
Atmos. Chem. Phys., 15, 7537–7545, 2015

www.atmos-chem-phys.net/15/7537/2015/

doi:10.5194/acp-15-7537-2015

© Author(s) 2015. CC Attribution 3.0 License.

The role of blowing snow in the activation of bromine over first-year

Antarctic sea ice

R. M. Lieb-Lappen and R. W. Obbard

14 Engineering Drive, Thayer School of Engineering, Dartmouth College, Hanover, NH, USA

Correspondence to: R. M. Lieb-Lappen (ross.lieb-lappen@dartmouth.edu)

Received: 06 March 2015 – Published in Atmos. Chem. Phys. Discuss.: 22 April 2015

Revised: 18 June 2015 – Accepted: 30 June 2015 – Published: 13 July 2015

Abstract. It is well known that during polar springtime

halide sea salt ions, in particular Br−, are photochemically

activated into reactive halogen species (e.g., Br and BrO),

where they break down tropospheric ozone. This research in-

vestigated the role of blowing snow in transporting salts from

the sea ice/snow surface into reactive bromine species in the

air. At two different locations over first-year ice in the Ross

Sea, Antarctica, collection baskets captured blowing snow at

different heights. In addition, sea ice cores and surface snow

samples were collected throughout the month-long cam-

paign. Over this time, sea ice and surface snow Br− / Cl−

mass ratios remained constant and equivalent to seawater,

and only in lofted snow did bromide become depleted rel-

ative to chloride. This suggests that replenishment of bro-

mide in the snowpack occurs faster than bromine activation

in mid-strength wind conditions (approximately 10 m s−1) or

that blowing snow represents only a small portion of the sur-

face snowpack. Additionally, lofted snow was found to be

depleted in sulfate and enriched in nitrate relative to surface

snow.

1 Introduction

The polar springtime is a season of change, most notably

in temperature, sea ice coverage, and weather, but it also

signals the onset of many photochemically driven atmo-

spheric chemical reactions, such as tropospheric ozone de-

pletion events (ODEs) (e.g., Barrie et al., 1988). Boundary

layer ozone in polar regions has been observed to fall dra-

matically periodically in the spring in both the Arctic (Bar-

rie et al., 1988) and Antarctic (Kreher et al., 1997; Wessel

et al., 1998). These tropospheric ODEs are initiated by in-

creased concentrations of reactive bromine gases (BrO and

Br) resulting in a catalytic removal of ozone (Fan and Ja-

cob, 1992; McConnell et al., 1992; Frießet al., 2004); how-

ever the mechanism by which Br enters the atmosphere is

not well understood (Abbatt et al., 2012). The heterogeneous

reaction producing bromine gas and hypothesized to explain

the “bromine explosion” is given by Fan and Jacob (1992):

HOBr+Br−+H+→ Br2+H2O. (1)

Proposed surfaces on which this reaction may occur have in-

cluded sea spray Sander et al. (2003), frost flowers (Rankin

et al., 2000; Kaleschke et al., 2004), surface snow (Simpson

et al., 2005), aerosols (Vogt et al., 1996; Frießet al., 2004),

and blowing snow (Yang et al., 2008).

Although some bromide may arrive via sea spray pro-

duced aerosol (Sander et al., 2003), this mechanism is rel-

atively less efficient and does not produce aerosol with the

observed sulfate depletion (Wagenbach et al., 1998). As sea-

water freezes, salt rejection leads to an increasingly saline

brine (Thomas and Dieckmann, 2009). Specific salts precip-

itate out of solution when solubility limits are reached below

−2 ◦C (Light et al., 2003), producing brine with different ion

ratios than those found in seawater. The brine is expelled to

the ice/snow or ice/atmosphere surface, where it forms a frac-

tionated surface skim and slush (Rankin et al., 2002). This

reservoir of bromide and other sea salts can be incorporated

into frost flowers by wicking, or into the snow lying on sea

ice by upward migration through capillary forces (Perovich

and Richter-Menge, 1994). It may be transported by the loft-

ing of snow from sea ice with subsequent sublimation and re-

turn of the aerosol to the snowpack (Yang et al., 2008; Jones

et al., 2009). However, the physical surface at which bromide

activation occurs remains a subject of some debate.
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It has been shown that brine is wicked upward by frost

