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Abstract. We estimate black carbon (BC) emissions in the

western United States for July–September 2006 by invert-

ing surface BC concentrations from the Interagency Mon-

itoring of Protected Visual Environments (IMPROVE) net-

work using a global chemical transport model (GEOS-Chem)

and its adjoint. Our best estimate of the BC emissions is

49.9 Gg at 2◦× 2.5◦ (a factor of 2.1 increase) and 47.3 Gg

at 0.5◦× 0.667◦ (1.9 times increase). Model results now cap-

ture the observed major fire episodes with substantial bias re-

ductions (∼ 35 % at 2◦× 2.5◦ and ∼ 15 % at 0.5◦× 0.667◦).

The emissions are∼ 20–50 % larger than those from our ear-

lier analytical inversions (Mao et al., 2014). The discrepancy

is especially drastic in the partitioning of anthropogenic ver-

sus biomass burning emissions. The August biomass burning

BC emissions are 4.6–6.5 Gg and anthropogenic BC emis-

sions 8.6–12.8 Gg, varying with the model resolution, error

specifications, and subsets of observations used. On average

both anthropogenic and biomass burning emissions in the ad-

joint inversions increase 2-fold relative to the respective a

priori emissions, in distinct contrast to the halving of the an-

thropogenic and tripling of the biomass burning emissions

in the analytical inversions. We attribute these discrepancies

to the inability of the adjoint inversion system, with limited

spatiotemporal coverage of the IMPROVE observations, to

effectively distinguish collocated anthropogenic and biomass

burning emissions on model grid scales. This calls for con-

current measurements of other tracers of biomass burning

and fossil fuel combustion (e.g., carbon monoxide and car-

bon isotopes). We find that the adjoint inversion system as is

has sufficient information content to constrain the total emis-

sions of BC on the model grid scales.

1 Introduction

Black carbon (BC) is directly emitted from the incomplete

combustion of carbonaceous fuels (Bond et al., 2004). Black

carbon has substantial impacts on global climate because of

its strong absorption of solar radiation (e.g., Horvath, 1993;

Ramanathan and Carmichael, 2008), important influences in

cloud processes (Jacobson, 2006), and significant impacts on

snow and ice albedos (Flanner et al., 2007, 2009). The radia-

tive forcing due to BC is 0.64 W m−2 globally (IPCC, 2013),

ranked as the third-biggest human cause of global warming.

Black carbon is also known as an important agent to both de-

grade air quality and affect human health (McMurry et al.,

2004; Anenberg et al., 2011, 2012). Because of its shorter

lifetime relative to long-lived greenhouse gases, BC reduc-
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tion may provide an efficient near-term solution to mitigate

global warming and to improve air quality and public health

simultaneously (Ramanathan and Carmichael, 2008; Shin-

dell et al., 2008, 2012; Smith et al., 2009; Ramana et al.,

2010; Bond et al., 2013).

The deposition of BC on glaciers is known to be an im-

portant driver to the observed rapid glacier retreat (Xu et al.,

2009; Painter et al., 2013) and further impacts the regional

hydrological cycle over mountain ranges (Qian et al., 2009).

In the western United States (WUS), mountain snowmelt ac-

counts for at least 70 % of the annual stream flow (Qian et al.,

2009). In the recent decades, the WUS is experiencing the

most severe drought (e.g., Melillo et al., 2014) and the water

level of the Colorado River has been decreasing (e.g., Vano

et al., 2013). It is thus imperative to better understand the

sources, transport, and deposition of BC in the WUS moun-

tain ranges.

Recent studies have shown that the biomass burning BC

emissions in the WUS were underestimated by a factor of 2

in both the absolute magnitudes and the timing and location

of the emissions (Mao et al., 2011, and references therein).

The large uncertainty is partially because previous burned

area algorithms lacked the ability to detect small fires (Giglio

et al., 2010; Randerson et al., 2012). Long-term records have

shown an increase in fires in terms of both fire frequency and

burned area in the WUS over the past 30 years because of

the rising spring and summer temperatures (Westerling et al.,

2006; Peterson and Marcinkowski, 2014; Jin et al., 2014) and

increasing urbanization (e.g., Cannon and DeGraff, 2009).

This upward trend is expected to continue as a result of the

warming climate (Spracklen et al., 2009; Yue et al., 2013).

Biomass burning emissions will conceivably have an even

larger contribution to BC in the WUS in this century, espe-

cially considering that North American anthropogenic emis-

sions have been steadily decreasing as a result of effective

emission controls (Novakov et al., 2003; Bond et al., 2007;

Ramanathan and Carmichael, 2008).

Knowledge of the emissions of a chemical species is im-

perative for better understanding of its transport, distribu-

tion, and removal. Traditional bottom-up emission estimates

generally depend on emission factors using socioeconomic,

energy, land use, or environmental data (Bond et al., 2007,

2013; Lu et al., 2011). Inverse modeling is able to im-

prove the bottom-up emission estimates by minimizing an

error-weighted least squares cost function (Rodgers, 2000).

There are two methods to achieve the minimum of the cost

function, the so-called analytical inversion and adjoint (i.e.,

variational) inversion (Kopacz et al., 2009, and references

therein). The analytical method obtains an analytical solu-

tion by explicitly constructing a Jacobian matrix. However,

the analytical method limits the number of the observations

and the number of the sources and source regions that could

be optimized because it is computationally expensive. Alter-

natively, the adjoint method seeks a numerical solution iter-

atively by using a suitable optimization algorithm (e.g., the

conjugate gradient method) and is thus able to handle a very

large number of observations and a large state vector resolved

on a model grid scale.

Inverse modeling in general is suited for estimating emis-

sions of unreactive or weakly reactive chemical species

when their atmospheric concentrations are linearly or weakly

non-linearly dependent on emissions (Müller and Stavrakou,

2005). These species include but are not limited to carbon

dioxide (e.g., Gloor et al., 1999; Chevallier et al., 2007;

Pickett-Heaps et al., 2011), methane (e.g., Hein et al., 1997;

Meirink et al., 2008; Wecht et al., 2012), and carbon monox-

ide (CO) (Stavrakou and Müller, 2006; Arellano et al., 2004,

2006, 2007; Chevallier et al., 2009; Jones et al., 2009; Jiang

et al., 2013). Despite the non-linear complexities of the in-

version system for short-lived tracer species, several stud-

ies have attempted to constrain emissions for nitrogen ox-

ides (e.g., Martin et al., 2003, 2006; Chai et al., 2009; Lin et

al., 2010; Zyrichidou et al., 2013), sulfur dioxide (Lee et al.,

2011), and ammonia (Zhu et al., 2013; Paulot et al., 2014).

