999; Wheeler et al., 2014). Levoglucosan is

derived from cellulose burning at temperatures greater than

300 ◦C (Simoneit et al., 1999; Ward et al., 2006a). Potas-

sium (K) is also a good tracer for woodsmoke and often

used in conjunction with levoglucosan (Bergauff et al., 2010;

Jeong et al., 2008; Urban et al., 2012). Other commonly used

PM2.5 source chemical markers are described in Gibson et

al. (2013b), Harrison et al. (2011) and Jeong et al. (2011). In

addition, the source chemical profiles contained within the

USEPA SPECIATE 4.0 database is another resource that can

be used to aid in the identification of PM2.5 sources within

a speciated PM2.5 sample (Ward et al., 2012; Jaeckels et al.,

2007; Gibson et al., 2013b).

This paper presents a quantitative comparison of the four

most commonly used receptor models: APCS, PMC, CMB

and PMF. The objective is to determine the ability of these

models to predict the total PM2.5 mass concentration and

also the mass attributed to a number of different sources of

PM2.5. The models are compared based on their ability to ap-

portion boreal wildfire woodsmoke (and other sources) ap-

plied to a 45-day contiguous PM2.5 data set sampled at the

DGS in Halifax during the BORTAS-B experiment. This data

set should provide sufficient variability and contributions of

minor sources to permit a comprehensive comparison of the

four receptor models.
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2 Measurements

A full description of the PM2.5 speciated sampling meth-

ods employed for this paper are described in Gibson et

al. (2013b). Additional supporting instrumentation used at

the DGS during BORTAS-B are described in Palmer et

al. (2013) and Franklin et al. (2014), but we will describe

the most relevant sampling and analysis methods for this

study here. In summary, 45 24 h PM2.5 filter samples were

collected at the DGS from 19:00 UTC on 11 July 2011 to

19:00 UTC on 26 August 2011.

The PM2.5 chemical species used in the four receptor mod-

els included aluminium (Al), black carbon (BC), bromine

(Br), calcium (Ca), chloride (Cl), iron (Fe), potassium (K),

magnesium (Mg), sodium (Na), ammonium (NH+4 ), nickel

(Ni), nitrate (NO−3 ), organic matter (OM), selenium (Se), sul-

fur (S), silicone (Si), sulfate (SO2−
4 ), vanadium (V) and zinc

(Zn). The post-sample chemical analysis, detection limits,

data completeness, precision and bias for the PM2.5 chem-

ical species listed above are described in detail in Gibson et

al. (2013b). The PM2.5 mass filter weighing method detec-

tion limit (MDL) was 20 µg filter−1 (X. Feng, personal com-

munication, 2014). For this paper, the woodsmoke marker

levoglucosan was added to the above chemical species in

order to unambiguously apportion the boreal forest wildfire

woodsmoke contribution to PM2.5 at the DGS (Simoneit et

al., 1999).

The levoglucosan-PM2.5 samples were collected using

47 mm diameter, pre-fired quartz filters. The quartz fil-

ters were obtained from Concord Analytical (8540 Keele

Street, Unit 38, Concord, Ontario). The quartz filters were

housed in a Thermo ChemComb sampler that operated at

a flow rate of 10 L min−1 over a 24 h period, synchronous

with the other PM2.5 chemical speciation filter-based sam-

pling described in Gibson et al., 2013b. Each quartz fil-

ter was spiked with deuterated levoglucosan as an inter-

nal standard, placed in a covered vial and allowed to

stand for 30 min. The filter was then extracted by ultra-

sonication using ethyl acetate containing 3.6 mm triethy-

lamine. The extract was filtered, evaporated to dryness and

derivatized withN−O bis(trimethylsilyl)trifluoroacetamide,

trimethylchlorosilane and N -(trimethylsilyl)-imidazole to

convert the levoglucosan to its trimethylsilyl derivative. The

extract was analysed by gas chromatography/mass spec-

trometry on a Hewlett-Packard GC/MSD (GC model 6890,

MSD model 5973; Hewlett-Packard Company, Palo Alto,

CA, USA) using an HP-5 MS capillary column. Splitless

injection was employed. The levoglucosan and internal stan-

dard were detected by extracted ion signals at 217 and 220

m/z respectively. Levoglucosan analysis recoveries for 100

to 2000 ng averaged 96± 12 % (n= 18± 1 sigma). Six lab-

oratory blanks were used to calculate an average levoglu-

cosan blank concentration, the standard deviation and 95 %

confidence interval for the blank. The levoglucosan limit of

detection (LOD) is reported as the average laboratory blank

and was found to be 7.7 ng m−3 (Bergauff et al., 2008). Lo-

cal meteorological data at the DGS were collected using

a Davis Vantage Pro II weather station (Davis Instruments

Corp. Hayward, California 94545, USA). Further informa-

tion on the meteorological sensors onboard the Davis Van-

tage Pro II and results are provided in Gibson et al. (2013b).

