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Abstract. European CH4 and N2O emissions are estimated

for 2006 and 2007 using four inverse modelling systems,

based on different global and regional Eulerian and La-

grangian transport models. This ensemble approach is de-

signed to provide more realistic estimates of the overall un-

certainties in the derived emissions, which is particularly im-

portant for verifying bottom-up emission inventories.

We use continuous observations from 10 European sta-

tions (including 5 tall towers) for CH4 and 9 continuous sta-

tions for N2O, complemented by additional European and

global discrete air sampling sites. The available observa-

tions mainly constrain CH4 and N2O emissions from north-

western and eastern Europe. The inversions are strongly

driven by the observations and the derived total emissions

of larger countries show little dependence on the emission

inventories used a priori.

Three inverse models yield 26–56 % higher total CH4

emissions from north-western and eastern Europe compared
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to bottom-up emissions reported to the UNFCCC, while one

model is close to the UNFCCC values. In contrast, the in-

verse modelling estimates of European N2O emissions are in

general close to the UNFCCC values, with the overall range

from all models being much smaller than the UNFCCC un-

certainty range for most countries. Our analysis suggests that

the reported uncertainties for CH4 emissions might be under-

estimated, while those for N2O emissions are likely overes-

timated.

1 Introduction

Atmospheric methane (CH4) and nitrous oxide (N2O) are the

second and third most important long-lived anthropogenic

greenhouse gases (GHGs), after carbon dioxide (CO2). CH4

and N2O have large global warming potentials of 28 and 265,

respectively, relative to CO2 over a 100-year time horizon

(Myhre et al., 2013). Globally averaged dry-air mole frac-

tions of CH4 reached 1819± 1 ppb in 2012, 160 % above

the pre-industrial level (1750) of ∼ 700 ppb, while N2O

reached 325.1± 0.1 ppb, ∼ 20 % higher than pre-industrial

level (270 ppb) (WMO, 2013). CH4 and N2O contributed

∼ 18 % and ∼ 6 %, respectively, to the direct anthropogenic

radiative forcing of all long-lived GHGs in 2012, relative

to 1750 (NOAA Annual Greenhouse Gas Index (AGGI),

http://www.esrl.noaa.gov/gmd/aggi/). CH4 also has signifi-

cant additional indirect radiative effects due to its feedback

on global OH concentrations, tropospheric ozone, and strato-

spheric water vapour, and the generation of CO2 as the fi-

nal product of the CH4 oxidation chain (Forster et al., 2007;

Shindell et al., 2005). These indirect effects are reflected

in the CH4 emission-based radiative forcing of 0.97 (0.74

to 1.20) Wm−2, which is about twice the concentration-

based radiative forcing of 0.48 (0.43 to 0.53) Wm−2 (Myhre

et al., 2013). In addition to its significant contribution to

global warming, N2O plays an important role in the deple-

tion of stratospheric ozone, with its current ozone depletion

potential-weighted emissions being the largest of all ozone-

depleting substances (Ravishankara et al., 2009).

On the European scale, combined emissions of CH4 and

N2O contributed 15.4 % to total GHG emissions (in CO2-

equivalents) reported under the United Nations Framework

Convention on Climate Change (UNFCCC) by the EU-15

countries for 2012 (16.3 % for EU-28) (EEA, 2014). The

large reductions of both CH4 and N2O emissions since 1990

(CH4 by 33 %; N2O by 34 %) reported by the EU-15 con-

tributed significantly to the reduction of its total GHG emis-

sions by 15.1 % (2012 compared to 1990).

GHG emissions reported to the UNFCCC are based on sta-

tistical activity data and source-specific and country-specific

emission factors (IPCC, 2006). For CH4 and N2O however,

such “bottom-up” emission inventories have considerable

uncertainties, mainly due to the large variability of emission

factors, which for many CH4 and N2O sources are not very

well characterized (e.g. CH4 emissions from landfills, gas

production facilities and distribution networks, or N2O emis-

sions from agricultural soils (e.g. Karion et al., 2013; Leip

et al., 2011)).

Complementarily to “bottom-up” approaches, emissions

can be estimated using atmospheric measurements and in-

verse modelling. This “top-down” technique is widely used

to estimate GHG emissions on the global and continental

scale (e.g. Bergamaschi et al., 2013; Bousquet et al., 2006;

Hein et al., 1997; Houweling et al., 1999; Kirschke et al.,

2013; Mikaloff Fletcher et al., 2004a, b for CH4 and Hirsch

et al., 2006; Huang et al., 2008; Thompson et al., 2014 for

N2O). With the availability of quasi-continuous GHG mea-

surements and the increasing number of regional monitoring

stations, especially in Europe and North America, various

inverse modelling studies have estimated emissions also on

the regional to country scale (e.g. Bergamaschi et al., 2010;

Corazza et al., 2011; Kort et al., 2008; Manning et al., 2011;

Miller et al., 2013), demonstrating the potential of using such

top-down methods for independent verification of bottom-

up inventories (Bergamaschi, 2007). The use of atmospheric

measurements and inverse modelling for verification has also

been recognized by the IPCC (2006).

Currently, only anthropogenic GHG emissions are re-

ported to UNFCCC. In many specific cases, such as the Eu-

ropean CH4 and N2O emissions discussed in this study, the

contribution of natural emissions is considered to be rela-

tively small. Nevertheless, quantitative comparison between

inverse modelling and bottom-up estimates also requires es-

timates of natural emissions.

A further challenge with inverse modelling, particularly

for its use in verifying bottom-up estimates, is the provi-

sion of realistic uncertainties for the derived emissions. Al-

though various studies attempt to take account of estimates

of the model representation and transport errors, such esti-

mates are typically based on strongly simplified assumptions.

As a complementary approach, the range of results from an

ensemble of models can be analysed and may be consid-

ered a more realistic estimate of the overall uncertainty, pro-

vided the applied models are largely independent and repre-

sent well the range of current models. Furthermore, detailed

model comparisons, and verification with independent vali-

dation data, allow the model characteristics to be analysed in

detail and potential model deficiencies to be identified. Com-

parisons of global inverse models have been performed for

CO2 (e.g. Peylin et al., 2013; Stephens et al., 2007), CH4

(Kirschke et al., 2013) and N2O (Thompson et al., 2014), fo-

cusing on the global and continental scale. Here, we present

for the first time a detailed comparison of inverse models es-

timating European CH4 and N2O emissions. We use four in-

verse models, based on different global and regional Eulerian

and Lagrangian transport models. The inversions are con-

strained by a comprehensive data set of quasi-continuous ob-

servations from European monitoring stations (including five
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tall towers), complemented by further European and global

discrete air sampling sites.

2 Atmospheric measurements

The European monitoring stations used in the CH4 and N2O

inversions are summarized in Table 1. The monitoring sta-

tions include 10 sites with quasi-continuous measurements

for CH4 (i.e. providing data with hourly or higher time res-

olution), and 9 sites with quasi-continuous N2O measure-

ments. Five of these stations are equipped with tall tow-

ers (Cabauw, Bialystok, Ochsenkopf, Hegyhatsal, and An-

gus), with uppermost sampling heights above the surface by

97–300 m. The measurements at the tall towers were set up

or improved within the EU project CHIOTTO (“Continuous

High-precision Tall Tower Observations”) (Popa et al., 2010;

Thompson et al., 2009; Vermeulen et al., 2007, 2011). Addi-

tional quasi-continuous measurements are from the AGAGE

(Advanced Global Atmospheric Gases Experiment) network

(Cunnold et al., 2002; Rigby et al., 2008) at Mace Head, from

the operational network of the German Federal Environment

Agency (UBA) at Schauinsland, from the Finnish Meteoro-

logical Institute at Pallas (Aalto et al., 2007), from the Swiss

Federal Laboratories for Materials Science and Technology

(EMPA) at Jungfraujoch, and from the Royal Holloway Uni-

versity of London (RHUL) in London. Furthermore, we use

CH4 and N2O discrete air samples from the NOAA Earth

System Research Laboratory (ESRL) global cooperative air

sampling network at 10 European sites (and for the global in-

verse models, additional global NOAA sites) (Dlugokencky

et al., 1994, 2003, 2009), and CH4 discrete air samples from

the French RAMCES (Réseau Atmosphérique de Mesure des

Composés à Effet de Serre) network (Schmidt et al., 2006) at

5 European sites. Finally, discrete air samples from the Max-

Planck-Institute for Biogeochemistry at the Shetland Islands,

and from the Italian National Agency for New Technologies,

Energy and Sustainable Development (ENEA) at Lampedusa

were used. Both quasi-continuous and discrete air sample

measurements are based on gas chromatography (GC) using

flame ionization detectors (FIDs) for CH4, and electron cap-

ture detectors (ECDs) for N2O. Measurements are reported

as dry air mole fractions (nmolmol−1, abbreviated as ppb).

