

Supplement of

The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates

Y. Shinozuka et al.

Correspondence to: Y. Shinozuka (yohei.shinozuka@nasa.gov)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. The results of bivariate regression analysis for 0.1-0.3% supersaturation.

Ang. Exp.	N	log10(Ext.)	log10(CCN)	Slope	Intercept	RMSe
	Califo	ornia, USA, 10	s avg., \leq 1	L km alt., 0.2	7% SS	
1.1-1.3	108	1.35±0.45	2.48±0.26	0.40±0.29	1.96±0.06	1.56
1.3-1.5	489	1.82±0.55	2.71±0.29	0.42±0.08	1.96±0.03	1.49
1.5-1.7	1017	1.90±0.40	2.84±0.28	0.59±0.07	1.73±0.03	1.45
1.7-1.9	1481	1.93±0.36	2.96±0.26	0.62±0.05	1.76±0.02	1.38
1.9-2.1	1859	1.8/±0.29	3.02±0.19	0.55±0.05	1.99±0.02	1.28
2.1-2.3	1222	1.77±0.25	3.02±0.18	0.61±0.07	1.95±0.02	1.27
2.3-2.5	411	1.68±0.27	3.01±0.22	0.77±0.11	1.72±0.03	1.26
0102	124	1 22±0 22	2 22±0 20	0 62±0 26	1 64±0 14	2 45
0.1-0.5	124	1 10+0 24	2.2210.30	0.0210.30	1.5410.14	1 02
0.5-0.5	420	1.1010.34	2.2910.29	0.5710.10	1.0010.00	1.05
0.5-0.7	439	1.25±0.35	2.36±0.30	0.60±0.10	1.0/±0.04	1.72
0.7-0.9	1027	1 42±0 26	2.3010.31	0.5910.00	1.7410.03	1.71
1 1-1 3	38/0	1.4210.30	2.3910.31	0.5910.04	1.7010.02	1.00
1.1-1.5	6472	1 55±0.34	2.71±0.30	0.01±0.03	1 76±0.02	1.70
1.5-1.7	5725	1 52+0 20	2.78±0.31	0.07±0.03	1 72+0 02	1 02
1.3-1.7	2814	1.32±0.23	2.83±0.33	0.74±0.04	1 79+0 02	1.55
1.0-2.1	2014	1 /1+0 3/	2.87±0.32	0.74±0.05	1.63+0.04	1.01
2 1-2 2	200	1 2/1+0 21	2.88±0.30	1.04+0.17	1 52+0 07	1.61
2.1-2.5	200	1.24±0.31	od USA 24	1.04±0.17	1.52±0.07	1.01
0 2-0 5	2/12	1 51+0 20	2 12+0 28	1 12+0 24	0.46+0.10	1.63
0.5-0.7	408	1.53+0.20	2.28+0.36	0.93+0.14	0.90+0.06	2.09
0.7-0.9	257	1 35+0 22	2 23+0 20	0.95+0.14	0.98+0.09	1 74
0.9-1 1	282	1.22+0.22	2.21+0.29	0.94+0.10	1.11+0.06	1 70
1.1-1 3	304	1.15+0.22	2.25+0.30	1.03+0.19	1.09+0.06	1.71
1 3-1 5	329	1 14+0 22	2 33+0 29	0.84+0.21	1 41+0 07	1.85
15-17	382	1 14+0 23	2 42+0 28	0 75+0 19	1 59+0 06	1.85
1 7-1 9	543	1 25+0 30	2 52+0 37	0 78+0 11	1 59+0 04	2.05
1 9-2 1	381	1 33+0 34	2 57+0 48	0.75+0.11	1 66+0 04	2.05
		Black Fore	st. Germany	. 240s avg.		
0.9-1.1	349	1.58+0.50	1.75+0.61	0.34+0.10	1.53+0.07	3.96
1.1-1.3	1223	1.69+0.44	1.87+0.60	0.54+0.07	1.22+0.05	3.53
1.3-1.5	3763	1.64±0.35	1.98±0.56	0.74±0.05	0.98±0.03	3.28
1.5-1.7	5279	1.62±0.28	2.04±0.56	1.05±0.06	0.55±0.04	3.42