In addition, a daily climatology review of synoptic meteorol-

ogy in the greater Halifax Regional Municipality observed

during the PM2.5 sampling is also provided in Gibson et

al. (2013b).

HYSPLIT 10-day, 5-day and 2-day air mass back trajecto-

ries were used to identify the likely upwind source regions of

PM2.5 (Gibson et al., 2013b). A plot of ensemble HYSPLIT

back trajectories by source region during the sampling cam-

paign is provided in Gibson et al. (2013). From Gibson et

al. (2013b) it was observed that 40 % of the air masses enter-

ing Halifax during BORTAS-B originated from the marine

sector, 16 % from the SW (NE US), 27 % from the WNW

(Windsor–Québec source region) and 16 % from the N. The

SW cluster and WNW cluster appear to be mainly associ-

ated with boundary layer flow from known upwind source

regions of PM2.5 that was mainly composed of ammonium

sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3) and or-

ganic matter (up to 70 % of the total PM2.5 mass).

Fire hotspot maps were used to identify active burning re-

gions of Canada. MODIS hotspot locations from NASA (see

http://earthdata.nasa.gov/data/near-real-time-data/firms) and

AVHRR hotspots from NOAA FIMMA (see http://www.ssd.

noaa.gov/PS/FIRE/Layers/FIMMA/fimma.html) were used

to generate the fire hotspot maps (Giglio et al., 2003; de

Groot et al., 2013).

A Raman lidar was collocated with the DGS PM2.5 sam-

pling (Palmer et al., 2013). The lidar employs a high-energy

Nd:YAG laser that emits pulses of 532 nm wavelength light

at a repetition rate of 20 Hz. Two telescopes allow backscat-

tered light to be collected separately from both the near (0–

5 km) and far (> 1 km) ranges. This allows the simultaneous

measurement of aerosols in the boundary layer and free tro-

posphere. Further details of the Raman lidar are contained in

Bitar et al. (2010). The lidar was used to help guide the air-

borne atmospheric measurements BAe146 research aircraft

into boreal forest wildfire smoke plumes passing over Hal-

ifax and to also confirm when aerosol impacted the surface

during the PM2.5 sampling related to this manuscript (Palmer

et al., 2013). The lidar was also used to verify the GEOS-

5 carbon monoxide (CO) forecast model output over Hali-

fax (Palmer et al., 2013). The GEOS-5 forecast model also

provided additional evidence that upwind wildfire PM2.5 im-

pacted the surface in Halifax during the BORTAS-B experi-

ment.
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Table 1. Descriptive statistics for levoglucosan.

n Mean Std Min 25th pctl Median 75th pctl Max

Levoglucosan

[ng m−3] 45 6.1 10 0.2 0.9 1.6 6.2 46

3 Receptor models

We employed the APCS method developed by Thurston and

Spengler (1985) to determine the relative source contribu-

tions to the BORTAS-B PM2.5 mass. In this manuscript, lev-

oglucosan was added to the previously modelled PM2.5 spe-

ciated data as a means to unambiguously identify the pres-

ence of woodsmoke (Gibson et al., 2013b). Principal compo-

nent analysis (PCA) was performed using IBM SPSS Statis-

tics software on Al, BC, Br, Ca, Cl, Fe, K, Mg, Na, NH+4 ,

Ni, NO−3 , OM, S, Si, SO2−
4 , V, Zn and levoglucosan. Eigen-

values greater than 1 were retained in the analysis. Using the

varimax rotated coefficients and scaled concentrations it was

possible to calculate the APCS values. Following the method

of Thurston and Spengler (1985), the relative source contri-

butions were then determined by multiple linear regression

on the measured concentrations. The developed linear regres-

sion equations could then be used to produce a time-series

plot and to identify the relative contributions of the various

sources.