flowers that form on fresh sea ice, yielding a highly saline

surface with the aforementioned sulfate depletion, and that

the dendritic nature of frost flowers magnifies the surface

area available for atmospheric interactions (Rankin et al.,

2002). However, studies have shown that frost flowers do not

significantly increase the surface area available for heteroge-

neous reactions (Domine et al., 2005; Obbard et al., 2009)

and that frost flowers are not easily broken and lofted (Ob-

bard et al., 2009). Instead, they accumulate snow on their

windward side in strong winds and when broken, fall where

they are (Obbard et al., 2009). Laboratory studies of frost

flowers have also shown that frost flowers are quite stable

in winds up to 12 ms−1, and aerosol production is not ob-

served under these conditions (Roscoe et al., 2011). Further,

Simpson et al. (2005) and Obbard et al. (2009) found that

frost flowers are not depleted in bromide relative to sodium

and chloride, indicating they are not the immediate source

of bromine-depleted snow nor the location of the heteroge-

neous reactions activating bromine. It has also been shown

that first-year sea ice contact better correlates to increased

BrO concentrations than does contact with potential frost

flower regions (Simpson et al., 2007a).

In Simpson et al. (2005) however, the snowpack did have

Br−/Na+ ratio fluctuations by 2 orders of magnitude with

bromide depletions of up to 90%, suggesting bromine was

released in the aerosol phase or in the snowpack itself. Sea

salts can migrate upwards through the snowpack as high as

17 cm, even in cold conditions where slush is not present

(Massom et al., 2001; Domine et al., 2004). However, in

thicker snowpacks, the surface snow is more readily acidi-

fied and influenced by atmospheric processes, and thus, more

likely to play a role in halogen activation. Bromine activation

is more efficient in acidic conditions and in environments

with a higher Br−/Cl− ratio (Pratt et al., 2013). Pratt et al.

(2013) further hypothesized that the snowpack interstitial air

is the primary location for the heterogeneous reactions, with

wind pumping providing a vehicle to release the bromine into

the boundary layer.

Yang et al. (2008) proposed a fourth mechanism for

bromine activation that involves the lofting of snow from sea

ice with subsequent sublimation and either direct bromine re-

lease or return of the aerosol to the snowpack. In the model,

lofted snow particles were allowed to sublimate to a particle

size of < 10 µm, whereby the particles instantaneously re-

leased bromine or were potentially scoured by more blowing

snow particles. Snow salinity was found to have a nonlinear

relationship with bromine production, and the reaction rate

varied with dry aerosol particle size. It was shown that 1.3 µm

particles yielded the most efficient release of bromine since

the smaller aerosol could be lofted further and longer (Yang

et al., 2008). Further work showed that snow in the sea ice

zone may contain enough salt when lofted by wind to pro-

duce the necessary aerosol to explain the observed Antarctic

ODEs (Yang et al., 2010). While it may be difficult for satu-

rated snow lying on surface skim to become lofted, snow in

the upper layers could wick up salts yet remain mobile, pro-

viding enormous capacity for transporting bromide into the

boundary layer. Yang et al. (2008) provides the theoretical

framework and model-based data for the physical measure-

ments observed and presented in this manuscript.

ODEs have been found to occur at a range of wind speeds,

something that has made agreement upon a mechanism dif-

ficult. Some have observed that ODEs require low winds,

a stable boundary layer, and a relatively clear sky, or the

movement of air masses from such regions (Simpson et al.,

2007b). Using measurements and modeling, Albert et al.

(2002) found rapid ozone depletion in the top 10 cm of the

snowpack due to diffusion and ventilation in moderate winds.