1.7-1.9	1422	1.55±0.30	1.98±0.59	0.99±0.11	0.68±0.07	3.73
		Ganges V	alley, India,	240s avg.		
0.1-0.3	245	2.26±0.21	2.41±0.49	2.45±0.58	-3.07±0.40	2.79
0.3-0.5	549	2.38±0.25	2.59±0.46	1.54±0.23	-1.02±0.17	2.37
0.5-0.7	2233	2.38±0.24	2.70±0.39	1.34±0.10	-0.47±0.08	2.09
0.7-0.9	4524	2.17±0.26	2.56±0.41	0.92±0.06	0.64±0.04	2.23
0.9-1.1	2396	1.90±0.28	2.31±0.45	0.73±0.07	1.04±0.04	2.59
1.1-1.3	858	1.50±0.24	1.89±0.53	1.14±0.15	0.35±0.07	2.91
		Graciosa Is	land, Azores	s, 240s avg.		
0.50.3	202	1.42±0.29	1.66±0.26	0.54±0.08	0.96±0.09	1.65
0.30.1	2913	1.56±0.24	1.93±0.26	0.92±0.02	0.52±0.03	1.60
-0.1-0.1	4117	1.51±0.26	2.11±0.28	0.86±0.02	0.85±0.02	1.62
0.1-0.3	4438	1.43±0.26	2.19±0.28	0.78±0.02	1.10±0.02	1.65
0.3-0.5	2865	1.33±0.26	2.25±0.28	0.83±0.02	1.18±0.02	1.62
0.5-0.7	1819	1.27±0.27	2.29±0.29	0.78±0.02	1.33±0.02	1.61
0.7-0.9	1127	1.22±0.27	2.31±0.31	0.88±0.03	1.26±0.03	1.69
0.9-1.1	625	1.22±0.30	2.38±0.33	0.87±0.04	1.36±0.04	1.68
1.1-1.3	186	1.14±0.31	2.33±0.34	0.72±0.08	1.57±0.07	1.91
		Sva	lbard, 300s a	avg.		
0.30.1	142	0.45±0.34	1.50±0.36	0.51±0.39	1.38±0.04	2.21
-0.1-0.1	212	0.45±0.32	1.54±0.33	0.50±0.28	1.40±0.03	2.01
0.1-0.3	233	0.44±0.36	1.53±0.45	0.67±0.24	1.32±0.03	2.42
0.3-0.5	362	0.68±0.55	1.73±0.38	0.51±0.11	1.46±0.02	1.85
0.5-0.7	392	0.57±0.35	1.71±0.40	0.65±0.16	1.42±0.02	2.14
0.7-0.9	451	0.58±0.32	1.76±0.35	0.73±0.17	1.38±0.02	1.93
0.9-1.1	746	0.49±0.44	1.92±0.35	-0.21±0.11	2.17±0.01	2.45
1.1-1.3	807	0.67±0.32	1.89±0.34	0.86±0.12	1.33±0.02	1.74
1.3-1.5	872	0.72±0.32	1.96±0.34	0.90±0.12	1.33±0.02	1.78
1.5-1.7	829	0.76±0.31	2.00±0.34	0.87±0.11	1.36±0.02	1.67
1.7-1.9	596	0.70±0.34	1.96±0.35	0.79±0.13	1.44±0.02	1.71
1.9-2.1	360	0.61±0.35	1.88±0.36	0.68±0.20	1.53±0.03	2.13
2.1-2.3	185	0.42±0.33	1.80±0.40	0.89±0.37	1.46±0.04	2.00
2.3-2.5	118	0.37±0.26	1.78±0.31	1.28±0.91	1.28±0.07	1.77
		Niame	y, Niger, 240	Os avg.		
0.1-0.3	174	2.34±0.27	1.70±0.39	0.60±0.21	0.49±0.24	2.54
0.3-0.5	1271	2.21±0.27	1.62±0.52	0.56±0.07	0.72±0.08	4.08
0.5-0.7	1068	1.92±0.27	1.62±0.62	0.42±0.07	1.24±0.07	5.57
0.7-0.9	1169	1.77±0.22	1.82±0.55	0.38±0.08	1.42±0.07	4.22
0.9-1.1	952	1.75±0.22	1.95±0.46	0.47±0.09	1.32±0.08	3.16
1.1-1.3	620	1.75±0.26	1.94±0.49	0.47±0.10	1.32±0.09	3.30
1.3-1.5	252	1.82±0.31	2.05±0.47	0.39±0.15	1.55±0.13	3.23
1.5-1.7	138	1.85±0.33	2.14±0.49	0.75±0.21	0.90±0.20	2.86