We also used the USEPA PMF v3.0 receptor model for

the source apportionment of the PM2.5 at the DGS. In the

previous manuscript by Gibson et al., 2013b, six major

sources were determined: long-range transport (LRT) pol-

lution 1.75 µg m−3 (47 %), LRT pollution marine mixture

1.0 µg m−3 (27.9 %), vehicles 0.49 µg m−3 (13.2 %), fugi-

tive dust 0.23 µg m−3 (6.3 %), ship emissions 0.13 µg m−3

(3.4 %) and refinery 0.081 µg m−3 (2.2 %). The PMF model

described 87 % of the observed variability in total PM2.5

mass (bias= 0.17 µg m−3 and RSME= 1.5 µg m−3) (Gib-

son et al., 2013b). The PMF model initialization procedure

used in this paper was the same as described in Gibson et

al. (2013b).

We also utilised the PMC method as another alternative

receptor model (Yin and Harrison, 2008). PMC offers a

simple approach to estimate the source attribution or the

chemical composition of size-resolved airborne PM (Har-

rison et al., 2003). The PMC receptor modelling method

is limited to major PM species only, e.g. sodium chloride

(NaCl), NH4NO3, (NH4)2SO4, non-sea salt SO4, sodium ni-

trate (NaNO3), organic carbon (OC), elemental carbon (EC),

crustal matter, trace element oxides and particle bound wa-

ter (Gibson et al., 2009; Yin and Harrison, 2008; Dabek-

Zlotorzynska et al., 2011). In PMC, molar weight correction

factors, or enrichment factors, are applied to the individu-

ally measured PM chemical components. This allows an es-

timate of the probable species present in the original sam-

ple; e.g. multiplying NO−3 by 1.29 yields an estimate of the

NH4NO3 concentration present in the original PM2.5 sam-

ple (Dabek-Zlotorzynska et al., 2011). PMC has been used

to apportion contributions to urban and rural PM10, PM2.5

and PM2.5−10 in Ireland (Yin et al., 2005), coastal, rural

and urban PM10 in Scotland (Gibson et al., 2009), urban

background and roadside locations in England (Harrison et

al., 2003) and to urban, rural and coastal PM2.5 in Canada

(Dabek-Zlotorzynska et al., 2011). For the BORTAS-B study

a new PMC woodsmoke enrichment factor was calculated.

The enrichment factor was calculated by taking the median

apportioned woodsmoke concentration (determined by PMF)

and dividing it by the levoglucosan concentration. The cal-

culated PMC woodsmoke enrichment factor was found to be

52. Therefore, the woodsmoke apportioned to the PM2.5 for

each day using the PMC approach is equal to the levoglu-

cosan concentration multiplied by 52 (Gibson et al., 2013a).

This new method for determining the woodsmoke contribu-

tion to PM2.5 using PMC receptor modelling was first de-

scribed by Gibson et al. (2013b).

The fourth receptor model applied to the BORTAS-B

PM2.5 data set was the USEPA CMB model described by

Ward et al. (2012). For this paper the source profile for ma-

rine salt was taken directly from SPECIATE 4.0. The ma-

rine salt profile was then combined with SPECIATE pro-

files used previously by Ward and Smith (2005) and Ward

et al. (2006b). The CMB model fit; quality-assurance and

quality-control criteria are described in Watson et al. (1998)

and Ward et al. (2012). The performance of the four receptor

models was assessed by their ability to predict the observed

PM2.5 with an R2 close to 1, an intercept close to zero, a

low bias and low RSME. In addition, suitability was also

based upon the model’s ability to closely predict the observed

PM2.5 during low, median and elevated concentrations.

4 Results and discussion

The descriptive statistics and discussion corresponding to

the observed Al, BC, Br, Ca, Cl, Fe, K, Mg, Na, NH+4 , Ni,

NO−3 , OM, PM2.5 mass, S, Si, SO2−
4 , V and Zn are pro-

vided in Gibson et al. (2013b). In Table 1 it can be seen

that the median (min : max) levoglucosan concentration is

1.6 (0.2 : 46) ngm−3. These concentrations are two orders

of magnitude lower than the winter median (min : max) lev-

oglucosan concentrations, 234 (155 : 274) ngm−3, observed

in the nearby Annapolis Valley, Nova Scotia in 2010, a re-
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Figure 1. Parity plots of observed vs. predicted PM2.5 estimated by the four receptor models: (a) absolute principal component scores

(APCS), (b) pragmatic mass closure (PMC), (c) chemical mass balance (CMB) and (d) positive matrix factorization (PMF).

gion impacted by wintertime residential woodsmoke (Gibson

et al., 2010). Ward et al. (2006b) found an average levoglu-

cosan concentration of 2840± 860 ng m−3 in Libby, Mon-

tana, a city impacted by wintertime residential woodsmoke.