The inverse method has also been used to constrain emission

fluxes of aerosols, for instance, inorganic particulate matter

(Henze et al., 2009; Xu et al., 2013) and dust (Yumimoto et

al., 2008; Wang et al., 2012).

A number of modeling studies have attempted to constrain

and attribute BC emissions on regional to continental scales.

Several studies have used multiple regressions to estimate an-

nual mean emissions of primary carbonaceous aerosols in the

US (Park et al., 2003) and in China (Fu et al., 2012; Wang et

al., 2013). A global chemical transport model (CTM) and its

adjoint was used to attribute the source regions of BC in the

Himalayas and the Tibetan Plateau (Kopacz et al., 2011). An-

thropogenic and biomass burning emissions of BC during the

Asian Pacific Regional Aerosol Characterization Experiment

(ACE-Asia) (Huebert et al., 2003; Seinfeld et al., 2004) were

estimated using a continental-scale CTM (stretched over the

Pacific basin) and its adjoint (Hakami et al., 2005). Previ-

ously, linear analytical inversions were applied to optimize

sources and source regions (the Rockies, California and the

Southwest, and the Pacific Northwest) of BC in the WUS

for May–October 2006 (Mao et al., 2014). The analytical in-

versions show a factor of 3–5 increase of the biomass burn-

ing emissions and a ∼ 50 % reduction of the anthropogenic

emissions, relative to the corresponding a priori (Mao et al.,

2014).

Here we apply the adjoint inversion method (Henze et

al., 2007, 2009) to improve estimates of BC emissions in

the WUS (defined hereinafter as 30–50◦ N, 100–125◦W) on

model grid scales by inverting the surface BC concentrations

from the Interagency Monitoring of Protected Visual Envi-

ronments (IMPROVE, Malm et al., 1994) network using the

GEOS-Chem global 3-D CTM and its adjoint. We use the

observations for 2006 from 69 mostly mountainous sites in

the WUS (Fig. 1). We focus our analysis on biomass burning

emissions during the large fire season of July–September in

the region (Mao et al., 2011, 2014).
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Table 1. Monthly biomass burning and anthropogenic emissions of BC (unit: Gg) in the WUS for August 2006.

Inversion configurations Emissionsa (Gg (109 g))

Model Site SaBB SaAnth S6 A priori Biomass burning Anth. Total

Resolution num. (%) (%) (%) BB. RM CSW PNW Total

A priori 1.3 0.5 1.0 2.8 5.8 8.6

A
p
o
st

er
io

ri

Analytical 2◦× 2.5◦ 69 500 50 30 2.8 7.6 1.4 0.9 9.9 (3.5b) 2.8 (0.5) 12.7 (1.5)

0.5◦× 0.667◦ 69 500 50 30 2.8 4.1 0.1 1.9 6.1 (2.7) 3.1 (0.5) 9.1 (1.1)

Adjoint

Case 1 2◦× 2.5◦ 69 500 50 30 2.8 3.0 1.4 1.5 5.9 (2.1) 11.8 (2.0) 17.7 (2.1)

Case 2 2◦× 2.5◦ 69 300 50 30 2.8 2.9 1.3 1.4 5.6 (2.0) 11.6 (2.0) 17.2 (2.0)

Case 3 2◦× 2.5◦ 69 500 30 30 2.8 3.2 1.4 1.6 6.2 (2.2) 11.4 (2.0) 17.6 (2.0)

Case 4 2◦× 2.5◦ 69 500 200 30 2.8 3.3 1.5 1.7 6.5 (2.3) 12.8 (2.2) 19.3 (2.2)

Case 5 2◦× 2.5◦ 69 500 50 100 2.8 2.4 1.2 1.0 4.6 (1.7) 10.3 (1.8) 14.9 (1.7)

Case 6 2◦× 2.5◦ 56 500 50 30 2.8 2.8 1.3 1.4 5.5 (2.0) 11.1 (1.9) 16.6 (1.9)

Case 7 2◦× 2.5◦ 69 200 200 30 2.8 3.1 1.4 1.5 6.0 (2.2) 12.5 (2.2) 18.5 (2.2)

Case 8 2◦× 2.5◦ 69 500 50 30 3.0c 3.1 1.4 1.5 6.0 (2.1) 11.6 (2.0) 17.6 (2.0)

Case 9 0.5◦× 0.667◦ 69 500 50 30 2.8 2.2 0.8 2.3 5.3 (1.9) 8.6 (1.5) 13.9 (1.6)

a See Fig. 1 in Mao et al. (2014) for the geographical definitions of the BC source regions. b Scaling factors are in parentheses. c The a priori biomass burning emissions uniformly increased by 2.5 Mg in

every model grid box.
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Figure 1. IMPROVE sites (data available at http://vista.cira.

colostate.edu/improve/; solid circles) in the western United States

(WUS). We use all the 69 sites in the standard inversion Case 1 (Ta-

ble 1). Small 56 solid circles represent the sites used in the inversion

Case 6 (Table 1). Also shown are terrain heights (color contours).

2 GEOS-Chem and its adjoint

We apply the GEOS-Chem global 3-D CTM (Bey et al.,

2001; with many updates thenceforth) to analyze IMPROVE

BC data. Here we use GEOS-Chem version 8-02-01 (avail-

able at http://geos-chem.org) driven by GEOS-5 meteoro-

logical data. The detailed model configurations are as dis-

cussed by Mao et al. (2011, 2014). Global annual anthro-

pogenic emissions of BC are from Bond et al. (2007). Sea-

sonal variations of anthropogenic emissions are considered

over the US following Park et al. (2003). Biomass burn-

ing emissions of BC are from the Global Fire Emissions

Database version 2 (GFEDv2) (Randerson et al., 2007; van

der Werf et al., 2006), with improved spatiotemporal distri-

butions using the active fire counts from the Moderate Res-

olution Imaging Spectroradiometer (MODIS) (Mao et al.,

2014). For computational expediency, we conduct “offline”

simulations of carbonaceous aerosols (Mao et al., 2011, and

references therein) for 2006 at both 2◦× 2.5◦ (globally) and

0.5◦× 0.667◦ (nested over North America, 40–140◦W lon-

gitudes, 10–70◦ N latitudes, cf. Fig. 1 in Wang et al., 2004)

horizontal resolutions, following Mao et al. (2014). The first

3 months are used for initialization, and we focus our analy-

sis on July–September. Model results are sampled at the cor-

responding location and time of IMPROVE observations.

We use the GEOS-Chem adjoint (Henze et al., 2007, 2009)

to estimate BC emissions in the WUS. A particular type of

application of the adjoint is source attribution of chemical

species at individual sites (e.g., Zhang et al., 2009; Kopacz

et al., 2011; Parrington et al., 2012; Walker et al., 2012).