For CH4, we generally apply the NOAA04 CH4 standard

scale (Dlugokencky et al., 2005). AGAGE CH4 data were

converted to NOAA04 using a scaling factor of 1.0003 (Prinn

et al., 2000), and RAMCES CH4 data were scaled by 1.0124

from CMDL83 to NOAA04 (Dlugokencky et al., 2005).

CH4 comparisons of high-pressure cylinders performed in

the frame of the European projects MethMoniteur, IMECC,

Geomon and CHIOTTO, and WMO between 2004 and

2010 showed that the CH4 measurements of the CHIOTTO,

NOAA, RAMCES, UBA, and RHUL networks agreed within

2 ppb. Furthermore, comparison of the quasi-continuous

measurements at Pallas, Mace Head, Ochsenkopf, and Hegy-

hatsal with NOAA discrete air samples (using measurements

coinciding within 1 h, and the additional condition that the

quasi-continuous measurements show low variability within

a 5 h time window) showed annual average absolute CH4 bi-

ases of less than 4 ppb during 2006 and 2007, the target pe-

riod of this study.

While the merged CH4 data set used in this study can,

therefore, be considered reasonably consistent, this is not the

case for N2O, for which significant offsets are apparent be-

tween different monitoring laboratories, even though most

laboratories use N2O primary standards from NOAA/ESRL.

These offsets exceed the compatibility goal of±0.1 ppb (1σ )

recommended by WMO GAW (WMO, 2012) (Table 7).

We, therefore, adopt the approach developed by Corazza

et al. (2011) to correct for these calibration offsets in the

inversion (see also Sect. 3), using the NOAA discrete air

samples (which are reported on the NOAA-2006 scale; Hall

et al., 2007) as a common reference. Corazza et al. (2011)

showed that the N2O bias correction derived in the inversion

agreed within 0.1–0.2 ppb (N2O dry-air mole fraction) with

the bias derived from the comparison of quasi-continuous

measurements with parallel NOAA discrete air samples. We

emphasize that this bias correction assumes that the bias re-

mains constant during the inversion period (yearly for TM5)

and, therefore, cannot correct for changes of the systematic

bias on shorter timescales.

For validation, CH4 measurements of discrete air samples

from three European aircraft profile sites in Scotland, France,

and Hungary are used, operated within the European Car-

boEurope project. The analyses of these samples were per-

formed at LSCE, in the same manner as the RAMCES sur-

face measurements.

3 Modelling

3.1 Modelling protocol

The modelling protocol used in this study prescribed mainly

the basic settings for the inversions, such as a priori emis-

sion inventories, observational data sets, time period, and

requested model output. Atmospheric sinks were not pre-

scribed. For both CH4 and N2O, two types of inversions were

performed: (1) the base inversions, S1–CH4 and S1–N2O, re-

spectively, using detailed bottom-up emission inventories for

anthropogenic and natural sources as a priori emission esti-

mates, and (2) the “free inversions”, S2–CH4 and S2–N2O,

which do not use these bottom-up inventories. The objective

of these “free inversions” is to explore the information con-

tent of the observations in the absence of detailed a priori

information.

The CH4 and N2O emission inventories applied in S1–

CH4 and S1–N2O are summarized in Tables 3 and 4, respec-

tively. For the anthropogenic sources (except biomass burn-

ing), the EDGARv4.1 emission inventory for 2005 was used

www.atmos-chem-phys.net/15/715/2015/ Atmos. Chem. Phys., 15, 715–736, 2015
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Table 1. European atmospheric monitoring stations used in the inversions (2006–2007). “ST” specifies the sampling type (“CM”: quasi-

continuous measurements, providing data with hourly time resolution; “FM”: discrete air measurements with typically weekly sampling

frequency). “CH4” and “N2O” indicate which stations have been used in the CH4 and N2O inversions, respectively.

ID Station name Data provider Latitude Longitude Altitude ST CH4 N2O

m a.s.l.

PAL Pallas, Finland FMI 67.97 24.12 560 CM • •

NOAA FM • •

STM Ocean station M, Norway NOAA 66.00 2.00 5 FM • •

ICE Heimay, Vestmannaeyjar, Iceland NOAA 63.34 −20.29 127 FM • •

SIS Shetland Island, UK MPI-BGC 59.85 −1.27 46 FM • •

TT1 Angus, UK (222 m level) CHIOTTO 56.55 −2.98 535 CM • •

BAL Baltic Sea, Poland NOAA 55.35 17.22 28 FM • •

MHD Mace Head, Ireland AGAGE 53.33 −9.90 25 CM • •

NOAA FM • •

BI5 Bialystok, Poland (300 m level) CHIOTTO 53.23 23.03 460 CM • •

CB3 Cabauw, Netherlands (120 m level) CHIOTTO 51.97 4.93 118 CM • •

LON Royal Holloway, London, UK RHUL 51.43 −0.56 45 CM •

OX3 Ochsenkopf, Germany (163 m level) CHIOTTO 50.05 11.82 1185 CM • •

NOAA FM • •

LPO Ile Grande, France RAMCES 48.80 −3.58 30 FM •

GIF Gif sur Yvette, France RAMCES 48.71 2.15 167 FM •

SIL Schauinsland, Germany UBA 47.91 7.91 1205 CM • •

HPB Hohenpeissenberg, Germany NOAA 47.80 11.01 985 FM • •

HU1 Hegyhatsal, Hungary (96 m level) CHIOTTO 46.95 16.65 344 CM • •

NOAA FM • •

JFJ Jungfraujoch, Switzerland EMPA 46.55 7.98 3580 CM • •

PUY Puy de Dome, France RAMCES 45.77 2.97 1475 FM •

BSC Black Sea, Constanta, Romania NOAA 44.17 28.68 3 FM • •

PDM Pic du Midi, France RAMCES 42.94 0.14 2887 FM •

BGU Begur, Spain RAMCES 41.97 3.23 15 FM •

LMP Lampedusa, Italy ENEA 35.52 12.63 45 FM •

NOAA FM •

Table 2. Atmospheric models.

Model Institution Resolution of transport model: Horizontal Vertical Meteorology

TM5-4DVAR EC JRC Europe: 1◦× 1◦ 25 ECMWF ERA-INTERIM

Global: 6◦× 4◦

LMDZ-4DVAR LSCE Europe: ∼ 1.2◦× 0.8◦ 19 Nudged to ECMWF ERA-INTERIM

Global: ∼ 7◦× 3.6◦

TM3-STILT MPI-BGC Europe: 0.25◦× 0.25◦a (STILT) 61 (STILT) ECMWF operational analysis (STILT)

Global: 5◦× 4◦ (TM3) 19 (TM3) NCEP reanalysis (TM3)

NAME-INV Met Office 0.56◦× 0.37◦b 31c Met Office Unified Model (UM)

a Horizontal resolution of inversion: 1◦ × 1◦.
b Horizontal resolution of inversion: 0.42◦ × 0.27◦.
c 31 levels from surface to 19 km.