Leithead et al. (2006) reported summertime average levoglu-

cosan concentrations related to biomass burning in the Fraser

Valley, BC of 14.4, 14.7 and 26 ng m−3 respectively, which

are similar to the concentrations measured in Halifax dur-

ing BORTAS-B. The levoglucosan concentrations observed

in the Fraser Valley, BC are an order of magnitude greater

than those seen during the same season in Halifax during

BORTAS-B. Jordan et al. (2006) reported 2003 summertime

bushfire related levoglucosan concentrations in Launceston,

Australia of 150, 440 and 470 ng m−3 respectively, ranging

between 10 to 29 times the concentrations seen in Halifax

during BORTAS-B.

The first step in APCS is principal components analysis

(PCA) of the PM2.5 speciated data. When PCA was per-

formed, five factors were identified as shown in Table 2. Fol-

lowing conventional PCA analysis protocols (Harrison et al.,

1997), factor loadings± 0.3 were retained as shown in Table

2 (Harrison et al., 1997). High-factor loadings of the species

in each factor enabled source identification (Viana et al.,

2006). Five factors were identified, which explained 85.4 %

of the variance of the PM2.5 mass. APCS was then used to

attribute the mass of each factor to the total PM2.5 mass. The

five sources identified using PCA are shown in Table 3 and

included sea salt, LRT (NH4)2SO4, surface dust, ship emis-

sions and woodsmoke (identified by the woodsmoke tracer

levoglucosan).

Figure 1 provides parity plots of observed vs. predicted

PM2.5 estimated by the four receptor models: (a) APCS,

(b) PMC, (c) CMB and (d) PMF. It can be seen in Fig. 1a

that the intercept is located at 1.9 µg m−3, the slope is

0.85, R2
= 0.84, n= 45, RMSE = 2.0 µg m−3 and the bias is

1.3 µg m−3. In Fig. 1b it can be seen from the parity plot of

observed vs. PMC-predicted PM2.5 that the intercept is lo-

cated at 2.1 µg m−3, the slope is 0.57, R2
= 0.84, n= 45,

RMSE = 1.6 µg m−3 and bias is 1.4 µg m−3. In Fig. 1a and

b it can be seen that the intercepts associated with both the

APCS and PMC receptor models have difficulty predicting

PM2.5 less than 2± 1.2 µg m−3 and 2± 0.2 µg m−3 respec-

tively. In Fig. 1c it can be seen that the CMB intercept is

located at−0.53 µg m−3
± 0.21 µg m−3 with a slope of 1, R2

of 0.88, RMSE = 1.2 µg m−3 and a bias of 4.3 µg m−3. The

CMB model was only able to predict PM2.5 mass on 36 of

www.atmos-chem-phys.net/15/815/2015/ Atmos. Chem. Phys., 15, 815–827, 2015
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Table 2. Principal component analysis of the PM2.5 chemical species.

Sea LRT Surface Woodsmoke Ship

salt (NH4)2SO4) dust emissions

BC 0.52 0.426

Al 0.91

Br 0.78

Ca 0.90

Fe 0.70

K 0.74

Mg 0.96

Na 0.97

Ni 0.95

Si 0.98

V 0.94

Zn 0.86

Cl 0.81

S 0.94

NO3 0.82

SO4 0.97

NH4 0.96

OM 0.74 0.56

Levoglucosan 0.91

Eigenvalue 5.72 3.65 3.11 2.03 1.72

Cumulative % var 30.1 49.3 65.6 76.3 85.4

Table 3. Absolute principal component scores PM2.5 source apportionment descriptive statistics.

Metric [µg m−3] n Mean Median Min Max SD C.I.

Observed PM2.5 45 4.36 3.96 0.08 12.50 3.13 0.91

LRT pollution aged marine aerosol 45 0.75 0.61 0.16 3.42 0.61 0.18

LRT pollution (NH4)2SO4 45 3.76 3.06 0.28 13.95 2.65 0.78

Surface dust 45 0.73 0.63 0.13 3.32 0.54 0.16

Woodsmoke 45 0.35 0.09 0.01 2.71 0.62 0.18

Ship emissions 43 0.14 0.09 0.00 0.76 0.15 0.04

the 45 PM2.5 sample days. In Fig. 1d it can be seen that

the PMF model has the lowest intercept (−0.07± 1.57 µg

m−3) of the four models, a slope of 0.88, R2 of 0.88, n= 45,

RMSE = 1.3 µg m−3 and a bias of 2.9 µg m−3. While the PMF

bias is better than for CMB, it is not as good as the bias

seen for APCS and PMC. However, because PMF predicts

the PM2.5 mass on all sample days, has a slope of 0.88 and

the ability to predict the very low PM2.5 mass concentrations

often seen in Halifax, it is the most useful of the four receptor

models.