Here we use the adjoint of the “offline” simulation of BC

at 2◦× 2.5◦ (globally) and 0.5◦× 0.667◦ (nested over North

America, Jiang et al., 2015a). The computational cost of the

adjoint simulation is 50 % greater than that of the corre-

sponding forward simulation. We validate the adjoint sim-

ulation of BC by comparing the adjoint gradients and the

forward model sensitivities calculated using finite difference

approximation (Henze et al., 2007; Zhu et al., 2013):

∧=
J (σ + δσ )− J (σ )

δσ
, (1)

where J is the cost function (Mao et al., 2014, and refer-

ences therein), as discussed below in Sect. 3.1, and σ the

scaling factor of BC emissions. We use here δσ = 0.1, fol-

lowing Henze et al. (2007). Specifically we calculate the sen-

sitivity of the BC mass at the surface with respect to the

scaling factors of biomass burning and anthropogenic emis-

sions of BC. Figure S1 in the Supplement shows the results

from 1 week simulations for biomass burning (top panel) and

anthropogenic emissions (bottom panel) for August 2006.
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The adjoint and finite difference sensitivities are in excellent

agreements (r ≈ 1), reaffirming the accuracy of the adjoint

code.

3 Inversion approach

3.1 The adjoint solution to the inverse problem

Consider the general problem of inferring emissions (state

vector X) from a set of given observations (observation vec-

tor Y ) with error ε. They are related via a forward model F

as follows (Rodgers, 2000):

Y = F(X,b)+ ε, (2)

where X are the monthly biomass burning or anthropogenic

emissions of BC in each model grid box in the present study,

Y the 24 h average surface BC concentrations from the 69

IMPROVE sites (Fig. 1), b the model variables not directly

retrieved from the inversion, F the GEOS-Chem model, and

ε the observation error (measurement and forward model er-

rors). Based on Bayes’ theorem and the assumption of Gaus-

sian error distributions (Rodgers, 2000), the optimal or maxi-

mum a posteriori (MAP) solution forX given Y is equivalent

to finding the minimum of a cost function J (X):

J (X)=
1

2
γr(X−Xa)

TS−1
a (X−Xa)+

1

2

N∑
i=0

[Y i −F(Xi)]
TS−1

ε [Y i −F(Xi)]

= γrJb+ Jo, (3)

whereXa and Sa are the a priori emissions and the associated

error covariance, Sε the observational error covariance, and

γr the regularization parameter that adjusts the relative con-

straints by the observation term (i.e., the prediction term, Jo)

and the background term (i.e., the penalty term, Jb) of the

cost function (Hakami et al., 2005; Müller and Stavrakou,

2005; Henze et al., 2007; Kopacz et al., 2009). An observa-

tion term is added to the cost function for each additional

data source during the time interval [t0, tN ].

The adjoint approach seeks to minimize the cost func-

tion J (X) numerically and iteratively rather than analytically

(Henze et al., 2007, 2009). Starting from an initial guess (i.e.,

the a priori emissions), the adjoint model efficiently com-

putes the cost function gradients. A quasi-Newton L-BFGS

algorithm (Liu and Nocedal, 1989) is then used to minimize

the cost function iteratively, taking as input the cost function

and its gradient. Such iterative optimizations using GEOS-

Chem and its adjoint have been discussed in details previ-

ously (Henze et al., 2007, 2009; Kopacz et al., 2009, 2010).

3.2 Error specifications

A key aspect of inverse modeling is the specification of the

error covariance matrices of variable parameters and obser-

vations (Palmer et al., 2003; Heald et al., 2004). We set the a

priori and observation errors following Mao et al. (2014). We

assume for separate inversions presented here an uncertainty

of 30, 50, or 200 % for anthropogenic BC emissions and 300

or 500 % for biomass burning BC emissions. We assume that

the a priori errors are spatially uncorrelated. The spatial cor-

relations between the a priori errors have been proved to im-

prove the inversion, particularly in regions adjacent to strong

sources and less directly constrained (Stavrakou and Müller,

2006). For example, the assumption of no spatial correla-

tion between a priori errors would underestimate the biomass

burning emissions in regions close to the extensive agricul-

ture fires. We set the observation error at 30, 50, or 100 %,

which includes the model, representation, and measurement

errors. Setting these errors in relative terms can become prob-

lematic when the observed BC concentrations are vanish-

ingly small. These small values tend to skew the inversion

toward matching the minimal errors. We thus set an absolute

error of 0.04 µg m−3 based on the estimated observation er-

rors. We showed previously that the combination of 50 % un-

certainty for anthropogenic emissions, 500 % uncertainty for

biomass burning emissions, and 30 % total observation error

provided the best retrieval results in the analytical inversions

(Mao et al., 2014). We adopt this set of error specifications in

the standard inversion in the present study (Case 1, Table 1).

The results are compared with those from the analytical in-

versions of Mao et al. (2014).

3.3 Emission scaling factors X/Xa

We optimize here the scaling factors of emissions X/Xa

(rather than the actual emissionsX), as a standard practice in

adjoint inversion studies (Henze et al., 2009). The form of the

scaling factors in an adjoint inversion is crucial for the inver-

sion to efficiently and rapidly converge to a solution (Jiang

et al., 2015b). When the optimization is directly on the scal-

ing factors expressed linearly asX/Xa (i.e., the cost function

gradient is computed with respect toX/Xa), the regions with

strong a priori emissions tend to dominate the optimization,

manifested in unrealistically large changes of emissions in

these regions but limited variations in the regions with weak

a priori emissions. Alternatively, when the optimization is in-

stead on the logarithm of the scaling factors, ln(X/Xa) (i.e.,

the cost function gradient is now computed with respect to

ln(X/Xa)), the optimization can potentially result in an un-

balanced convergence that is much faster for the regions with

positive biases than for the regions with negative biases. Here

we calculate cost function gradients with a hybrid form of

scaling factors (Jiang et al., 2015b),

gradients=


x

xa

≤ 1
∂J

∂ ln(x/xa)
=
∂J

∂x
× xa×

x

xa
x

xa

> 1
∂J

∂ 1
2

[
(x/xa)2− 1

] = ∂J
∂x
× xa/

x

xa

, (4)

so that the resulting optimization converges equally effi-

ciently for the regions with positive or negative biases.
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3.4 The regularization parameter γr

The assumption that a priori errors are spatially uncorre-

lated hinges on the consideration that the spatial resolution

of the CTM is much larger than the correlation length scale

of the individual emission sources (Henze et al., 2009). How-

ever, the uncertainties of emissions from different model

grid boxes (e.g., ∼ 200× 250 km2 at 2◦× 2.5◦) within a re-

gion (e.g., a country) are usually correlated (Stavrakou and

Müller, 2006). Without explicitly enforcing these correla-

tions, a regularization parameter, which ensures a smooth

solution to the inversion, is often used to rectify the afore-

mentioned inconsistency, by ensuring the a posteriori emis-

sions remain sufficiently close to the a priori values, which

themselves reflect such correlations owing to the nature of

bottom-up emissions inventories (Rodgers, 2000; Henze et

al., 2009). Here we use the regularization parameter γr to

balance the two terms of the cost function (Eq. 3) (Hakami

et al., 2005; Müller and Stavrakou, 2005; Henze et al., 2007;

Kopacz et al., 2009). A large γr relaxes the solution toward

the a priori constraint while limiting the influence of the ob-

servation term, resulting in over-smoothing of the solution.