(as 2005 is the most recent available year in EDGARv4.1).

For S2–CH4 and S2–N2O, a homogeneous distribution of

emissions over land and over the ocean was used as starting

point for the optimization (i.e. a “weak a priori” for TM5-

4DVAR and TM3-STILT), with global total CH4 and N2O

emissions over land and over the ocean, respectively, close

to the total emissions over land and over the ocean of the de-

tailed a priori inventories (Bergamaschi et al., 2010; Corazza

et al., 2011), hence effectively limiting the emissions that

can be attributed to the ocean. For the NAME-INV model,

no separation was made between land and ocean. Moreover,

the NAME-INV model started from random emission maps

rather than a homogeneous distribution of emissions. Inver-

sions S2 were not available for LMDZ-4DVAR.

For the European limited domain models NAME-INV and

STILT, background CH4 and N2O mixing ratios were calcu-

Atmos. Chem. Phys., 15, 715–736, 2015 www.atmos-chem-phys.net/15/715/2015/
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Table 3. CH4 emission inventories used as a priori in inversion S1–CH4.

Source Inventory Global total

TgCH4 yr−1

Anthropogenic

Coal mining EDGARv4.1a 40.3

Oil production and refineries EDGARv4.1a 26.1

Gas production and distribution EDGARv4.1a 46.8

Enteric fermentation EDGARv4.1a 96.9

Manure management EDGARv4.1a 11.3

Rice cultivation EDGARv4.1a 34.0

Solid waste EDGARv4.1a 28.1

Waste water EDGARv4.1a 30.0

Further anthropogenic sourcesb EDGARv4.1a 16.9

Biomass burning GFEDv2 (van der Werf et al., 2004) 19.7–20.2c

Natural

Wetlands Inventory of J. Kaplan (Bergamaschi et al., 2007) 175.0

Wild animals (Houweling et al., 1999) 5.0

Termites (Sanderson, 1996) 19.3

Ocean (Lambert and Schmidt, 1993) 17.0

Soil sink (Ridgwell et al., 1999) −37.9

Total 528.4–528.9d

a EDGARv4.1 CH4 emissions for 2005.
b Including CH4 emission from transport, residential sector, energy manufacturing and transformation, industrial processes and

product use, and agricultural waste burning.
c GFEDv2 CH4 emissions for 2006 and 2007, respectively.
d Global total CH4 emissions for 2006 and 2007, respectively.

Table 4. N2O emission inventories used as a priori in inversion S1–N2O.

Source Inventory Global total

TgN2Oyr−1

anthropogenic

Agricultural soils EDGARv4.1a 4.5

Indirect N2O emissions EDGARv4.1a 1.6

Manure management EDGARv4.1a 0.3

Transport EDGARv4.1a 0.3

Residential EDGARv4.1a 0.3

Industrial processes and product use EDGARv4.1a 0.6

Energy manufacturing and transformation EDGARv4.1a 0.3

Waste EDGARv4.1a 0.4

Further anthropogenic sourcesb EDGARv4.1a 0.1

Biomass burning GFEDv2 (van der Werf et al., 2004) 1.0–1.1c

Post-forest clearing enhanced (Bouwman et al., 1995) 0.6

Natural

Natural soils (Bouwman et al., 1995) 7.2

Ocean (Bouwman et al., 1995) 5.7

Total 22.7–22.8d

a EDGARv4.1 N2O emissions for 2005.
b Including N2O emission from agricultural waste burning, and oil and gas sector.
c GFEDv2 N2O emissions for 2006 and 2007, respectively.
d Global total N2O emissions for 2006 and 2007, respectively.
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lated by TM5-4DVAR (for NAME-INV CH4 and N2O inver-

sions and STILT N2O inversions) and by TM3 (for STILT

CH4 inversions) following the two-step scheme of Röden-

beck et al. (2009).

All models used the same observational data set described

in Sect. 2 (with the exception of a few stations that are out-

side the domain of the limited domain models). For the con-

tinuously operated monitoring stations in the boundary layer,

measurements between 12:00 and 15:00 LT were assimilated,

when measurements (and model simulations) are usually rep-

resentative of large regions and much less affected by local

emissions. In contrast, for mountain sites night-time mea-

surements (between 00:00 and 03:00 LT) were used to avoid

the potential influence of upslope transport on the measure-

ments, which is frequently observed at mountain stations

during daytime. Different from this sampling scheme (ap-

plied in TM5-4DVAR, LMDZ-4DVAR, and TM3-STILT),

the NAME-INV model used observations at all times, but

with local contributions excluded as in Manning et al. (2011).

For the N2O inversions, bias corrections for the N2O ob-

servations from different networks or institutes were calcu-

lated within the 4DVAR optimization of the TM5-4DVAR

and LMDZ-4DVAR models, as described by Corazza

et al. (2011). For NAME-INV and TM3-STILT, the bias cor-

rections calculated by TM5-4DVAR (Table 7) were applied.

3.2 Atmospheric models

The atmospheric models used in this study are summarized

in Table 2 and briefly described in the following.

3.2.1 TM5-4DVAR

The TM5-4DVAR inverse modelling system is described in

detail by Meirink et al. (2008). It is based on the two-way

nested atmospheric zoom model TM5 (Krol et al., 2005).

In this study we apply the zooming with 1◦ × 1◦ resolution

over Europe, while the global domain is simulated at a hor-

izontal resolution of 6◦ (longitude) × 4◦ (latitude). TM5 is

an offline transport model, driven by meteorological fields

from the European Centre for Medium-Range Weather Fore-

casts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011).

The 4-dimensional variational (4DVAR) optimization tech-

nique minimizes iteratively a cost function using the adjoint

of the tangent linear model and the m1qn3 algorithm for min-

imization (Gilbert and Lemaréchal, 1989). We apply a “semi-

exponential” description of the probability density function

for the a priori emissions to force the a posteriori emissions

to remain positive (Bergamaschi et al., 2009, 2010). In inver-

sion S1–CH4, four groups of CH4 emissions are optimized

independently: (1) wetlands, (2) rice, (3) biomass burning,

and (4) all remaining sources (Bergamaschi et al., 2010).

For S1–N2O the following four groups of N2O emissions

are optimized: (1) soil, (2) ocean, (3) biomass burning, and

(4) all remaining emissions (Corazza et al., 2011). In S2–

CH4 and S2–N2O, only total emissions are optimized. We

assume uncertainties of 100 % per grid-cell and month for

each source group and apply spatial correlation scale lengths

of 200 km in S1–CH4 and S1–N2O. In the “free inversions”

S2–CH4 and S2–N2O, smaller correlation scale lengths of

50 km, and larger uncertainties of 500 % per grid-cell and

month are used to give the inversion enough freedom to re-

trieve regional hot spots (Bergamaschi et al., 2010; Corazza

et al., 2011). The temporal correlation timescales are set to

zero for the source groups with significant seasonal varia-

tions, and 9.5 months for the “remaining” CH4 and N2O

sources (which include major anthropogenic sources that are

assumed to have no or only small seasonal variations) in S1–

CH4 and S1–N2O, and 1 month for the total emissions opti-

mized in S2–CH4 and S2–N2O.

The photochemical sinks of CH4 (due to OH in the tropo-

sphere, and OH, Cl, and O(1D) in the stratosphere) are sim-

ulated as described in Bergamaschi et al. (2010). The strato-

spheric sinks of N2O (photolysis and reaction with excited

oxygen O(1D)) are modelled as in Corazza et al. (2011).