Figure 2 provides the chemical species source factor pro-

files and associated percentage mass contributions obtained

using the PMF receptor model. Figure 2 clearly shows that

95 % of the levoglucosan sample total mass and 45 % of the

K sample total mass are associated with the factor profile

identified as woodsmoke. The chemical species used to iden-

tify the source in the other seven factor profiles are clearly

observed: e.g. NO−3 and Se for LRT coal/industry originat-

ing from the NE USA; PM2.5, Ca, Mg, Na, NO−3 for LRT

pollution marine mixture originating from the NE USA and

crossing the Gulf of Maine en route to Nova Scotia; Ni and

V are unambiguous tracers of ship emissions; Br and Zn are

tracers of gasoline vehicles/tire wear; and OM, BC, Ba, Fe

and Zn are tracers for diesel vehicle/tire wear (Gibson et al.

2013b).

Figure 3 provides a time series from 7 July 2011 to 25 Au-

gust 2011 of (a) APCS, (b) PMC, (c) CMB and (d) PMF daily

PM2.5 source apportionment. Time-series plots of the indi-

vidual PM2.5 chemical species (not including levoglucosan)

associated with Fig. 3 are provided in Gibson et al. (2013b).

Tables 3–6 show that the four receptor models identify dif-

ferent number and type of PM2.5 source respectively; e.g. the

APCS model identified 6 sources, PMC 10 sources, CMB

13 sources and PMF 9 sources. The reason for the differ-

ent number of sources identified by each model is the dif-

ferent inherent methodology by which each model generates
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Figure 2. Positive matrix factorization chemical species source fac-

tor profiles and associated percentage mass contributions.

the source identification. In the case of PMC, a molar correc-

tion factor is applied to individual PM2.5 species. Therefore,

if the species is present and there is a corresponding molar

correction factor, the source will be identified and quantified.

In the case of CMB receptor modelling, the sample chemical

species are identified by matching with known source chem-

ical profiles. With CMB, the number of statistically signifi-

cant and logical matches determines the number of sources

identified and quantified by the model, whereas APCS and

PMF both use factorization and are open to identifying as

many sources that meet each model’s inclusion criteria and

would make sense being observed at the receptor. In PMC

the source name is assigned from the molar factor associated

with the source; in CMB the source name is assigned from

the matching source profile; in APCS and PMF the source

name is subjective and assigned by the user, reflecting the

chemical species observed within each factor profile. It can

be seen in Tables 3–6 that surface dust and woodsmoke are

identified in all four models.

With reference to Fig. 3b, the trace metal oxide values

are worthy of note. This is because, within the PMC model,

Ni and V are included in the calculation of the apportioned

trace metal oxides, whereas in the PMF and APCS models,

Ni and V are used as unique chemical tracer elements of

ship emissions. Because of the inclusion of Ni and V in the

trace metal oxide apportioned source, it is not possible for

the PMC model to apportion ship emissions. The descrip-

tive statistics for the four receptor model results over the 45

days of PM2.5 sampling are contained in Tables 3 through

6. The median LRT (NH4)2SO4 estimated by the four mod-

els ranges from estimated by the four models was found

to be 0.57 µg m−3 (PMC), 0.67 µg m−3 (CMB), 1.15 µg m−3

(PMF) and 3.06 µg m−3 (APCS). Clearly APCS tends to esti-

mate a larger contribution of (NH4)2SO4 to PM2.5 compared

to the other three models. The close agreement between PMC

and CMB stems from the fact that both of these models

use the actual molar values of the pure salt in the sample.

Conversely, PMF and APCS have other mass contributions

that co-vary with the LRT (NH4)2SO4, e.g. OM. It can be

seen in Tables 4 and 5 that the median LRT NH4NO3 esti-

mated by PMC and CMB are 0.09 µg m−3 and 0.54 µg m−3

respectively. Table 3 (APCS) and Table 6 (PMF) contain

estimates of the LRT pollution aged marine aerosol PM2.5

(0.61 µg m−3) and LRT marine-mixed PM2.5 (0.44 µg m−3)

respectively. Because of co-varying species associated with

the LRT NH4NO3 in the APCS and PMF models, NH4NO3

cannot be factored into a pure apportioned source. Instead,

the LRT NH4NO3 in both APCS and PMF is also associated

with other LRT species; e.g. OM, BC, Na and is referred to as

LRT marine-mixed PM2.5 as the NH4NO3 was likely mixed

with aged marine aerosol as the air mass crossed the Gulf

of Maine and the Bay of Fundy en route to Halifax. This

assumption was backed by the HYSPLIT air mass back tra-

jectories shown in Gibson et al. (2013b).
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Figure 3. A comparison of the four receptor model PM2.5 source apportionment time series in Halifax during BORTAS-B: (a) absolute prin-

cipal component scores (APCS), (b) pragmatic mass closure (PMC), (c) chemical mass balance (CMB) and (d) positive matrix factorization

(PMF).