More recently, ODEs have been recorded during high winds

(> 12 ms−1), which increase the snow surface area exposed

via blowing snow, and thus, the probability of contact be-

tween the gaseous and condensed phases required to initiate

bromine release (Jones et al., 2009). During the 2009 OASIS

campaign in Barrow, AK, high winds were observed to corre-

spond with increased BrO concentrations (Frießet al., 2011).

This was accompanied by decreased HOBr, suggesting that

blowing snow likely provided additional surfaces for hetero-

geneous HOBr loss (Liao et al., 2012). These high wind halo-

gen activation events may have a more widespread role when

considering the impact of ODEs on regional tropospheric

chemistry (Jones et al., 2010). Additionally, higher winds

may enhance the availability of radical bromine precursors in

the snowpack, accelerating bromine activation (Toyota et al.,

2011). On the contrary, others (e.g., Helmig et al., 2012; Hal-

facre et al., 2014) have found no correlation between ODEs

and wind speed. However, the lack of low ozone observa-

tions at high wind speed may be a result of enhanced mixing

(Helmig et al., 2012). Although the chemistry of snow has

been well studied (Massom et al., 2001; Domine et al., 2004;

Grannas et al., 2007), there has been no attempt until now at

segregating snow capable of wind transport or snow actually

blown by wind.

It is noted that both Cl2 and BrCl play a role in halide

boundary layer chemistry and ODEs (Abbatt et al., 2012), but

the focus of this work is on bromine because it is a far more

efficient catalyst of ozone loss. As the main constituents of

seawater, both chloride and sodium have been used as sea

salt tracers, and thus chloride was used here to both de-

termine snow and ice salinity and relative activity of other

anions. Previous work has shown that sulfate is influenced

both by mirabilite precipitation and atmospheric interactions,

while nitrate is uncorrelated with sea salt and is deposited as

a byproduct of other reactions (Krnavek et al., 2012).

2 Methods

Two field sites on first-year sea ice in the Ross Sea, Antarc-

tica, were chosen, based upon prevailing wind direction, to
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Figure 1. Map of the Ross Sea region showing the two field sites Butter Point and Iceberg. Basemap is Landsat image.

maximize contact of the blowing snow with the first-year sea

ice. Their locations are shown in Fig. 1. Butter Point Site

was located 6.5 km from the open ocean and 35 km north of

the Ross Ice Shelf. Iceberg Site was located 55 km northwest

of Butter Point, and since the ice edge located to the east fol-

lows the shore, the distance to open water here was also 5 km.

Iceberg Site was chosen based upon the presence of a 740 m

long and 35 m high iceberg located 250 m to the west that

would block winds sourced over land, maximizing blowing

snow collection from over sea ice. At each site, a 5.5 m blow-

ing snow collection tower was erected for the time period

of 11 October–08 November 2012. Collection baskets made

out of 150 µm nylon monofilament mesh and 7′′ diameter by

14′′ long (Midwest Filter Corporation, Lake Forest, IL) were

placed at four different heights: 0.3, 2.0, 3.0, and 5.5 m above

the snow surface.

The sites were visited approximately every other day, and

collection baskets were switched even if no snow was col-

lected. Baskets were triple rinsed with DI water between

uses. Surface snow samples were collected each of the 12

days the sites were visited. In addition, 1.78 and 1.89 m ice

cores were extracted from Butter Point and Iceberg sites, re-

spectively. Snow samples and sea ice cores were transported

at a constant temperature of −20 ◦C back to Thayer School

of Engineering’s Ice Research Laboratory at Dartmouth Col-

lege and stored in a −33 ◦C cold room.

Winds during the field campaign were generally mild, only

surpassing 10 ms−1 on a few occasions. Site visits were not

feasible during stormy weather, and much of the blowing

snow captured during those periods sublimated in the bas-

kets prior to collection as observed by a webcam. Thus, only

on 25 October were blowing snow samples collected at both

sites and all four heights. The collected snow was the re-

sult of approximately 10 ms−1 southerly winds on 24 Octo-

ber. Visibility at McMurdo station during this blowing snow

event dropped below 0.5 miles for about 4 h. Temperatures

ranged from −20.5 to −11.5 ◦C with an average relative hu-

midity of 69% on 24 October and−17.5 to−13.5 ◦C with an

average relative humidity of 61% on 25 October. These tem-

peratures were a couple of degrees warmer than the average

for the rest of the field campaign.