Ang. Exp. is the Angstrom exponent of the extinction coefficient, N is the number of data points, Ext. is the 500 nm extinction coefficient (Mm^{-1}) for dried particles, CCN is the CCN concentration (cm^{-3}) . RMSe given here is 10 raised to the root mean square of the fitting error; an RMSe of 2, for example, means that the deviation of individual data points is typically within a factor of 2 of the best estimate. The values after the ± symbol indicates the standard deviation or the square root of the variance.

Table	S2.	The	results	of b	ivariate	regression	analy	ysis f	for ().5	5-0).7%	su	persatura	tion.
-------	-----	-----	---------	------	----------	------------	-------	--------	-------	-----	-----	------	----	-----------	-------

Ang. Exp.	Ν	log10(Ext.)	log10(CCN)	Slope	Intercept	RMSe
		Southern Gre	eat Plains, U	SA, 240s avg.		
0.5-0.7	209	1.34±0.37	2.81±0.35	0.65±0.16	1.98±0.07	2.00
0.7-0.9	471	1.43±0.39	2.90±0.37	0.56±0.11	2.14±0.05	2.10
0.9-1.1	1126	1.49±0.36	2.96±0.33	0.54±0.07	2.18±0.03	1.89
1.1-1.3	2597	1.53±0.33	3.01±0.32	0.53±0.05	2.23±0.02	1.89
1.3-1.5	4391	1.55±0.31	3.10±0.28	0.54±0.04	2.28±0.02	1.75
1.5-1.7	3457	1.52±0.29	3.16±0.30	0.72±0.05	2.07±0.02	1.76
1.7-1.9	1646	1.49±0.31	3.16±0.33	0.88±0.06	1.85±0.03	1.74
1.9-2.1	381	1.40±0.36	3.15±0.39	1.02±0.12	1.72±0.06	1.77
0205	215	1 60±0 22	2 EE±0 26	05 dVg.	0 00+0 00	1 46
0.5-0.5	215	1 E0±0 20	2.55±0.20	0.9510.10	1 41+0 00	2.40
0.3-0.7	295	1 20+0 21	2.0410.44	0.6210.21	1.4110.03	1 52
0.7-0.9	221	1 20+0 25	2.7110.21	0.0410.20	1.0410.07	1.55
1 1 1 2	450	1.3010.25	2.7310.25	0.7510.19	2.0010.04	1.04
1.1-1.5	430 E20	1.24±0.25	2.0510.25	0.0010.13	2.00±0.04	1.05
1.5-1.5	530	1 10+0 20	2.9110.23	0.0010.11	2.1910.04	1.54
1.5-1.7	509	1.18±0.29	2.95±0.25	0.50±0.11	2.30±0.04	1.54
1.7-1.9	598	1.35±0.34	3.08±0.20	0.51±0.08	2.41±0.03	1.00
1.9-2.1	110	1.40±0.30	3.15±0.31	0.55±0.08	2.40±0.05	1.00
2.1-2.5	119	I.2010.28	3.10±0.23	0.70±0.20	2.29±0.06	1.59
0.0-1.1	104	1 60+0 /0	2 01+0 24	, 2403 avg. 0 58+0 00	1 00+0 05	1 5 1
1112	202	1 62±0.47	2.01±0.04	0.58±0.05	1.05±0.03	1.51
1.1-1.5	1210	1.03±0.47	2.92±0.30	0.60±0.05	1.90±0.03	1.05
1.5-1.5	1020	1.01±0.37	3.03±0.30	0.03±0.04	2.03±0.02	1.50
1.5-1.7	1929	1.0110.28	3.13±0.30	0.71±0.04	2.00±0.02	1.09
1.7-1.9	477	1.55±0.50	3.14±0.33	0.75±0.00	2.02±0.04	1.70
0205	170	2 27±0 26	2 21±0 20	2405 avg.	1 09±0 00	1 27
0.5-0.5	660	2.3710.20	2 24±0 26	1 01+0 00	0.02±0.05	1.57
0.3-0.7	1422	2.3010.23	2 24±0 26	0.02±0.04	1 25±0.00	1.42
0.7-0.9	701	1 00+0 20	2 11±0 22	0.9210.04	1.2510.05	1.54
1112	200	1 52±0.25	2 91±0 27	1 26±0 16	0.00±0.09	1.40
1.1-1.5	124	1 22±0 19	2.0110.37	1.2010.10	0.50±0.08	1.05
1.5-1.5	134	Graciosa le	land Azores	240s avg	0.30±0.13	1.75
-0 50 3	118	1 38+0 30	2 07+0 28	0 87+0 13	0 89+0 13	1 76
-0 30 1	1488	1 57+0 23	2 36+0 24	0.97+0.04	0.85+0.04	1.70
-0.1-0.1	2038	1 51+0 26	2 56+0 26	0.84+0.03	1 30+0 03	1.62
0.1-0.3	2267	1 43+0 26	2 61+0 26	0.83+0.03	1 43+0 03	1.65
0.3-0.5	1446	1.33+0.26	2.69+0.26	0.89+0.03	1.52+0.03	1.51
0.5-0.7	904	1 26+0 27	2 74+0 24	0 73+0 03	1 82+0 03	1 45
0.7-0.9	581	1.22+0.26	2.76+0.27	0.85+0.05	1.74+0.04	1.58
0.9-1 1	318	1.20+0.32	2.81+0 37	0.76+0.06	1.91+0.05	1.69
0.0 1.1	510	Sva	Ibard, 300s a	vg.	1.5120.05	1.05
-0.1-0.1	129	0.52+0.37	1.75+0.32	0.71+0.70	1.40+0.08	2.09
0.1-0.3	166	0.42+0.32	1.77+0.40	1.21+0.78	1.23+0.08	2.81
0.3-0.5	245	0.67+0.52	1.92+0.43	0.66+0.18	1.53+0.03	1.97
0.5-0.7	293	0.57+0.33	1.89+0.33	0.97+0.43	1.32+0.06	2.26
0.7-0.9	435	0.62+0.33	1 87+0 31	0.79+0.25	1 39+0 04	1.86
0.9-1.1	522	0.63+0.34	1 91+0 33	0.93+0.24	1 32+0 04	1 99
1 1-1 3	614	0 71+0 31	1 99+0 31	0.96+0.21	1 30+0 03	1.81
1 3-1 5	711	0 72+0 30	2 03+0 30	0.93+0.21	1 35+0 03	1.81
1.5 1.5	615	0.72±0.30	2.05±0.30	0.89+0.21	1 40+0 03	1.01
17-19	450	0.67+0.35	2 03+0 31	0 74+0 22	1 55+0 03	1 77
1.9-2.1	280	0.57+0 32	2.01+0.36	0.91+0.44	1.49+0.06	2.14
2.1-2.3	172	0.40+0 32	1.92+0.38	1.37+0.83	1.27+0.09	2.56
	1/2	Niame	v. Niger. 240)s avg.		2.50
0.1-0.3	238	2.26+0.27	2.51+0.34	0.49+0.10	1.44+0.12	2.13
0.3-0.5	1479	2.19+0.30	2.65+0.44	0.45+0.04	1.73+0.04	2.64
0.5-0.7	924	2.02+0.30	2.78+0.45	0.74+0.05	1.35+0.05	2.51
0.7-0.9	784	1.85+0.26	2.84+0 33	0.98+0.05	1.05+0.05	1.80
0.9-1 1	544	1.82+0.28	2.95+0 33	0.98+0.05	1.17+0.04	1.60
1.1-1.3	300	1.84+0.30	3.05+0.32	0,99+0.06	1.24+0.05	1.43
1 2-1 5	124	1 02+0 27	2 21+0 24	0.97±0.07	1 55+0.07	1 /1