Table 4. Pragmatic mass closure PM2.5 source apportionment descriptive statistics.

Metric [µg m−3] n Mean Median Min Max SD C.I.

Observed PM2.5 45 4.36 3.96 0.08 12.50 3.13 0.91

LRT pollution NH4NO3 45 0.12 0.09 0.01 0.83 0.13 0.04

LRT pollution (NH4)2SO4 45 0.87 0.57 0.14 4.15 0.84 0.25

Organic matter 45 1.03 0.77 0.18 2.66 0.68 0.20

Black carbon 45 0.41 0.39 0.12 1.03 0.21 0.06

Surface dust 45 0.27 0.22 0.02 1.53 0.24 0.07

Trace element oxides 45 1.48 1.48 1.47 1.49 0.00 0.00

Sea salt 45 0.16 0.11 0.01 1.06 0.18 0.05

Particle bound water 45 0.29 0.20 0.05 1.33 0.27 0.08

Woodsmoke 45 0.32 0.08 0.01 2.38 0.55 0.16

The trends in the apportioned woodsmoke estimated from

the four receptor models are provided in the time-series plot

shown in Fig. 4. One obvious feature of Fig. 4 is the large

woodsmoke estimate, especially between 17 and 25 July,

from the CMB model. Clearly the CMB estimate is a large

departure from the woodsmoke predicted by the remaining

three receptor models that are in closer agreement. The rea-

son for this is not known at this time, but it does suggest that

the CMB SPECIATE source profiles may not be appropriate

for predicting woodsmoke in this region. It can be seen in

Fig. 4 that generally the woodsmoke contribution to PM2.5

is low or absent with the exception of elevated concentra-

tions of woodsmoke on 17 July, 24 July, 1 August, 6 August

and 13 August 2011. The low or absent woodsmoke days are
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Table 5. Chemical mass balance PM2.5 source apportionment descriptive statistics.

Metric [µ g m−3] n Mean Median Min Max SD C.I.

Observed PM2.5 45 4.57 4.04 0.08 13.73 3.39 0.98

Surface dust 2 0.81 0.81 0.39 1.24 0.6 0.83

LRT pollution (coal/industrial) 5 0.83 0.85 0.57 1.09 0.2 0.17

Woodsmoke 14 3.23 3.59 1.38 4.72 1.04 0.54

Marine aerosol 34 0.3 0.24 0.04 1.64 0.3 0.1

Ship auxiliary engines 17 1.43 1.2 0.3 3.2 0.84 0.4

LRT pollution (NH4)2SO4 21 1.45 0.67 0.24 6.77 1.58 0.68

Tire wear 1 0.82 0.82 0.82 0.82 NA NA

Diesel trucks 2 1.11 1.11 1.1 1.12 0.02 0.02

Vegetative burning 2 2.25 2.25 1.42 3.08 1.18 1.63

Small gasoline vehicles 5 2.35 2.51 0.58 5.08 1.87 1.63

LRT pollution NH4NO3 2 0.54 0.54 0.14 0.94 0.57 0.79

SO4 35 1.31 0.95 0.35 5.4 1.08 0.36

Table 6. Positive matrix factorization PM2.5 source apportionment descriptive statistics.

Metric [µ g m−3] n Mean Median Min Max SD C.I.

Observed PM2.5 45 4.57 4.04 0.08 13.73 3.39 0.98

Diesel vehicles/tire wear 39 0.05 0.03 0.00 0.17 0.04 0.01

Gasoline/tire wear 30 0.14 0.02 0.00 3.43 0.62 0.22

LRT pollution (NH4)2SO4 33 2.05 1.15 0.09 12.12 2.45 0.84

Ship emissions 34 0.55 0.49 0.04 1.15 0.31 0.11

LRT pollution marine mixture 38 0.88 0.44 0.02 7.00 1.31 0.42

Woodsmoke 29 0.61 0.14 0.00 4.14 1.00 0.36

LRT pollution (coal/industry) 34 0.74 0.48 0.00 2.97 0.69 0.23

Surface dust 38 0.33 0.19 0.00 2.55 0.44 0.14

Figure 4. Time series of the woodsmoke contribution to the to-

tal PM2.5 mass estimated from the four receptor models during

BORTAS-B.