All surface snow and blowing snow samples were melted

into acid-rinsed HDPE vials, and diluted by a factor of 5 with

DI water. Those samples falling outside of the calibration

standard concentrations were further diluted to fall within the

desired range. Each ice core was sub-sampled every 10 cm,

melted, and diluted by a factor of 50, except for the bottom-

most sample that was diluted by a factor of 100. A 0.5 mL

aliquot of each diluted snow and ice sample was then ana-

lyzed for anion concentrations.

Anion chromatography was completed using a Dionex-

600 IC system, equipped with a LC 25 chromatogram oven

set at 30 ◦C, GD 50 gradient pump, CD 25 conductivity de-

tector, AS15 anion column with a AG15 guard column, and

an auto-sampler. A 38 mM NaOH eluent was used at a flow

rate of 1.2 mLmin−1 and the SRS current was set to 100 µA.

Pressure in the column was 1600 psi and the signal noise

was approximately 0.003 µS. Peak analysis was performed

using Chromeleon 6.8 software with a 5 point standard cal-

ibration curve. IC detection limits were 0.6, 0.1, 0.04, and

0.03 gm−3, yielding limits of quantification of 2, 0.3, 0.1,

and 0.1 gm−3 for chloride, sulfate, bromide, and nitrate, re-

spectively.
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Figure 2. Anion concentrations for sea ice cores. Butter Point Site samples are shown in red filled-in squares and red lines, while Iceberg

Site samples are shown in blue open circles and blue lines.

3 Results

Raw anion concentrations for sea ice, surface snow, and

blowing snow samples are provided in the Supplement. Sea

ice anion concentrations had nearly identical profiles for But-

ter Point and Iceberg cores, with both showing the expected

C-shape profile (see Fig. 2) (Eicken, 1992). Note that the

deepest sample for Iceberg Site was directly at the base of

the core, while the deepest sample for Butter Point was 8 cm

above the base, due to a mushy, poorly defined basal layer,

and thus missed the saltiest portion. Chloride concentrations

ranged from 2000–8000 gm−3, while bromide concentra-

tions ranged from 5–35 gm−3. Sulfate concentrations ranged

from 2–3000 gm−3, with increased variation observed over

the top 40 cm of both cores. Nitrate concentrations were be-

low detection limits for all sea ice core samples.

Surface snow anion concentrations varied greatly, but were

of similar magnitude at the two sites and showed no no-

ticeable trend with time over the field campaign. Concen-

trations ranged from 200–5000 gm−3 chloride, 1.0–16 gm−3

bromide, 20–2300 gm−3 sulfate, and 0–1.2 gm−3 nitrate,

though the majority of samples were below detection lim-

its in nitrate. If we assume Cl concentrations to be a good

proxy to estimate salinity using sea water ion ratios, this cor-

responds to a mean surface snow salinity of 3 PSU, with a

range of 0.4–9 PSU. There was little snow cover at Butter

Point with the surface varying from completely wind scoured

to several cm of snow. Iceberg Site had a more variable snow-

pack, with prevalent rafted ice and sastrugi, resulting in snow

depths varying from tens of cm to over 1 m. A 21 cm snow pit

was dug 15 km from Butter Point Site to study a more consis-

tent snowpack that is representative of the greater first-year

sea ice of the region. In this snow pit, both chloride and bro-

mide concentrations increased steadily from the snow surface

to the snow/ice interface, with concentrations ranging from

500–1600 gm−3 chloride and 1.5–6 gm−3 bromide. Sulfate

concentrations ranged from 30–50 gm−3, but showed a C-

shaped profile with highest concentrations found near the

top and bottom of the snow pit. A second snow pit located

slightly closer to the open ocean showed similar trends.