In contrast, a small γr largely curtails the influence of the

a priori constraint. To find an optimal γr value, we conduct

inversions with a range of γr (10, 1, 0.1, 0.01, 0.001, and

0.0001). The resulting a posteriori cost function values, nor-

malized by the initial value, are shown in Fig. S2 (top). We

use γr = 0.001 in the analysis hereinafter, as that provides a

small normalized a posteriori cost function and a sufficient

cost function reduction.

As an example, Fig. S2 (bottom) shows the cost func-

tion reduction for August 2006. We regard the minimiza-

tion as having converged sufficiently when the cost function

changes less than 2 % during the last three iterations. The

cost function converges in 10–20 iterations (35 % reduction

at 2◦× 2.5◦ and 50 % at 0.5◦× 0.667◦). The cost function

values are of the same order as the number of observations

used in the inversion (∼ 690). The penalty term (Sect. 3.1) is

a mere 3 % of the a posteriori cost function at 2◦× 2.5◦ and

8 % at 0.5◦× 0.667◦; therefore the influence of the a priori is

likely rather modest.

4 Results and discussion

Our standard adjoint inversion is at 2◦× 2.5◦, with uncertain-

ties of 50 % for anthropogenic emissions, 500 % for biomass

burning emissions, and 30 % for the observation (Case 1, Ta-

ble 1). The a posteriori emissions are 49.9 Gg at 2◦× 2.5◦

and 47.3 Gg at 0.5◦× 0.667◦ for July–September, substan-

tially higher than the a priori (24.3 Gg), because the modeled

surface BC concentrations are largely biased low at most IM-

PROVE sites (Mao et al., 2011, 2014).

We focus our discussions hereinafter on August only, un-

less stated otherwise, for the sake of concision and clarity.

Figure 2 shows the a priori and the a posteriori monthly

anthropogenic and biomass burning BC emissions from the

standard adjoint inversion for August. The anthropogenic

and biomass burning emissions are adjusted (higher or lower)

alike in most grid boxes. Both the anthropogenic and biomass

burning emissions increase 2-fold overall. The biomass burn-

ing emissions increase by varying factors (Table 1): 2.3 in

the Rockies, 2.8 in California and the Southwest, and 1.5 in

the Pacific Northwest; the regions are defined as in Mao et

al. (2014).

The sensitivity of the cost function J (X) to the BC emis-

sions is a useful metric for evaluating the inversions. Fol-

lowing Henze et al. (2009), we normalize the sensitivity as

follows:

∂J (X)

∂xm,i

xm,i

J (X)
. (5)

It is the percentage of the cost function response to the

fractional change in the BC emission source m (biomass

burning, anthropogenic or total emissions) in model grid box

i. As such, negative sensitivities are regions in which the

model underestimates actual emissions and an increase of

BC emissions would improve model agreement with the ob-

servations. It is the opposite for positive sensitivities. The re-

sults for August are shown in Fig. 3. The largest negative

sensitivities to biomass burning emissions are in Washing-

ton, Ohio, Idaho, and California, where the model severely

underestimates the biomass burning emissions and the sensi-

tivities decrease significantly after the inversions. The inver-

sions generally result in large reductions to both the positive

and negative sensitivities (∼ 90 % on average at 2◦× 2.5◦

and 0.5◦× 0.667◦).

4.1 Sensitivity analyses

Here we examine the sensitivity of the adjoint inversions to

error specifications, choice of observations, collocated emis-

sions, and the model resolution. These sensitivity analyses

also provide a measure of the robustness of the inversions

(Mao et al., 2014). For that purpose we conduct adjoint

inversions at 2◦× 2.5◦ and 0.5◦× 0.667◦ (Cases 2–8, Ta-

ble 1) in addition to the standard inversion (Case 1), with

assorted a priori and observation errors, different subsets

of the IMPROVE data, and collocated anthropogenic and

biomass burning emissions. The results are compared and

contrasted with those from the standard adjoint inversion in

the discussions hereafter, unless stated otherwise. We find

that the inversions generally show comparable and consis-

tent results with those from the standard inversion. The en-

semble a posteriori biomass burning emissions (Cases 1–8)

are 4.6–6.5 Gg (a factor of 1.7–2.3 relative to the a priori) and

anthropogenic emissions 8.6–12.8 Gg (a factor of 1.5–2.2 in-

crease).
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Figure 2. Emissions of BC in the WUS for August 2006: (top two rows) biomass burning, (middle two rows) anthropogenic, and (bottom

two rows) total emissions. First column – the a priori; second column – the optimized inventory; third column – differences between the

a posteriori and a priori; fourth column – scaling factors. For the purpose of clarity, biomass burning emissions are multiplied by 2 in the

figures. Retrieval results are from the standard adjoint (Case 1, Table 1) and analytical (Mao et al., 2014) inversions at 2◦× 2.5◦ . We assume

for inversions uncertainties of 500, 50, and 30 % for biomass burning BC emissions, anthropogenic BC emissions, and total observation

error.

4.1.1 Error specifications

We first conduct adjoint inversions (Cases 2–5) to examine

the sensitivity of the inversions to the a priori and observa-

tion errors. The a posteriori emissions are 3 % lower when we

reduce the uncertainty of the a priori biomass burning emis-

sions from 500 to 300 % (Case 2). Reducing the uncertainty

of the a priori anthropogenic emissions from 50 to 30 %

brings no appreciable change to the a posteriori emissions

(Case 3). Quadrupling that uncertainty (from 50 to 200 %)

increases the a posteriori emissions by 10 % (Case 4). We

find that the inversions are more sensitive to the observation

error than the a priori error. For instance, an increase from 30

to 100 % of the observation error (Case 5) results in a 16 %

decrease in the a posteriori emissions.