The observation errors were set to 3 ppb for CH4, and

0.3 ppb for N2O. The model representation error is estimated

as a function of local emissions and 3-D gradients of simu-

lated mixing ratios (Bergamaschi et al., 2010), resulting in

overall (combined measurement and model representation)

errors in the range between 3 ppb and up to∼ 1 ppm for CH4,

and between 0.3 ppb and up to several ppb for N2O. For the

N2O inversions we optimize bias parameters for the N2O ob-

servations from different networks or institutes (see Table 7),

as described by Corazza et al. (2011).

3.2.2 LMDZ-4DVAR

The LMDZ-4DVAR inverse modelling framework is based

on the offline and adjoint models of the Laboratoire de

Météorologie Dynamique, version 4 (LMDZ) general cir-

culation model (Hourdin and Armengaud, 1999; Hourdin

et al., 2006). The offline model is driven by archived fields of

winds, convection mass fluxes, and planetary boundary layer

(PBL) exchange coefficients that have been calculated in

prior integrations of the complete general circulation model,

which was nudged to ECMWF ERA-Interim winds (Dee

et al., 2011). In this study, LMDZ is used with a zoom over

Europe at a resolution of approximately 1.2◦× 0.8◦ and de-

creasing resolution away from Europe to a maximum grid

size of approximately 7.2◦×3.6◦. LMDZ has 19 hybrid pres-

sure levels in the vertical dimension. The optimal fluxes were

found by solving the cost function using the adjoint model

and the Lanczos algorithm for N2O and the m1qn3 algorithm

for CH4.

Details about the inversion framework for CH4 are given

in Pison et al. (2009, 2013). Only the total net emissions

of methane are optimized, at the resolution of the grid-cell

for 8-day periods. Prior uncertainties in each grid-cell are

set to 100 % of the maximum flux over the grid-cell and its
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eight neighbours (so as to allow for a misplacement of the

sources). Correlation scale lengths are used to compute the

off-diagonal terms in the error covariance matrix: they are set

at 500 km on land and 1000 km on sea (land and sea are not

correlated); there are no time correlations. The “observation”

errors include the estimates of the errors due to the transport

model and to the representativity of the grid-cell compared

to the measurement (combined measurement and model er-

ror ranging between 3 ppb and up to 450 ppb). Note that the

OH fields are inverted simultaneously to the methane emis-

sions, with constraints from methyl-chloroform (Pison et al.,

2009; 2013).

Details about the inversion framework for N2O can be

found in Thompson et al. (2011). For N2O, only total emis-

sions were optimized. Prior uncertainties in each grid-cell

were set to 100 % and correlation scale lengths of 500 km

over land, 1000 km over ocean, and 3 months were used

to form the full error covariance matrix, which was subse-

quently scaled to be consistent with a global total uncertainty

of 3 TgN yr−1 (approximately 18 %). The error of the N2O

observations was set to 0.3 ppb. Model representation errors

incorporated an estimate of aggregation error, i.e. distribution

of emissions within the grid-cell (Bergamaschi et al., 2010),

and horizontal advection errors (Rödenbeck et al., 2003), re-

sulting in total model errors ranging from about 0.2 ppb to

1 ppb. In addition to the emissions, bias parameters for the

N2O observations from different networks or institutes were

optimized, similarly to TM5-4DVAR (Corazza et al., 2011).

3.2.3 TM3-STILT

In the Jena inversions, the coupled system TM3-STILT

is used for regional-scale high-resolution inversions. TM3-

STILT (Trusilova et al., 2010) is a combination of the

coarse-grid global 3-dimensional atmospheric offline trans-

port model TM3 (Heimann and Koerner, 2003) and the fine-

scale regional Stochastic Time-Inverted Lagrangian Trans-

port model STILT (Gerbig et al., 2003; Lin et al., 2003). The

models are coupled using the two-step nesting scheme of Rö-

denbeck et al. (2009), which allows the use of completely

independent models for the representation of the global and

the regional transport. The variational inversion algorithm of

the Jena inversion scheme, applied in the global as well as in

the regional inversion step, is described in detail in Röden-

beck (2005). In this study, the global transport model TM3 is

used with a spatial resolution of 4◦× 5◦ and 19 vertical lev-

els. STILT is driven by meteorological fields from ECMWF

operational analysis, used here with a spatial resolution of

0.25◦× 0.25◦ and confined to the lowest 61 vertical layers.

The regional TM3-STILT inversions are conducted in this

study on a 1◦× 1◦ horizontal resolution grid covering the

greater part of Europe (12◦W–35◦ E, 35–62◦ N). Regional

inversion results for CH4 were obtained directly by the TM3-

STILT system. For the regional N2O inversions the same

modular nesting technique is applied to couple STILT with

a baseline provided by TM5-4DVAR (Bergamaschi et al.,

2010; Corazza et al., 2011) and the regional inversion step

is performed in the Jena inversion system. The latter com-

bination is referred to as TM5-STILT in the presentation of

the N2O inversion results. In all regional inversions we opti-

mize the total emissions. Uncertainties of 100 % per grid-cell

and month, with a spatial correlation scale length of 600 km

and a temporal correlation timescale of 1 month, are assumed

in the regional S1–CH4 and S1–N2O inversions. In both S2

inversions the uncertainties are set to 500 % with a corre-

lation scale length of 60 km and correlation timescale of 1

month. The observation errors were set to 3 ppb for CH4 and

0.2 ppb for N2O. Model representation errors are assigned to

the individual sites according to their location with respect to

continental, remote or oceanic situations (Rödenbeck, 2005),

resulting in overall (combined measurement and model rep-

resentation) errors in the range of 10–30 ppb for CH4, and 0.8

and 2.4 ppb for N2O. For N2O the bias parameters estimated

by TM5-4DVAR (see Table 7) are applied in the regional in-

versions.

3.2.4 NAME-INV

The NAME-INV inverse modelling system is described in

Manning et al. (2011) using one station to estimate UK and

Northern European emissions of various trace gases and in

Athanassiadou et al. (2011) for multiple stations across Eu-

rope. The transport of CH4 and N2O from sources to obser-

vations is performed using the UK Met Office Lagrangian

model NAME (Jones et al., 2007). Thousands of particles

are released from each measurement for each 2 h period in

2006 and 2007, and these are tracked backwards in time

over a period of 13 days (long enough for the majority of

particles to leave the domain of interest). The 13-day time-

integrated concentrations only include contributions from 0

to 100 ma.g.l., representative of surface emissions. The me-

teorological fields needed to run NAME are from the global

version of the Met Office Unified Model (UM) at a resolu-

tion of 0.56◦× 0.37◦ and 31 vertical levels from surface to

about 19 km (see Table 2). The domain used for the inver-

sion extends from 14.63◦W to 39.13◦ E and from 33.81◦ N

to 72.69◦ N, with a resolution of 0.42◦× 0.27◦ in the longi-

tudinal and latitudinal directions respectively. The inversion

is initialized either from the modelling protocol a priori or

from a random emissions field as in Manning et al. (2011).

In the latter case, the cost function used in the optimization is

the same as in Manning et al. (2011). In S1, when the inver-

sion is initialized and guided by the a priori emission inven-

tory, a modified version is used (original cost function+ root

mean square error (RMSE) between modelled values and

a priori). To account for the imbalance in the contribution

from different grid boxes (i.e. the grids more distant from the

observations are expected to contribute less than those that

are closer), grid boxes are progressively grouped together
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into increasingly larger boxes as the individual contributions

decrease.

In all inversions, the total annual emissions are optimized

without any partitioning to various sectors. The background

values used for CH4 and N2O are from TM5-4DVAR follow-

ing the two-step scheme of Rödenbeck et al. (2009). Obser-

vations at all times have been used (i.e. not only in the time

windows specified in Sect. 3.1), but excluding local contribu-

tions (Manning et al., 2011). An estimate of the uncertainty

in the emissions is obtained from the 5th and 95th percentiles

of 52 independent inversion solutions (the mean of these be-

ing the final solution). The independent inversion solutions

are considered to simulate uncertainties in the meteorology,

dispersion and observations. For each inversion a different

time series of random noise is applied to the observations.