either associated with air flow from the ocean or from north-

ern Canada when boreal wildfire activity was absent. These

days are also associated with low PM2.5 mass as described

in Gibson et al. (2013b). To help identify upwind forest fire

source regions, we used a combination of visible MODIS

satellite images, MODIS fire hotspot maps, 5-day HYSPLIT

air mass back trajectories (Gibson et al., 2013b), FLEXPART

air mass trajectories (Stohl et al., 2005) chemical transport

models (Palmer et al., 2013), Raman lidar (Bitar et al., 2010)

and aircraft measurements (Palmer et al., 2013). Together,

these approaches helped corroborate the woodsmoke event

impacting Halifax on 21 July. Figure 5 provides an exam-

ple match up of lidar aerosol backscatter measurements at

the DGS (a), GEOS-5 forecast of CO mixing ratio associated

with boreal biomass burning above the DGS (b), FLEXPART

vertical profile of PM2.5 at the DGS (c) and a plot of the air-

craft profile measurements of CO, acetonitrile and aerosol

backscatter obtained at midnight (d). Acetonitrile was used

because it is an effective tracer for biomass fire plumes in

the atmosphere (Karl et al., 2007). Figure 5a shows elevated

aerosol backscatter below 2 km between 00:00 UTC 20 July

and 24:00 UTC 21 July 2011. Also there is then a “V-shaped

notch” of clear air located above 2 km and below 5 km, fol-

lowed by further aerosol backscatter between 6 km and 8 km.

The elevated surface aerosol backscatter measurements seen

in Fig. 5a are accompanied by elevated surface PM2.5 con-

centrations as seen in Fig. 3. Since the PMF model appears

to be the most useful at predicting PM2.5 mass and is antici-

pated to be the most robust at predicting woodsmoke, it was

used to compare with the features contained in Fig. 5. From

the PMF source apportionment time-series plot in Fig. 3d,
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Figure 5. Comparison of simultaneous observations: (a) lidar backscatter cross section at DGS, 20/21 July 2011, (b) GEOS-5 CO forecast

at DGS, 20/21 July 2011, (c) FLEXPART vertical PM2.5 profile at DGS, 21 July 2011 and (d) spiral aircraft profiles over the DGS, 21 July

2011. Vertical dashed lines in (a), (b) and (c) indicate the time of the spiral aircraft profiles in (d).

it can be seen that the PM2.5 was chiefly composed of LRT

(NH4)2SO4 and LRT pollution marine mixture (NO−3 , Na,

NH4NO3), with a small spike in woodsmoke seen on 20 July

2011. Scrutiny of HYSPLIT air mass back trajectories in

Gibson et al. (2013b) and the HYSPLIT dispersion models

in Franklin et al. (2014), show that the air flow crossed a re-

gion of extensive boreal forest wildfire activity in northern

Ontario, prior to reaching Nova Scotia. On July 20 that air

flow from the NE USA mixed with the air flow from north-

ern Ontario en route to Halifax, providing a mixture of bo-

real wildfire smoke from northern Ontario and anthropogenic

LRT aerosol from the NE USA. It can be seen in Fig. 5b that

GEOS-5 predicts the exact same feature for CO as the aerosol

backscatter observed by the lidar in Fig. 5a. The CO is re-

lated to both the LRT from the NE USA mixed with wildfire

woodsmoke from Ontario. Evidence for the woodsmoke en-

trainment on 20 July 2011 in the PMF source apportionment

time series (Fig. 4) was further corroborated by FLEXPART

forward trajectory modelling from the large forest fires in

Ontario that were burning on 17 July 2011 (Franklin et al.,

2014). It can be seen in Fig. 5c that FLEXPART predicted

the impact of woodsmoke particles at the surface in Hali-

fax, which helps explain the small spike in levoglucosan on

20 July 2011. Finally, further proof of woodsmoke impacts

at the DGS come from the aircraft spiral profiles shown in

Fig. 5d. Figure 5d shows aircraft column profiles for CO, ace-

tonitrile and aerosol backscatter, which provide further foren-

sic evidence of woodsmoke impacting the DGS in Halifax.