4.1.2 Choices of observations

A robust inversion critically relies on the spatiotemporal cov-

erage of the observations. For carbon dioxide, a minimum

of 10 sites per region were needed in analytical inversions

(Gloor et al., 1999). For BC, the number of site is usually

smaller. Only∼ 1000 BC observations were used to optimize

∼ 20 000 variables in an adjoint study (Hakami et al., 2005)

during ACE-Asia (Huebert et al., 2003; Seinfeld et al., 2004).

In this study, we use ∼ 690 observations to constrain ∼ 600

variables at 2◦× 2.5◦ and ∼ 10 000 at 0.5◦× 0.667◦ .

Here we conduct two inversions to probe the sensitivity

of the inversion to observations by using subsets of the IM-

PROVE data and comparing the results with those from the

standard inversion (Case 1). In the inversion (Case 6), we

set aside 13 (∼ 20 % of the 69) sites with χ2> 1.5 and large
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Figure 3. Normalized sensitivities of the cost function with respect to the BC emissions (left: biomass burning BC; middle: anthropogenic

BC; right: total emissions of BC) before and after the inversions at 2◦× 2.5◦ (Case 1, Table 1) and 0.5◦× 0.667◦ (Case 9, same as Case

1, except at 0.5◦× 0.667◦) for August 2006. For the purpose of clarity, sensitivities of the cost function to biomass burning emissions are

multiplied by 10 in the figures.

model–observation departure (> 0.5 µg m−3). χ2 is calcu-

lated as the square of the ratio of the difference between

modeled and observed surface BC concentrations to the ob-

servation accuracy. The measurements from these 13 sites

are used as independent observations, whereas the measure-

ments from the remaining 56 sites are used in the inversion.

We find that the resulting a posteriori emissions (Fig. 4) are

within 6 % of those from Case 1 (Fig. 2). The emissions dif-

fer significantly only in ∼ 10 % of the grid boxes, mainly in

the Pacific Northwest and the Rockies. The resulting surface

BC concentrations averaged over the 13 sites are within 15 %

between the two cases. There is a ∼ 15 % reduction in the

mean bias of the surface BC concentrations (averaged over

the 13 sites) for Case 6 and 20 % for Case 1. In another in-

version (not shown), we set aside 4 (∼ 5 % of the 69) sites

with χ2 > 2. The results are also consistent with those from

Case 1.

4.1.3 Collocated emissions

In the WUS mountain ranges, biomass burning BC emissions

are substantially underestimated (Mao et al., 2011). There are

large uncertainties in the temporal variation and spatial distri-

bution of fire emissions (Langmann et al., 2009). Small fires

are likely a major source of these uncertainties (Randerson et

al., 2012). For instance, small fires can lead to large relative

errors (50–100 %) in burned area estimates (Korontzi et al.,

2006; Giglio et al., 2006, 2010; McCarty et al., 2009; Roy

and Boschetti, 2009).

Figure 5 shows monthly anthropogenic and biomass burn-

ing emissions in each 2◦× 2.5◦ model grid box in the WUS.

Collocated anthropogenic and biomass burning emissions are

in most of the grid boxes. The anthropogenic emissions are

larger than the biomass burning emissions in 80 % of the

grid boxes and still significant in the remaining 20 %. Here

we conduct two inversions (Cases 7–8) to examine the abil-

ity of the adjoint inversion system to distinguish collocated
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Figure 5. Monthly anthropogenic and biomass burning emissions

of BC in each 2◦× 2.5◦ grid box for August 2006 (unit: kg). Solid

line is 1:1 and dashed lines are 1 : 10 (or 10 : 1).

biomass burning versus anthropogenic emissions, especially

in the regions where the biomass burning emissions are likely

underestimated. We conduct one inversion (Case 7) on the to-

tal emissions, considering an error of 200 % for the a priori

emissions. We find that the resulting total a posteriori emis-

sions increase by a factor of 2.2 relative to the a priori and

are within 2 % of those from Case 1. We conduct another

inversion (Case 8) to examine how much the inversion can

distinguish the collocated emissions. In each grid box, we

add 2.5 Mg (∼ 10 % of the maximum emissions among the

grid boxes) as a diagnosis to the (a priori) biomass burning

emissions of BC and examine the degree to which the in-

version results change the partitioning of biomass burning

versus anthropogenic emissions by comparing the inversion

results with those from Case 1 (or Case 7). The differences

in the a posteriori emissions of BC between Cases 8 and 1

are shown in Fig. 6. The anthropogenic and biomass burn-

ing emissions from Case 8 show opposite and disproportional

changes, relative to the corresponding emissions from Case

1. Specifically, there is an approximately linear increase (i.e.,

Case 8 relative to Case 1) in the biomass burning emissions

(by more than 5 Mg in nearly every grid box) and a linear de-

crease (again, Case 8 relative to Case 1) in the anthropogenic

emissions (by ∼ 3 Mg, except in California). However, the

anthropogenic and biomass burning emissions of BC, when

summed over the WUS, each increase 2-fold (relative to the

corresponding a priori) in both Case 8 and Case 1; the total

emissions remain essentially the same (less than 1 % differ-

ence) between the two cases (Table 1). The inversion system

tends to overcompensate the deficit of biomass burning emis-

sions by disproportionately increasing anthropogenic emis-

sions instead in the same grid box. This indicates that the

inversion system lacks the ability to effectively distinguish

collocated biomass burning and anthropogenic emissions in

the WUS on model grid scales.
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2◦× 2.5◦ for August 2006. Case 8 is same as Case 1, except with

the a priori biomass burning emissions uniformly increased by

2.5 Mg in every model grid box.

4.1.4 Model resolution

GEOS-Chem simulations generally provide better agree-

ments with observations at 0.5◦× 0.667◦ than at 2◦× 2.5◦

for CO (Wang et al., 2004; Chen et al., 2009), ozone (Zhang

et al., 2011), mercury (Zhang et al., 2012), and BC (Mao et

al., 2014). We found in a companion study (Mao et al., 2014)

that the a posteriori BC emissions from analytical inversions

of the IMPROVE observations were considerably lower at

0.5◦× 0.667◦ than at 2◦× 2.5◦. Intuitively, the larger smear-

ing of the emissions at the coarser resolution results in larger

model–observation discrepancies (Chen et al., 2009). The

larger discrepancies in turn tend to drive the inversion sys-

tem toward imposing larger emissions at the coarser than the

finer resolutions when minimizing the said discrepancies.