The random element at each observation is multiplicative and

taken from a lognormal distribution with mean 1 and vari-

ance, arbitrarily, set to one fifth of the standard deviation of

baseline observations about a smoothed baseline value as in

Manning et al. (2011). For this project the baseline standard

deviation values 9.5 ppb (CH4) and 0.194 ppb (N2O) were

used.

4 Results and discussion

4.1 Inverse modelling of European CH4 emissions

Figures 1 and 2 show maps of derived CH4 emissions (av-

erage 2006–2007) for inversions S1–CH4 and S2–CH4, re-

spectively. Guided by the a priori emission inventory in in-

version S1–CH4, TM5-4DVAR, TM3-STILT and LMDZ-

4DVAR largely preserve the “fine structure” of the a priori

spatial patterns, but calculate some moderate emission in-

crements on larger regional scales (determined by the cho-

sen spatial correlation scale lengths, ranging between 200

and 600 km). Larger emission increments are apparent for

inversion S1–CH4 of NAME-INV, with generally lower CH4

emissions across Europe, compared to the a priori and the

a posteriori emissions of the other three models.

Inversion S2–CH4, which is not constrained by a detailed

a priori emission inventory, shows in general a smoother

spatial distribution than S1–CH4. While the NAME-INV

model does not use any a priori information in S2–CH4,

TM5-4DVAR and TM3-STILT assume that CH4 emissions

are mainly over land. Consequently, NAME-INV attributes

much larger emissions over the sea than TM5-4DVAR and

TM3-STILT, especially over the North Sea and the Bay of

Biscay. All three models show consistently high CH4 emis-

sions over the Benelux countries and north-western Ger-

many (especially over the highly populated and industrial-

ized Ruhr area). Apart from these hotspot emission areas,

TM5-4DVAR and TM3-STILT overall show relatively sim-

ilar distributions over land, while the NAME-INV inver-

sion differs significantly, for example, over Spain and south-

eastern France / north-western Italy, where NAME-INV at-

tributes much lower emissions compared to TM5-4DVAR

and TM3-STILT.

It is interesting to compare the inversions S2–CH4 and

the a priori used for S1–CH4, representing completely in-

dependent emission estimates, top-down and bottom-up re-

spectively. Both approaches show coherently elevated CH4

emissions over Benelux/north-western Germany, and south-

ern UK. The S2–CH4 inversions also show somewhat el-

evated emissions per area in southern Poland, where large

coal mines are located. However, the inversions are not able

to reproduce the very pronounced CH4 emission hotspot

of the bottom-up inventory in this area. This is proba-

bly largely due to the limitations of the inversion’s ability

to resolve point sources accurately (also given the limita-

tion of the sparse atmospheric measurement network) but

could also point to a bottom-up overestimate of the CH4

emissions from the coal mining in this area. In fact, the

EDGARv4.2 estimate of CH4 emissions from coal mines

in Poland (1.71 TgCH4 yr−1) is about 4 times higher than

that reported under UNFCCC (0.43 TgCH4 yr−1; see Ta-

ble 6). However, it should be pointed out that the bottom-up

emissions have large uncertainties, estimated to be 49 % for

UNFCCC, and 83 % for EDGARv4.2 for the coal mines in

Poland.

In the following discussion, we analyse the CH4 emissions

per country for the countries whose emissions are reason-

ably well constrained by the available observations. These

are mainly north-western and eastern European countries

(Fig. 3), while southern European countries are poorly con-

strained. For smaller countries, we present aggregated emis-

sions (e.g. Benelux), as they are considered more robust

than emissions of individual small countries. The normal-

ized range of derived CH4 emissions (defined as (Emax−

Emin)/(Emax+Emin)) is between ±16 and ±44 % for the

analysed countries (or combined countries), and ±25 % for

the total CH4 emissions of all north-western and eastern Eu-

ropean countries shown in Fig. 3 (inversion S1–CH4). For

some countries, the range of emission estimates from all four

models is close to the uncertainties estimated for the individ-

ual inversions (e.g. Poland), but there are also several coun-

tries with much larger emission ranges (e.g. France). This

shows that there are systematic differences between the in-

versions, which are not covered by the uncertainty estimates

of the individual inversions.

The country totals of the “free” inversion S2–CH4 are in

general very close to those of S1–CH4 for most countries,

demonstrating the strong observational constraints. Appar-

ently, the above-mentioned differences in the smaller-scale

“fine structure” in the spatial patterns between S1–CH4 and

S2–CH4 (see Figs. 1 and 2) are largely compensated by ag-

gregating emissions on the country scale. The fact that in sev-

eral cases the emission ranges of the S2–CH4 inversions are

smaller than for S1–CH4 is probably mainly due to fewer

models being available (three instead of four).
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Figure 1. European CH4 emissions (average 2006–2007, inversion S1–CH4). Filled circles are measurement stations with quasi-continuous

measurements; open circles are discrete air sampling sites.

Table 5. CH4 and N2O inversions summary.

Inversion A priori emission inventory TM5-4DVAR LMDZ-4DVAR TM3-STILT NAME-INV

CH4 inversions

S1–CH4 As compiled in Table 3 • • • •

S2–CH4 No a priori • • •

N2O inversion

S1–N2O As compiled in Table 4 • • • •

S2–N2O No a priori • • •

For most countries, the NAME-INV model yields lower

emissions compared to the other three models. This is most

clearly visible in the total emission of all north-western and

eastern European countries, which NAME-INV estimates to

be 10.7–11.7 TgCH4 yr−1 (annual totals for 2006 and 2007,

for S1–CH4 and S2–CH4), compared to estimates of 16.0–

19.4 TgCH4 yr−1 from TM5-4DVAR, LMDZ-4DVAR and

TM3-STILT.

The reasons for the generally lower emissions derived by

NAME-INV remain unclear. One factor that may contribute
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Table 6. CH4 emissions from EDGARv4.1, EDGARv4.2, and UNFCCC for major CH4 source categories. For the UNFCCC emissions,

the reported relative uncertainties (2σ ) per country and category and corresponding emission ranges are also compiled. Total uncertainties

per country (or aggregated countries) are estimated from the reported uncertainties per category assuming no correlation between different

UNFCCC categories (but correlated errors for sub-categories). “NWE” is the total of the north-western European countries Germany, France,

UK, Ireland and Benelux. “NEE” is the total of the eastern European countries Hungary, Poland, Czech Republic (CZE) and Slovakia (SVK).

Germany France UK+ Ireland Benelux Hungary Poland CZE+SVK NWE NEE NWE+NEE

Solid fuels (1B1)

Emission (2005) EDGARv4.1a Tg CH4 yr−1 0.54 0.02 0.14 0.008 0.008 1.69 0.18 0.71 1.88 2.59

Emission (2006–2007) EDGARv4.2 Tg CH4 yr−1 0.36 0.02 0.08 0.007 0.009 1.71 0.16 0.47 1.87 2.34

Emission (2006–2007) UNFCCC Tg CH4 yr−1 0.21 0.01 0.13 0.002 0.001 0.43 0.19 0.35 0.62 0.97

Emission range UNFCCC Tg CH4 yr−1 0.13–0.29 N/Ab 0.11–0.14 0.001–0.002 0.001–0.001 0.22–0.64 0.16–0.21 0.25–0.45 0.38–0.85 0.64–1.30

Relative uncertainty UNFCCC 37.4 % N/Ab 13.0 % 19.8 % 10.4 % 48.6 % 13.2 % 27.8 % 37.9 % 34.2 %

Oil and natural gas (1B2)

Emission (2005) EDGARv4.1 Tg CH4 yr−1 0.37 1.44 0.66 0.26 0.08 0.15 0.07 2.73 0.30 3.03