Figure 6 provides a NASA AQUA MODIS true-colour satel-

lite image that clearly shows boreal forest fire smoke from

northern Ontario advecting over Halifax, Nova Scotia on

18 July. These fires continued to impact the DGS on 20 July

2011 as shown in Figs. 4 and 5. In a similar way, the largest

woodsmoke spike shown in Fig. 4 on 31 July 2011 was due

to boreal forest fires in northern Québec. This can be seen in

Fig. 7, where a NOAA HYSPLIT 5-day air mass trajectory

passes over the forest fires in northern Québec 3 days prior to

arriving at the DGS. Using the same approach, HYSPLIT 5-

day air mass back trajectories together with the fire hotspot

maps for 6 August show that the elevated woodsmoke was

related to wildfires in Labrador, while the woodsmoke spike

on the 12 August was related to another large fire in Ontario

on 8 August 2011.

Table 7 presents the woodsmoke source apportionment de-

scriptive statistics for each receptor model. Details of the

performance parameters related to the four receptor mod-

els are provided in Fig. 1. It can be seen that the esti-

mated mean woodsmoke contribution to PM2.5 by APCS and

Atmos. Chem. Phys., 15, 815–827, 2015 www.atmos-chem-phys.net/15/815/2015/



M. D. Gibson et al.: A comparison of four receptor models to estimate wildfire smoke PM2.5 during BORTAS-B 825

Table 7. Boreal wildfire woodsmoke source apportionment

(µg m−3) descriptive statistics by receptor model.

Receptor n Mean Median Min Max SD C.I.

model

PMC 45 0.32 0.08 0.01 2.38 0.55 0.16

APCS 45 0.35 0.09 0.01 2.71 0.62 0.18

CMB 14 3.23 3.59 1.38 4.72 1.04 0.54

PMF 29 0.61 0.14 0.00 4.14 1.00 0.36

Figure 6. NASA AQUA MODIS true-colour satellite image at

18:00 UTC on 18 July 2011 clearly showing boreal forest fire smoke

from northern Ontario advecting over Halifax, Nova Scotia.

PMC are almost identical, 0.32 and 0.35 µg m−3. The close

agreement between the woodsmoke contribution estimated

by APCS validates the new enrichment factor in this paper

generated from previous PMF and PMC analyses (Gibson

et al., 2013a). It can be seen that CMB estimates the mean

woodsmoke contribution to be 3.23 µg m−3, which is an or-

der of magnitude greater than APCS and PMC. In addition,

it can be observed that PMF estimates the mean woodsmoke

contribution to be 0.61 µg m−3, which is approximately dou-

ble that estimated by APCS and PMC. However, because of

the PMF model’s better PM2.5 predictive capability (espe-

cially below 2 µg m−3) and clear woodsmoke tracer source

identification, its known statistical robustness over APCS,

its results are likely the most accurate of the four mod-

els. However, boreal forest wood combustion product emis-

sions source profiling followed by source apportionment us-

ing these four models would be needed to completely vali-

date PMF’s superiority over APCS, PMC and CMB receptor

model methodologies.

Figure 7. 5-day HYSPLIT air mass back trajectory arriving at

12:00 UTC, overlaying the fire hotspot map for 28 July 2011.

5 Conclusions

Four receptor models were used to improve our understand-

ing of the source contribution of woodsmoke and other ma-

jor sources to PM2.5 total mass during the BORTAS-B ex-

periment. During the process, PMF was used to generate a

new woodsmoke enrichment factor of 52. The new enrich-

ment factor was used in the PMC model to convert levoglu-

cosan into a woodsmoke concentration (levoglucosan mul-

tiplied by 52). Cross-referencing the woodsmoke contribu-

tion estimated by APCS helped to validated the utility of this

new enrichment factor. It was found that APCS and PMC

receptor models mean that they have difficulty predicting

PM2.5 less than 2± 1.2 µg m−3 and 2± 0.2 µg m−3 respec-

tively. Furthermore, although CMB had an improved inter-

cept and a slope of 1, it could not be run on 9 of the 45 days

of PM2.5 samples. PMF is considered to be the most robust

of the four models since it was able to predict PM2.5 mass

below 2 µg m−3, predict PM2.5 mass on all 45 days, has a

slope close to 1, has a low bias and utilises an unambiguous

woodsmoke chemical marker within the model. The median

(min : max) woodsmoke contribution to PM2.5, estimated us-

ing PMF, was found to be 0.14 (0 : 4.14) µg m−3. This study

demonstrated that the use of a woodsmoke tracer such as lev-

oglucosan is critical when carrying out PM2.5 source appor-

tionment studies of boreal forest wildfire smoke. Controlled

wood combustion product sampling followed by source ap-

portionment modelling with these four models would greatly

improve our understanding of their performance for predict-

ing woodsmoke contributions to PM2.5 in future studies of

this nature.
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