As a comparison to the standard inversion at 2◦× 2.5◦

(Case 1), we conduct another adjoint inversion at

0.5◦× 0.667◦ (Case 9) with the same error specifica-

tions. The resulting a posteriori emissions are shown in

Fig. 7. The biomass burning emissions are 53 % larger in

Case 9 than in Case 1 in the Pacific Northwest but 27 %

lower in the Rockies and 43 % lower in California and the

Southwest. The total emissions are considerably lower at

0.5◦× 0.667◦ (27 % lower for anthropogenic and 10 % for

biomass burning) yet provide better agreement with the

observations (Sect. 4.4). The a posteriori emissions from

the standard analytical inversion (Mao et al., 2014) are also

shown in Fig. 7 for comparison. The differences between the

analytical and adjoint inversions (Table 1) are slightly larger

at 0.5◦× 0.667◦ (53 %) than at 2◦× 2.5◦ (39 %). The larger

differences reflect in part that the adjoint inversion system

has even more difficulty in constraining the emissions at the

finer grid scale (Sects. 4.1.3 and 4.2).

4.2 Pseudo observations

We use pseudo observations of BC concentrations in another

group of inversions (Table 2) to further examine the sensi-

tivity of the adjoint inversions to collocated emissions, error

specifications, and observations. We generate the pseudo ob-

servations by increasing the a priori biomass burning emis-

sions of BC in each grid box 3-fold. The total amount of

the a priori emissions added is 5.6 Gg. The frequency of

the pseudo observations are 24 h averages for every 3 days,

following the IMPROVE measurements of BC. We then in-

vert the pseudo observations at 2◦× 2.5◦ and with the same

a priori emissions as those used in the standard inversion

(Case 1). We examine whether the inversions are able to

fully recover the emissions used to generate the pseudo ob-

servations. Specifically, we expect the a posteriori biomass

burning emissions to increase 3-fold relative to the a priori,

whereas the anthropogenic emissions remain unchanged.

We first conduct two inversions (Pseudos 1–2) to investi-

gate the ability of the adjoint inversion system to distinguish

collocated anthropogenic and biomass burning emissions.

We consider two extreme scenarios: the pseudo observations

are in every surface grid box (Pseudo 1) and in every grid

box in the lowest 15 vertical layers (Pseudo 2). Other aspects

of the two inversions remain the same as those of the stan-

dard inversion (Case 1). We find that the results are nearly

indistinguishable. The a posteriori cost function is greatly re-

duced (by 95 % in Pseudo 1 and by 97 % in Pseudo 2). The

a posteriori emissions both increase by exactly 5.6 Gg, fully

recovering the added biomass burning emissions. However,

the increase is uneven and not limited to the biomass burn-

ing emissions. The biomass burning emissions increase by

a factor of 2.3 and anthropogenic emissions by a factor of

1.3. The inversions thus falsely impose larger anthropogenic

emissions to minimize the large discrepancies between the

model predictions and the pseudo observations.

In the next three inversions (Pseudos 3–5), we examine

the sensitivity of the inversion system to the constraints for

anthropogenic versus biomass burning emissions. The uncer-

tainty of the anthropogenic emissions is reduced to 10 % in

Pseudo 3. We assume that the anthropogenic emissions are

perfect and leave them unchanged in Pseudo 4. In Pseudo

5, we let the biomass burning emissions remain unaltered.

Other aspects of Pseudos 3–5 remain the same as those of

Pseudo 1. We find that the resulting a posteriori emissions

from the former two (Pseudos 3 and 4) recover fully the

added (biomass burning) emissions. The biomass burning

emissions increase by a factor of 2.5 in Pseudo 3 (versus 2.3

in Pseudo 1) and by a factor of 2.9 in Pseudo 4. However,

the a posteriori emissions from Pseudo 5 increase by only

4.2 Gg, recovering just 75 % of the added (biomass burning)

emissions.

Concurrent measurements of other combustion tracers, for

example, CO and carbon isotopes, can conceivably provide

additional information to distinguish collocated BC emis-

sions. Previous studies have shown that the ratio of BC to CO

significantly varies with the fuel types and thus is a good indi-

cator for identifying BC sources (Spackman et al., 2008; Han

et al., 2009; Subramanian et al., 2010; Reche et al., 2011).

Carbon isotopes such as 14C are known to be present at small

and more or less constant levels in biogenic emissions but

www.atmos-chem-phys.net/15/7685/2015/ Atmos. Chem. Phys., 15, 7685–7702, 2015



7694 Y. H. Mao et al.: Estimates of black carbon emissions in the western United States

Figure 7. Same as Fig. 2, but at 0.5◦× 0.667◦ (Case 9, same as Case 1, except at 0.5◦× 0.667◦ ).

absent in fossil fuels (Schichtel et al., 2008). Ample studies

heretofore have shown that 14C is useful for analyzing the

source apportionment of atmospheric carbonaceous aerosols

(Heal, 2014, and references therein). 14C measurements are

currently only available from short-term studies in part be-

cause of the relatively high cost of deploying such measure-

ments in routine monitoring networks (Lewis et al., 2004;

Bench et al., 2007; Bench, 2004; Szidat et al., 2006).

Additionally, we conduct four inversions (Pseudos 6–9) to

examine the minimum number of observation sites needed

for the inversions. The inversions are the same as Pseudo 1,

except that the pseudo observations are randomly distributed

in 75 % (Pseudo 6), 50 % (Pseudo 7), or 25 % (Pseudo 8) of

the surface grid boxes, or in the surface grid boxes with larger

than five fire counts per month (covering ∼ 50 % of surface

grid boxes, Pseudo 9). The resulting a posteriori emissions

recover 94 % (Pseudo 6), 93 % (Pseudo 7), 80 % (Pseudo 8),

and 93 % (Pseudo 9) of the added (biomass burning) emis-

sions. Randomly, surface observations covering at least 50 %

of the model grid boxes are needed to estimate the total BC

emissions on the model grid scale. In our case, 69 IMPROVE

sites are used to constrain BC emissions in ∼ 100 surface

grid boxes at 2◦× 2.5◦ and ∼ 1500 at 0.5◦× 0.667◦. As we

discussed in Sect. 4.1.2, the differences between the inver-

sion results with 69 or 56 IMPROVE sites are essentially

small, indicating that the 69 or 56 sites alone (excluding

other observations) are likely sufficient only for constrain-

ing the total emissions of BC, especially at 2◦× 2.5◦. With

pseudo observations located at biomass burning source re-

gions (Pseudo 9), the resulting a posteriori biomass burning

emissions are 5 % higher than those from the inversion with

similar amount of pseudo observations (in 50 % of surface

grid boxes, Pseudo 7), whereas the total a posteriori emis-

sions are almost unchanged between Pseudos 7 and 9. Thus,

pseudo observations located at source regions would be more

effective to constrain sources.