Anion concentrations from the blowing snow samples col-

lected on 25 October in both towers varied greatly, including

separate samples from the same collection baskets, indicating

that blown snow can be quite varied in its salt concentration.

Concentrations ranged from 50–6800 gm−3 chloride, 0.2–

18.5 gm−3 bromide, 3–240 gm−3 sulfate, and 0.4–23 gm−3

nitrate. Using chloride concentrations to derive an estimate of

salinity, blowing snow samples ranged from 0.1 to 12 PSU.

Comparing the 0.3 and 5.5 m baskets at both sites suggests

a 10-fold increase in salinity from 0.6 to 6 PSU. However,

when all blowing snow samples are considered, there is not a

statistically significant trend of increasing salt concentration

with basket height, except for nitrate where concentrations

increased with height above the snow surface.

Anion concentrations can provide a general understanding

of the overall salinity of the snow and ice, but in order to un-

derstand chemical reaction activity, it is instructive to calcu-

late anion concentration ratios. The Br−/Cl− mass ratio has

long been used as a metric for analyzing both frozen and liq-

uid saline water samples, and comparing measured values to

the well established 1 : 290 ratio observed in seawater (Mor-

ris and Riley, 1966). This ratio is plotted in Fig. 3 for all

samples at both sites. Br−/Cl− mass ratios were relatively

constant for all sea ice samples (1 : 281± 24) and all surface

Atmos. Chem. Phys., 15, 7537–7545, 2015 www.atmos-chem-phys.net/15/7537/2015/
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Figure 3. Br−/Cl− mass ratios for sea ice (negative heights), sur-

face snow (height of 0), and blowing snow (height above snow sur-

face). Blowing snow lines connect averages for each basket height.

Butter Point Site samples are shown in red filled-in squares and red

lines, while Iceberg Site samples are shown in blue open circles

and blue lines. The standard ocean Br−/Cl− mass ratio is shown as

a black dashed line (Morris and Riley, 1966).

snow samples (1 : 296±22). However, there was a linear cor-

relation between Br−/Cl− mass ratios for blowing snow rel-

ative to height at both Butter Point (r2
= 0.89) and Iceberg

Site (r2
= 0.93). Sulfate mass ratios in sea ice, surface snow,

and blowing snow did not show as clear a trend (Fig. 4).

In sea ice, the SO2−
4 /Cl− mass ratio was roughly 1 : 7 in

the bottom half of the cores, consistent with what is gener-

ally observed in seawater (Morris and Riley, 1966), but var-

ied from approximately 1 : 2 to 1 : 12 in the upper halves of

the cores. Surface snow mass ratios also were quite variable

ranging from 1 : 1 to 1 : 19 with no clear correlations. Col-

lected lofted snow was quite depleted in sulfate with mass

ratios reaching 1 : 20 to 1 : 40, but did not show the linear

trend with height observed with bromide.

4 Discussion

Observation of bromide depletion relative to other salts is an

indication of heterogeneous atmospheric chemical reactions

and bromine activation (Adams et al., 2002; Huff and Abbatt,

2002; Simpson et al., 2005). Although there was some vari-

ability in Br−/Cl− mass ratios for sea ice and surface snow,

these ratios were remarkably constant, just over 1 : 300. As

shown in Fig. 3, signs of bromide depletion occur above

the snowpack, with greater depletion occurring at greater
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Figure 4. SO2−
4

/Cl− mass ratios for sea ice (negative heights), sur-

face snow (height of 0), and blowing snow (height above snow sur-

face). Butter Point Site samples are shown in red filled-in squares

(snow samples) and a red line (sea ice), while Iceberg Site samples

are shown in blue open circles (snow samples) and a blue line (sea

ice). The standard ocean SO2−
4

/Cl− mass ratio is shown as a black

dashed line (Morris and Riley, 1966).