Emission (2006–2007) EDGARv4.2 Tg CH4 yr−1 0.27 1.49 0.61 0.28 0.08 0.15 0.08 2.64 0.31 2.95

Emission (2006–2007) UNFCCC Tg CH4 yr−1 0.28 0.05 0.27 0.06 0.10 0.21 0.07 0.66 0.38 1.03

Emission range UNFCCC Tg CH4 yr−1 0.25–0.32 0.04–0.06 0.22–0.32 0.04–0.07 0.05–0.15 0.20–0.22 0.04–0.09 0.55–0.76 0.29–0.46 0.84–1.23

Relative uncertainty UNFCCC 11.4 % 18.0 % 17.1 % 30.2 % 50.0 % 5.3 % 40.0 % 15.9 % 23.2 % 18.5 %

Enteric fermentation (4A)

Emission (2005) EDGARv4.1 Tg CH4 yr−1 1.06 1.39 1.50 0.50 0.09 0.58 0.22 4.45 0.89 5.34

Emission (2006–2007) EDGARv4.2 Tg CH4 yr−1 1.04 1.37 1.48 0.50 0.09 0.58 0.21 4.40 0.88 5.27

Emission (2006–2007) UNFCCC Tg CH4 yr−1 0.99 1.36 1.20 0.48 0.08 0.44 0.14 4.04 0.66 4.70

Emission range UNFCCC Tg CH4 yr−1 0.66–1.32 1.15–1.58 0.98–1.42 0.39–0.58 0.07–0.09 0.29–0.59 0.11–0.17 3.17–4.91 0.47–0.85 3.64–5.76

Relative uncertainty UNFCCC 33.4 % 15.8 % 18.7 % 20.3 % 13.3 % 34.4 % 20.5 % 21.5 % 29.0 % 22.6 %

Manure management (4B)

Emission (2005) EDGARv4.1 Tg CH4 yr−1 0.35 0.36 0.25 0.25 0.03 0.15 0.04 1.21 0.21 1.42

Emission (2006–2007) EDGARv4.2 Tg CH4 yr−1 0.35 0.35 0.25 0.25 0.03 0.14 0.03 1.20 0.20 1.40

Emission (2006–2007) UNFCCC Tg CH4 yr−1 0.26 0.48 0.24 0.19 0.07 0.16 0.03 1.17 0.26 1.43

Emission range UNFCCC Tg CH4 yr−1 0.18–0.34 0.33–0.62 0.18–0.29 0.04–0.35 0.06–0.09 0.09–0.23 0.02–0.04 0.73–1.61 0.16–0.36 0.89–1.97

Relative uncertainty UNFCCC 31.3 % 30.4 % 24.9 % 80.4 % 24.0 % 44.6 % 34.0 % 37.8 % 37.7 % 37.8 %

Solid waste disposal on land (6A)

Emission (2005) EDGARv4.1 Tg CH4 yr−1 0.60 0.08 1.12 0.35 0.10 0.44 0.08 2.14 0.63 2.76

Emission (2006–2007) EDGARv4.2 Tg CH4 yr−1 0.51 0.34 1.07 0.28 0.11 0.33 0.15 2.20 0.58 2.78

Emission (2006–2007) UNFCCC Tg CH4 yr−1 0.76 0.48 0.84 0.25 0.15 0.39 0.20 2.32 0.73 3.06

Emission range UNFCCC Tg CH4 yr−1 0.38–1.14 0.00–0.96 0.44–1.24 0.16–0.34 0.10–0.19 0.04–0.73 0.06–0.35 0.97–3.67 0.20–1.27 1.17–4.94

Relative uncertainty UNFCCC 50.0 % 102.0 % 47.3 % 36.2 % 31.6 % 89.2 % 71.5 % 58.2 % 72.9 % 61.7 %

Waste water (6B)

Emission (2005) EDGARv4.1 Tg CH4 yr−1 0.17 0.19 0.12 0.13 0.03 0.09 0.09 0.60 0.21 0.82

Emission (2006–2007) EDGARv4.2 Tg CH4 yr−1 0.17 0.19 0,12 0.13 0.03 0.10 0.08 0.60 0.21 0.82

Emission (2006–2007) UNFCCC Tg CH4 yr−1 0.01 0.06 0.09 0.01 0.02 0.05 0.04 0.17 0.12 0.28

Emission range UNFCCC Tg CH4 yr−1 0.00–0.01 0.00–0.12 0.05–0.13 0.01–0.02 0.02–0.03 0.01–0.09 0.02–0.07 0.05–0.28 0.04–0.19 0.09–0.47

Relative uncertainty UNFCCC 75.0 % 104.4 % 49.9 % 45.4 % 36.1 % 88.1 % 52.6 % 68.8 % 64.2 % 66.9 %

total

total major categories EDGARv4.1 Tg CH4 yr−1 3.08 3.47 3.79 1.49 0.34 3.10 0.68 11.84 4.12 15.96

Total major categories EDGARv4.2 Tg CH4 yr−1 2.70 3.76 3.60 1.45 0.34 3.01 0.71 11.50 4.06 15.57

Total major categories UNFCCC Tg CH4 yr−1 2.51 2.43 2.76 1.00 0.42 1.68 0.67 8.70 2.77 11.47

Total all categories UNFCCC Tg CH4 yr−1 2.65 2.56 2.83 1.07 0.43 1.83 0.71 9.11 2.97 12.08

Total uncertainty UNFCCC Tg CH4 yr−1 0.52 0.55 0.47 0.21 0.07 0.44 0.15 1.68 0.63 2.27

Relative uncertainty UNFCCC 20.6 % 22.8 % 16.8 % 20.6 % 17.0 % 26.1 % 22.9 % 19.3 % 22.8 % 19.8 %

a Recovery from coal mines not included in EDGARv4.1. b Uncertainty of CH4 emissions from solid fuels in France not available.

is the use of different meteorology in NAME-INV (i.e. me-

teorology from the Met Office UM) and the other three mod-

els (using ECMWF meteorology, albeit different production

streams). In sensitivity experiments Manning et al. (2011)

found differences of ∼ 10–20 % (with different signs for dif-

ferent years) in derived emissions from the UK and north-

western Europe, when using ECMWF ERA-Interim instead

of Met Office UM meteorology. Hence, differences in the

applied meteorological data sets can have a significant im-

pact, but probably explain only part of the differences be-

tween NAME-INV and the other models.

In the case of S2–CH4, the difference in the CH4 emis-

sions attributed to European countries could be partly due

to the higher emissions allocated by NAME-INV to the sea

(Figs. 2 and 4). In the absence of any a priori constraint,

NAME-INV allocates 4.5–4.9 TgCH4 yr−1 over the Euro-

pean seas (of which ∼ 1 TgCH4 yr−1 over the North Sea),

while sea emissions are largely suppressed in TM5-4DVAR

and TM3-STILT in S2–CH4 (< 0.2 TgCH4 yr−1 over the Eu-

ropean seas). In the case of S1–CH4, the range of CH4 emis-

sions attributed to the sea by the different models is gener-

ally much smaller, 0.6–2.2 Tg CH4 yr−1, due to a priori con-

straints.

In this study we use the same country mask (from

EDGAR) for all models to enable a consistent comparison

among all models. This country mask accounts only for emis-

sions over land (in the case of coastal grid-cells, the total

emissions of this grid-cell are attributed to the land). In con-

trast, previous NAME-INV inversion studies used different

country masks, taking into account also offshore emissions

at some further distance from the coastlines (Manning et al.,

2011).

Atmos. Chem. Phys., 15, 715–736, 2015 www.atmos-chem-phys.net/15/715/2015/



P. Bergamaschi et al.: Top-down estimates of European CH4 and N2O emissions 725

Figure 2. European CH4 emissions (average 2006–2007, inversion S2–CH4). Filled circles are measurement stations with quasi-continuous

measurements; open circles are discrete air sampling sites.