Ang. Exp. is the Angstrom exponent of the extinction coefficient, N is the number of data points, Ext. is the 500 nm extinction coefficient (Mm^{-1}) for dried particles, CCN is the CCN concentration (cm^{-3}). RMSe given here is 10 raised to the root mean square of the fitting error; an RMSe of 2, for example, means that the deviation of individual data points is typically within a factor of 2 of the best estimate. The values after the ± symbol indicates the standard deviation or the square root of the variance.

Figure S1. Results of additional regression analysis. The color corresponds to the locations indicated in Figure 3a. The dot is for the 450 nm extinction coefficient; all others are for 500 nm. The square is for the standard least-squares method, the plus for the same method applied after the individual data points are averaged over 0.5-wide $log_{10}\sigma$ bins, and the cross for the bisector method. The two bivariate markers and the standard least-squares overlap between each other in several cases, especially for the RMS relative deviation.

Figure S2. Same as Figure 2 but for supersaturation of 0.1-0.3% instead of 0.3-0.5%. This includes data from DISCOVER-AQ California for Angstrom exponent between 1.5 and 1.7.

Figure S3. Same as Figure 3 but for supersaturation of 0.1-0.3% instead of 0.3-0.5%. The RMS difference calculated for all but Niamey data is a factor of 3.0.

Figure S4. Same as Figure 2 but for supersaturation of 0.5-0.7% instead of 0.3-0.5%.

Figure S5. Same as Figure 3 but for supersaturation of 0.5-0.7% instead of 0.3-0.5%. The RMS difference calculated for all but Niamey data is a factor of 2.1.