heights, reaching mass ratios of nearly 1 : 1000 at heights of

5.5 m. This is consistent with aerosol observations by Duce

and Woodcock (1971) that measured increased bromide de-

pletion with height, albeit at tropical latitudes. They noted a

strong particle size dependence with increased bromide de-

pletion corresponding to mid-sized aerosol particles. Further

studies have shown that particle size influences the mode of

transport and it may not be realistic to differentiate snow

saltation and suspension based solely on wind speed and

height (Nemoto and Nishimura, 2004). Nevertheless, both

processes greatly increase the snow surface area exposed for

gas-phase reactions by as much as 3000 times that of surface

snow (Pomeroy and Brun, 2001). It is noted that snow blow-

ing at the windspeed will have no relative motion compared

to the gases and gas-phase diffusion becomes an important

consideration, especially for large grain particles. Local tur-

bulence however, will help to overcome some of these diffu-

sion limitations (Nemoto and Nishimura, 2004). We also note

that sublimation of blowing snow particles likely has a strong

effect on anion concentrations. Consistent with the mecha-

nism suggested by Yang et al. (2008), lighter particles would

remain airborne for longer periods of time, leading to sus-

pension at greater heights and more time for photochemical

reactions. However, since particle sizes were not measured in

www.atmos-chem-phys.net/15/7537/2015/ Atmos. Chem. Phys., 15, 7537–7545, 2015
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this study, we solely mention the potential sublimation may

have on increasing bromine release through this pathway.

A depletion factor (DF) was defined such that DF= 0 sig-

nifies no bromine depletion in particles, and DF= 1 signi-

fies complete depletion (Yang et al., 2005). We note that a

negative value for DF indicates bromine enrichment. Averag-

ing the Br−/Cl− mass ratios at each height for Butter Point

yields DF= 0.04,0.11,0.41, and 0.68 for heights of 0.3, 2.0,

3.0, and 5.5 m, respectively. At Iceberg Site, DF=−0.08,

0.20, 0.33, and 0.64 for the four heights, respectively. Deple-

tion factors were relatively small for both surface snow and

ice core samples, with values ranging from −0.20 to 0.13

and −0.13 to 0.17, respectively. These values are consistent

with previously reported values and currently used in some

models (Sander et al., 2003; Yang et al., 2005). Previously,

Simpson et al. (2005) observed up to 90% bromide deple-

tion in surface snow, while Jacobi et al. (2012) observed up

to 70% depletion in snow mobilized 5 cm above the surface.

The latter study also noted that during a blowing snow event,

there was first bromide enrichment in the snow during the

initial part of the storm followed by later bromide depletion

(Jacobi et al., 2012). An increased depletion factor can either

signify bromide depletion due to bromine release or chloride

enrichment from, for example, gaseous HCL uptake. If the

latter hypothesis were true, one would expect to observe in-

creased chloride concentrations in higher baskets. The lack

of an observed chloride trend with height leads to our in-

terpretation that the decreased mass ratio is a clear indica-

tor of bromine activation. Interestingly, lower Br−/Cl− ra-

tios have also been found to correspond with a decrease in

chlorine release (Wren et al., 2013). This is due to the fact

that BrCl plays a critical role in chlorine production. BrCl is

initially formed from the reaction between HOBr and Cl−,

and then upon later photolysis, can lead to chlorine release

(Wren et al., 2013).

Previously, bromine activation and ODEs were observed

in both low (< 5 m s−1) and high (> 12 ms−1) winds (Jones

et al., 2009). Here, the blowing snow event occurred dur-

ing moderate winds of approximately 10 ms−1. Since the

wind was from the south and there was no new precipi-

tation, it is safe to assume that the snow originated from

the surface of first-year sea ice. It is noted that the blowing

snow event lasted approximately 4–6 h, and that snow sam-

ples from the baskets were not collected until 10–12 h later.

During this time, wind speeds dropped to less than 5 ms−1,

and it is possible that the collected snow was exposed to fur-

ther wind scouring. However, all baskets would have expe-

rienced a similar degree of scouring in these minimal winds

and the effect would be minor over the short time period prior

to collection. Further, the collected snow was mostly wind-

packed, suggesting it was unlikely the wind penetrated both

the 150 µm nylon monofilament mesh of the basket and the

interior bulk of the snow. Future studies, however, may at-

tempt to better seal off collected blown snow.