Table 7. Bias of quasi-continuous N2O measurements. “CM-FM” denotes the annual average bias between quasi-continuous N2O measure-

ments and NOAA discrete air samples (using measurements coinciding within 1 h, and the additional condition that the quasi-continuous

measurements show low variability (max 0.3 ppb) within a 5 h time window; mean± 1 σ in units of ppb; n: number of coinciding mea-

surements). The columns “TM5–4DVAR” and “ LMDZ-4DVAR” give the bias corrections (vs. NOAA flask samples) calculated by the

models for inversion S1 (for TM5-4DVAR calculated separately for 2006 and 2007, while LMDZ-4DVAR calculated the average bias over

2006–2007).

Station CM-FM TM5-4DVAR CM-FM TM5-4DVAR LMDZ-4DVAR

2006 2006 2007 2007 2006–2007

PAL 0.50± 0.33 (n= 32) 0.46 0.31± 0.40 (n= 40) 0.26 0.53

SIS 0.51 0.64 0.66

TT1 0.86 1.04 0.91

MHD 0.09± 0.29 (n= 28) −0.06 0.35± 0.53 (n= 31) 0.06 0.13

BI5 0.27 0.21 0.19

CB3 0.31 0.59 0.70

OX3 1.07 (n= 1) 1.29 0.73± 0.21 (n= 3) 1.23 1.35

SIL 0.48 0.17 0.54

HU1 0.37± 0.83 (n= 12) 0.38 0.58 (n= 1) 0.39 0.26

JFJ −0.41 −0.23 −0.26

It is important to note that the inverse modelling estimates

the total of the anthropogenic and natural emissions. Accord-

ing to the bottom-up inventories applied in our study, how-

ever, it is estimated that natural CH4 emissions play only

a minor role for the countries considered here (shown by the

dashed/dotted lines in Figs. 3 and 4). This is important when

comparing the CH4 emissions derived by the inverse models

with anthropogenic CH4 emissions reported to the UNFCCC

(shown by black lines in Fig. 3). The range of CH4 emissions

estimated by the inverse models overlaps for most coun-

tries with the uncertainty range of the UNFCCC emissions.

Nevertheless, there is a clear tendency to higher CH4 emis-

sions derived by three of the inverse models (TM5-4DVAR,

LMDZ-4DVAR, TM3-STILT) compared to UNFCCC, while

NAME-INV is in most cases close to UNFCCC. For compar-

ing different approaches, realistic uncertainty estimates are
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Figure 3. European CH4 emissions by country and aggregated region. For each year, the left yellow box shows the results for inversion S1–

CH4, and the right yellow box for S2–CH4. The grey-shaded area is the range of UNFCCC CH4 emissions (based on reported uncertainties,

as compiled in Table 6).
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Figure 3. European CH4 emissions by country and aggregated region. For each year, the left yellow box shows the results for inversion S1–
CH4, and the yellow right box for S2–CH4. The grey-shaded area is the range of UNFCCC CH4 emissions (based on reported uncertainties,
as compiled in Table 6).

Figure 4. CH4 emissions over European seas. Left: total CH4 emissions between 35◦ and 62◦ N, and 12◦ W and 35◦ E, representing the
largest common domain of all models; right: total CH4 emissions over the North Sea.

Figure 4. CH4 emissions over European seas. Left: total CH4 emissions between 35◦ and 62◦ N, and 12◦W and 35◦ E, representing the

largest common domain of all models; right: total CH4 emissions over the North Sea.
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Figure 5. Comparison of modeled and observed CH4 at stations: correlation coefficients (top) and root mean square (RMS) differences
(bottom) for inversion S1–CH4. “All” denotes the mean correlation coefficient and RMS difference, averaged over those stations, for which
results were available from all models.

Figure 6. GEOMON aircraft profile measurements of CH4 at Griffin (Scotland), Orleans (France), and Hegyhatsal (Hungary) used for
validation of atmospheric models. The figure shows the average over all available measurements (black crosses) during 2006–2007 and
average of corresponding model simulations (filled colored symbols; for NAME-INV only a subset of aircraft profiles had been provided).
The open colored circles show the calculated background mixing ratios applied for the limited domain model NAME-INV and STILT, based
on the method of Rödenbeck et al. (2009).

Figure 5. Comparison of modelled and observed CH4 at stations: correlation coefficients (top) and rms differences (bottom) for inversion

S1–CH4. “All” denotes the mean correlation coefficient and rms difference, averaged over those stations, for which results were available

from all models.

essential to evaluate their consistency. Under the UNFCCC,

European countries report uncertainty estimates for individ-

ual source categories, taking account of uncertainty estimates

for activity data and for emission factors (both for CH4 and

for N2O usually the latter is the dominant term). Since un-

certainties of total emissions are usually not reported, we

estimate these assuming that the uncertainties of different

IPCC/UNFCCC source categories are uncorrelated (but fully

correlated for sub-categories). Furthermore, we assume cor-

related errors when aggregating individual source categories

from different countries (as different countries usually apply

similar approaches). Table 6 shows the UNFCCC uncertainty

estimates for the six major CH4 source categories and our de-

rived estimates of the total uncertainty per country (and ag-

gregated countries). Overall the estimated total uncertainties

are surprisingly low: between 17 and 26 % for the countries

considered and about 20 % for the total CH4 emissions of all

north-western and eastern European countries.

Table 6 also includes the CH4 emission estimates from

EDGARv4.1 for 2005 (used as a priori in the inversion)

and EDGARv4.2 for 2006–2007 (which became available

after completion of the inversions in this study). Over-

all the numbers for EDGARv4.1 (2005) and EDGARv4.2

for 2006–2007 are very similar (total of north-western and

eastern European countries (denoted “NWE+NEE”): 16.0

and 15.6 TgCH4 yr−1, respectively); smaller differences are

due to several updates in EDGARv4.2 and to small trends

between 2005 and 2006–2007. Comparison of UNFCCC

emissions with EDGARv4.2 shows overall good consis-

tency for enteric fermentation, manure management and

solid waste, for which the EDGARv4.2 estimates are for

most countries within the uncertainty range of the UN-

FCCC emissions (Table 6). However, there are consider-

able differences, in particular for solid fuels (i.e. coal min-

ing) and oil and natural gas, for which EDGARv4.2 es-

timates 1.4 and 1.9 TgCH4 yr−1 higher emissions, respec-

tively, for the NWE+NEE total than UNFCCC. For sin-

gle countries, the largest differences are for solid fuels from

Poland (EDGARv4.2: 1.71 (0.29–3.21) TgCH4 yr−1; UN-

FCCC: 0.43 (0.22–0.64) TgCH4 yr−1) and oil and natural gas

from France (EDGARv4.2: 1.49 TgCH4 yr−1; UNFCCC:

0.05 (0.04–0.06) TgCH4 yr−1). Since uncertainty estimates

are not standardly available for each sector and country in

EDGARv4.2, a strict comparison cannot be made. However,

the large differences between the two bottom-up estimates

highlight the large uncertainties for fugitive emissions related

to production (and transmission/distribution) of fossil fuels.

For TM5-4DVAR, LMDZ-4DVAR and TM3-STILT, the

derived emissions are in general closer to the total emissions

from EDGARv4.2 than those from UNFCCC, while NAME-

INV, as already mentioned, is relatively close to UNFCCC.

Our inverse modelling estimates of the total emissions per

country do not account for offshore emissions. According

to EDGARv4.2, about 0.8 TgCH4 yr−1 is emitted offshore

over the European seas (mainly from oil and gas production),

while natural CH4 emissions of about 0.4 TgCH4 yr−1 over

the European seas are estimated from our bottom-up inven-

tories (total between 35◦ and 62◦ N and between 12◦W and

35◦ E; see Fig. 4). For comparison, Bange (2006) estimates

natural CH4 emissions from European coastal areas to be in

the range 0.5 to 1.0 TgCH4 yr−1 (including the Arctic Ocean,

Baltic Sea, North Sea, northeastern Atlantic Ocean, Mediter-

ranean Sea and Black Sea).
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Figure 5. Comparison of modeled and observed CH4 at stations: correlation coefficients (top) and root mean square (RMS) differences
(bottom) for inversion S1–CH4. “All” denotes the mean correlation coefficient and RMS difference, averaged over those stations, for which
results were available from all models.