4.3 Adjoint versus analytical inversions

The analytical method is limited to constraining emissions

over aggregated regions because of computational limita-

tions, whereas the adjoint method is able to describe emission
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Table 2. Monthly anthropogenic and biomass burning emissions of BC (unit: Gg) in the WUS from the adjoint inversions for August 2006

using pseudo observations.

Inversion configurations Emissions (Gg (109g)) J (x) reductionc

Pseudo observations SaANTH (%) SaBB (%) Anth. BB 1 Emissionsb (%)

A
p

o
st

er
io

ri

Pseudo 1 every surface grid box 50 500 7.7 (1.3a) 6.5 (2.3) 5.6 (2.0) 95

Pseudo 2 every grid box in the lowest 15

layers

50 500 7.8 (1.3) 6.4 (2.3) 5.6 (2.0) 97

Pseudo 3 every surface grid box 10 500 7.1 (1.2) 6.9 (2.5) 5.4 (1.9) 95

Pseudo 4 every surface grid box 0 500 5.8 (1.0) 8.2 (2.9) 5.4 (1.9) 99

Pseudo 5 every surface grid box 50 0 10.0 (1.7) 2.8 (1.0) 4.2 (1.5) 55

Pseudo 6 randomly in 75 % of the surface

grid boxes

50 500 7.8 (1.3) 6.2 (2.2) 5.4 (1.9) 94

Pseudo 7 randomly in 50 % of the surface

grid boxes

50 500 8.0 (1.4) 5.9 (2.1) 5.3 (1.9) 93

Pseudo 8 randomly in 25 % of the surface

grid boxes

50 500 7.5 (1.3) 5.3 (1.9) 4.2 (1.5) 96

Pseudo 9 in the surface grid boxes with

fire counts (> 5)

50 500 7.6 (1.3) 6.2 (2.2) 5.2 (1.9) 95

“Ghost” emissionsd 5.8 (1.0) 8.4 (3.0) 5.6 (2.0)

A priori 5.8 2.8

a Scaling factors in parentheses. b The increase of total emissions relative to the a priori biomass burning emissions (ratio of the total emissions change over the a priori biomass burning

emissions in parentheses). c The reduction of the a posteriori cost function relative to the a priori. dEmissions (with anthropogenic emissions unchanged but biomass burning emissions tripled)

used to generate the pseudo observations for Pseudos 1–9.
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Figure 8. Observed (red line) and GEOS-Chem simulated 24 h av-

erage surface BC concentrations (µg m−3) at six IMPROVE sites

for July–September 2006. Results are for 2◦× 2.5◦ (solid) and

0.5◦× 0.667◦ (dotted line) with the a priori (black line) or a pos-

teriori emissions from the analytical (blue line) or adjoint (green

line) inversions.

variability on finer scales and more efficiently (Kopacz et al.,

2009). There are large differences in the a posteriori emis-

sions between the analytical and adjoint inversions, not only

in the spatial distributions but also in the magnitudes (Figs. 5

and 10). In California, for example, the a posteriori biomass

burning emissions at 0.5◦× 0.667◦ increase in the adjoint in-

version but decrease in the analytical inversion, relative to

the a priori. In the WUS, the analytical inversions show a

factor of 3–5 increase of the biomass burning emissions and

a ∼ 50 % reduction of the anthropogenic emissions, relative

to the corresponding a priori (Mao et al., 2014). In contrast,

both the biomass burning and anthropogenic emissions in the

adjoint inversions increase 2-fold (Table 1). The total a pos-

teriori emissions are rather comparable (within 20–50 %) be-

tween the two inversions.

Mao et al. (2014) have examined in detail the quality

of the analytical inversions. The robustness of the analyt-

ical inversions and the relative consistency in the total a

posteriori emissions from the two inversion methods there-

fore imply that the adjoint inversion results, at least the to-

tal emissions, are robust on the model grid scale. We will

examine the robustness of the adjoint inversions further in

Sect. 4.4. The large differences in the a posteriori anthro-

pogenic and biomass burning emissions between the two in-

version methods are largely because the inversion system has

difficulty effectively distinguishing collocated biomass burn-

ing and anthropogenic emissions on model grid scales. As

a result, the adjoint inversions tend to falsely impose larger

anthropogenic emissions in the regions where the collocated

biomass burning emissions are too low (Sects. 4.1.3 and 4.2).

Jiang et al. (2011) also found that the adjoint inversion sys-

tem is unable to distinguish CO emissions from collocated

combustion and oxidation sources and they therefore lumped

the two sectors in their inversions. The differences are also
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Figure 9. Observed (red line) and GEOS-Chem simulated 24 h aver-

age surface BC concentrations (µg m−3) for July–September 2006,

averaged for the IMPROVE sites (Fig. 1) in altitudes below 1 km

(18 sites), 1–2 km (30 sites), 2–3 km (18 sites), and above 3 km (3

sites). Results are for 2◦× 2.5◦ (solid line) and 0.5◦× 0.667◦ (dot-

ted line) with the a priori (black line) or a posteriori emissions from

the analytical (blue line) or adjoint (green line) inversions.

due to the large aggregation errors in the analytical inversions

and the assumption of spatially uncorrelated a priori errors in

the adjoint inversions (Sects. 3.2 and 3.4).

We further separate the anthropogenic-dominated regions

to examine the ability of the adjoint inversion system to

constrain collocated emissions. In the regions where anthro-

pogenic emissions are dominant, model surface BC concen-

trations are in good agreement with IMPROVE observations

(Mao et al., 2011) and both the a posteriori anthropogenic

and biomass burning emissions see substantial yet still rel-

atively small increases. For example, the a posteriori an-

thropogenic and biomass burning emissions in Washington

and Oregon increase by 39 and 29 %. However, in the re-

gions where biomass burning emissions become more im-

portant but significantly underestimated, model surface BC

concentrations are biased low and both the a posteriori an-

thropogenic and biomass burning emissions increase dramat-

ically. For example, in Montana, Idaho, and Wyoming, the

a posteriori anthropogenic and biomass burning emissions

increase by factors of 2.2 and of 2.7. In Utah, Colorado,

Arizona, and New Mexico, the corresponding emissions in-

crease by factors of 1.8 and of 1.3. In California and Nevada,

the emissions increase both by a factor of 1.8.