The surface snow Br−/Cl− mass ratios at both sites

showed little variation and no observed trend with date or

meteorology over the month-long campaign. If there was

a significant amount of lofted snow being depleted in bro-

mide and then falling back to the snow surface, one might

expect to detect a signal in the surface snow chemistry. The

lack of recorded bromide depletion in the surface snow may

indicate that either surface snow bromide concentration is

quickly replenished or that blowing snow represents only a

small portion of the surface snowpack. Surface snow will

be replenished in bromide through interaction with saline

brine (Oldridge and Abbatt, 2011), deposition of HOBr as a

byproduct of the reaction between BrO and HO2, deposition

of HBr, and deposition of aerosol-phase bromine. In cold am-

bient environments, frost flowers, surface snow, and the sea

ice surface have been shown to be bromide enriched sources,

likely due to the precipitation of NaCl (Kalnajs and Aval-

lone, 2006; Morin et al., 2008). Additionally, recycling of

deposited bromine plays a critical role with as much as 75%

of deposited bromine being re-emitted into the gas phase as

Br2 or BrCl (Piot and von Glasow, 2008). In future work,

it would be informative to collect both surface and blowing

snow during stronger wind events.

The sulfate depletion observed in lofted snow is consis-

tent with the observations of others, most likely a product

of mirabilite precipitation occurring at temperatures below

−8 ◦C (Rankin et al., 2000). The range of SO2−
4 /Cl− mass

ratios measured in surface snow and the upper halves of the

ice cores is also likely due to similar interactions. Sulfate de-

pletion can result from a wide variety of processes involv-

ing brine and mirabilite formation as brine constantly moves

through sea ice and is also wicked up by surface snow (Kr-

navek et al., 2012). In addition, non-sea salt sourced sul-

fate may provide additional sulfate to the surface snowpack

(Rankin and Wolff, 2003; Krnavek et al., 2012).

Nitrate concentration in seawater is highly dependent upon

phytoplankton blooms, and therefore varies greatly from sin-

gle digit gm−3 to less than one gm−3 (e.g., Gordon et al.,

2000; Arrigo et al., 1997). Thus, it was not surprising that

sea ice samples were below the quantification limit for ni-

trate. Surface snow samples also were generally below ni-

trate detection limits, and those with quantifiable concentra-

tions showed no noticeable trend. Nitrate snow photochem-

istry is quite complex, with many processes both adding

and subtracting nitrate from the snowpack (Grannas et al.,

2007; Krnavek et al., 2012). Nitrate sources include biomass

burning, lightning production, soil exhalation, and anthro-

pogenic pollutants that can be carried long distances through

atmospheric transport (Galloway et al., 2004; Krnavek et al.,

2012). The increase in nitrate concentration observed with

basket height may be attributed to increased atmospheric in-

teractions higher above the snowpack. Additionally, basket

nitrate concentration may also be influenced by interactions

occurring while the snow was sitting in the basket but prior to

collection, as cycling of different nitrogen-containing com-
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pounds is relatively fast and can vary greatly during a day

(Grannas et al., 2007). Considering the number of competing

reactions, more data points would be needed to make conclu-

sive statements regarding the cycling of nitrate in the polar

boundary layer.

5 Conclusions

In summary, this work examined the mass ratio of Br−/Cl−

in blowing snow during mid-strength winds to better un-

derstand mechanisms leading to bromine activation. It was

found that while Br−/Cl− mass ratios remained relatively

constant for sea ice and surface snow, bromide becomes

strongly depleted relative to chloride in lofted snow. Thus,

we conclude the blowing snow particles provide a very vi-

able surface for the initial heterogeneous reactions initializ-

ing ODEs to occur. The findings of this study are consistent

with previous modeling results (Yang et al., 2010), suggest-

ing that blowing snow has the capacity to explain the occur-

rence of ODEs in the polar springtime.

The Supplement related to this article is available online

at doi:10.5194/acp-15-7537-2015-supplement.
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