4.4 Evaluation against observations

Model simulated surface BC concentrations with the a pos-

teriori emissions show significant enhancements and largely

reproduce both the synoptic variability and magnitudes of

the observed surface BC concentrations, not only at individ-

ual sites (Fig. 8) but also on average at four altitude ranges

(below 1, 1–2, 2–3, and above 3 km) (Fig. 9). For instance,

model surface BC concentrations after the adjoint inversions
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Figure 10. Differences between GEOS-Chem simulated and ob-

served 24-hour average surface BC concentrations at the 69 IM-

PROVE sites (Fig. 1) for August 2006. Model results are from the

adjoint inversions at 2◦× 2.5◦ (Case 1, Table 1) and 0.5◦× 0.667◦

(Case 9, same as Case 1, except at 0.5◦× 0.667◦ ) with the a priori

or a posteriori emissions.

capture the major fire episodes at Starkey, OR (45.2◦ N,

118.5◦W, 1.26 km) and Lassen Volcanic, CA (40.5◦ N,

121.6◦W, 1.73 km). The adjoint inversions at 0.5◦× 0.667◦

provide better agreements with the observations than the an-

alytical inversion results do at some sites, for example, Three

Sisters, OR (44.3◦ N, 122.0◦W, 0.89 km) and Pasayten, WA

(48.4◦ N, 119.9◦W, 1.63 km). At other sites, Jarbidge Wild,

NV (41.9◦ N, 115.4◦W, 1.87 km), for example, results from

the analytical inversions are noticeably better. The two in-

version results differ the most at 1–2 km altitudes and to a

lesser degree at higher altitudes, for example, Bridger Wild,

WY (43.0◦ N, 109.8◦W, 2.63 km). The a posteriori emissions

lead to an average bias reduction of ∼ 50 % in the simu-

lated surface BC concentrations at 1–2 km altitudes (Fig. 9).

Model simulated surface BC concentrations with the a pos-

teriori emissions from the adjoint inversions, especially at

0.5◦× 0.667◦, show substantial enhancements during major

fire episodes. The enhancements are evident at all altitudes

(up to 0.2 µg m−3 at 1–2 km and 0.1 µg m−3 at 2–3 km). The a

posteriori emissions lead to large mean bias reductions (34 %

at 2◦× 2.5◦ and 20 % at 0.5◦× 0.667◦ for August), as shown

in Fig. 10. The frequency distributions of the bias of the 24 h

average surface BC concentrations are Gaussian (Fig. 11), as

expected. The inversions reduce both the mean (by∼ 35 % at

2◦× 2.5◦ and ∼ 15 % at 0.5◦× 0.667◦ for July–September)

and standard deviation of the biases.

Taylor diagram and skill score (S) are useful measures of

model accuracy. The diagram relates the centered root mean

square error (RMSE), the pattern correlation (r) and the stan-

dard deviation (σ) of observations and model results (Taylor,
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Figure 11. Frequency distribution of the bias of GEOS-Chem

simulated 24 h average surface BC concentrations for July–

September 2006. Results are for 2◦× 2.5◦ and 0.5◦× 0.667◦ with

the a priori or a posteriori emissions from the analytical or adjoint

inversions. Also shown are the mean, median, standard deviation,

and fitted Gaussian distribution.

2001). S (0–1) increases with increasing correlations and as

the modeled variance approaches the observed variance. Fig-

ure 12 presents the resulting diagram and skill scores of the

observations and the multitude of model results. Model re-

sults with the a posteriori emissions are consistently in better

agreement with the observations, especially using the nested

model. The a posteriori emissions lead to higher r (by 11–

48 % on average), larger σ (by 27–122 % on average), and

lower centered RMSEs, thereby increasing the skill scores

(by 43–221 %). The a posteriori emissions from the adjoint

inversion at 0.5◦× 0.667◦ show the smallest centered RMSE

and largest r , whereas the a posteriori emissions from the an-

alytical inversion at 0.5◦× 0.667◦ show the largest σ and S

values.

There are large uncertainties in the a posteriori emissions,

as evident in the 20–30 % low bias in modeled surface BC

concentrations. The uncertainties are partially because of the

limitations of the inversion system, in both the nature of the

inverse modeling and the spatiotemporal coverage of IM-

PROVE observations (see Sects. 4.1.3 and 4.2). The adjoint

inversion system has sufficient information to constrain the

Figure 12. Taylor diagram and Taylor scores for GEOS-Chem sim-

ulations of BC for July–September 2006 at 2◦× 2.5◦ (solid cir-

cle) and 0.5◦× 0.667◦ (open circle) with the a priori (red circle)

or a posteriori emissions from the analytical (blue circle) or adjoint

(green circle) inversions. Values are averages for the 69 IMPROVE

sites (Fig. 1).

total emissions of BC, especially at the coarse resolution

2◦× 2.5◦. The inversion system however has difficulty in

partitioning collocated anthropogenic versus biomass burn-

ing emissions. Furthermore, comparing localized observa-

tions with coarse-resolution model results is inherently prob-

lematic (Mao et al., 2011; Fairlie et al., 2007). It is even more

so because many of the IMPROVE sites are mountainous and

the associated upslope flow is difficult to represent in a global

model.

5 Summary and conclusions

We have applied adjoint inversions to estimate biomass burn-

ing and anthropogenic emissions of BC in the WUS for July–

September 2006 by inverting the surface BC concentrations

from the IMPROVE network using the GEOS-Chem chemi-

cal transport model and its adjoint. The a posteriori emissions

of BC differed considerably between the adjoint and analyti-

cal inversions (Mao et al., 2014), especially in the partition-

ing of anthropogenic versus biomass burning emissions. The

total was ∼ 20–50 % larger in the adjoint inversions than in

the analytical inversions. Both the biomass burning and an-

thropogenic emissions from the adjoint inversions doubled,

whereas the analytical inversions showed a factor of 3–5 in-

crease in the former and a ∼ 50 % reduction in the latter.

We attributed these differences to the inability of the ad-

joint inversion system to effectively distinguish collocated

biomass burning and anthropogenic emissions on the model

grid scales. That inability resulted in excessively large an-

thropogenic emissions in the regions where biomass burning

emissions were underestimated.
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The inversions with various pseudo observations indicated

that observations of surface BC concentration covering half

of the model grid boxes had sufficient information to con-

strain the total emissions of BC on the model grid scales.

IMPROVE observations of BC have sufficient information

to constrain the total BC emissions at the model grid scales,

especially at 2◦× 2.5◦. The limitations of the adjoint inver-

sion system, including the spatiotemporal coverage of the

IMPROVE observations of BC, call for concurrent measure-

ments of other combustion tracers (e.g., CO and carbon iso-

topes). Other factors may also improve the inversions, e.g.,

increase measurements in the source regions, and consider-

ing the spatial correlation of the a priori errors in the inver-

sions.

The Supplement related to this article is available online

at doi:10.5194/acp-15-7685-2015-supplement.
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