Figure 6. GEOMON aircraft profile measurements of CH4 at Griffin (Scotland), Orleans (France), and Hegyhatsal (Hungary) used for
validation of atmospheric models. The figure shows the average over all available measurements (black crosses) during 2006–2007 and
average of corresponding model simulations (filled colored symbols; for NAME-INV only a subset of aircraft profiles had been provided).
The open colored circles show the calculated background mixing ratios applied for the limited domain model NAME-INV and STILT, based
on the method of Rödenbeck et al. (2009).

Figure 6. CarboEurope aircraft profile measurements of CH4 at Griffin (Scotland), Orléans (France) and Hegyhatsal (Hungary) used for

validation of atmospheric models. The figure shows the average over all available measurements (black crosses) during 2006–2007 and

average of corresponding model simulations (filled coloured symbols; for NAME-INV only a subset of aircraft profiles had been provided).

The open circles show the calculated background mixing ratios applied for the limited domain model NAME-INV and STILT, based on the

method of Rödenbeck et al. (2009).

The statistics of the assimilated observations are summa-

rized in Fig. 5. Overall, all the models show relatively similar

performance, with an average correlation coefficient between

0.7 and 0.8 and an average root mean square (rms) differ-

ence between observed and assimilated CH4 mixing ratios

between ∼ 25 and ∼ 35 ppb.

All models have been validated against regular aircraft

profiles performed within the CarboEurope project at three

European monitoring sites (Fig. 6). These aircraft data have

not been used in the inversion. However, for two aircraft

sites (Griffin, Scotland and Hegyhatsal, Hungary) the cor-

responding surface observations have been assimilated (tall

towers Angus (TT1) and Hegyhatsal (HU1)), while the sur-

face observations at Orléans (France) were not used (since

they started only in 2007), but the observations from Gif-

sur-Yvette, about 100 km north of Orléans, were included.

Hence, while surface mixing ratios are well constrained at

these three aircraft sites, the comparison of observed and

modelled vertical gradients allows the model-simulated ver-

tical transport to be validated, which is of critical impor-

tance to the inversions. Figure 6 shows that all models re-

produce the average observed vertical gradient in the lower

troposphere relatively well, indicating overall realistic verti-

cal mixing.

4.2 Inverse modelling of European N2O emission

Figures 7 and 8 show maps of derived N2O emissions (av-

erage 2006–2007) for inversions S1–N2O and S2–N2O, re-

spectively. European N2O emissions are dominated by agri-

cultural soils. Furthermore, N2O emissions from the chemi-

cal industry represent strong point sources, which are clearly

visible in the a priori emission inventory.

In general, the four models show a relatively consistent

picture for S1–N2O, with moderate N2O emission incre-

ments on larger regional scales, while largely preserving the

spatial “fine structure” of the a priori emission inventory. As

for S1–CH4, however, NAME-INV, yields lower N2O emis-

sions than TM5-4DVAR, LMDZ-4DVAR and TM3-STILT.

In Fig. 8, the three available free N2O inversions for

S2–N2O consistently show elevated N2O emissions over

Benelux, but none derive the chemical industry hotspots. For

S2–N2O, the N2O emissions attributed to the sea by NAME-

INV are significantly larger (0.26–0.31 TgN2Oyr−1; Fig. 10)

than in S1–N2O (0.06–0.07 TgN2Oyr−1), while they remain

relatively low in TM5-4DVAR and TM3-STILT (due to the

a priori assumption of low emissions over the sea compared

to land in these two inversions, which suppresses the attri-

bution of emissions to the sea). Independent studies about

N2O emissions from European seas provide very different

estimates. Bange (2006) estimated a net source of N2O to

the atmosphere of 0.33–0.67 TgNyr−1 (equivalent to 0.52–

1.05 TgN2Oyr−1), using measured N2O saturations of sur-

face waters and air–sea gas exchange rates based on Liss

and Merlivat (1986) and Wanninkhof (1992). Bange (2006)

attributes the major contribution to estuarine/river systems

and not to open shelf areas. In contrast, Barnes and Upstill-

Goddard (2011) estimate only 0.007 ± 0.013 TgN2Oyr−1

for European estuarine N2O emissions, claiming that mean

N2O saturation and mean wind speed for European estuaries

might be overestimated in the study of Bange (2006).

Figure 9 shows the total N2O emissions per country de-

rived by the different inversions, and their comparison with

UNFCCC bottom-up inventories. Similar to CH4, the contri-

bution of natural N2O emissions (derived from the bottom-

up inventories of natural N2O sources compiled in Table 4)
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Figure 7. European N2O emissions (average 2006–2007, inversion S1–N2O). Filled circles are measurement stations with quasi-continuous

measurements, and open circles discrete air sampling sites.

Figure 8. European N2O emissions (average 2006–2007, inversion S2–N2O). Filled circles are measurement stations with quasi-continuous

measurements, and open circles discrete air sampling sites.
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Figure 9. European N2O emissions by country and aggregated region. For each year, the left yellow box shows the results for inversion S1–

N2O, and the right yellow box for S2–N2O. The grey-shaded area is the range of UNFCCC N2O emissions (based on reported uncertainties,

as compiled in Table 8; note that for some countries the UNFCCC range exceeds the scale of figures).

P. Bergamaschi et al.: Top-down estimates of European CH4 and N2O emissions 25

Figure 10. N2O emissions over European seas. Left: total N2O emissions between 35◦ and 62◦ N, and 12◦ W and 35◦ E, representing the
largest common domain of all models; right: total N2O emissions over the North Sea.

Figure 10. N2O emissions over European seas. Left: total N2O emissions between 35◦ and 62◦ N, and 12◦W and 35◦ E, representing the

largest common domain of all models; right: total N2O emissions over the North Sea.
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Table 8. N2O emissions from EDGARv4.1, EDGARv4.2 and UNFCCC for major N2O source categories. For the UNFCCC emissions,

the reported relative uncertainties (2σ ) per country and category and corresponding emission ranges are also compiled. Total uncertainties

per country (or aggregated countries) are estimated from the reported uncertainties per category assuming no correlation between different

UNFCCC categories (but correlated errors for sub-categories). “NWE” is the total of the north-western European countries Germany, France,

UK, Ireland and Benelux. “NEE” is the total of the eastern European countries Hungary, Poland, Czech Republic (CZE) and Slovakia (SVK).

Germany France UK+ Ireland Benelux Hungary Poland CZE+SVK NWE NEE NWE+NEE

1A Fuel combustion

Emission (2005) EDGARv4.1 Tg N2O yr−1 0.019 0.012 0.010 0.006 0.001 0.013 0.013 0.046 0.026 0.073

Emission (2006–2007) EDGARv4.2 Tg N2O yr−1 0.018 0.011 0.010 0.005 0.001 0.012 0.006 0.044 0.020 0.063

Emission (2006–2007) UNFCCC Tg N2O yr−1 0.017 0.015 0.017 0.004 0.001 0.006 0.004 0.052 0.011 0.063

Emission range UNFCCC Tg N2O yr−1 0.012–0.021 0.009–0.021 0.001–0.046 0.001–0.011 0.000–0.001 0.005–0.008 0.001–0.008 0.023–0.098 0.006–0.017 0.029–0.115

Relative uncertainty UNFCCC 26.2 % 41.2 % 95.3–176.7 % 73.6–162.7 % 71.2 % 22.7 % 76.3 % 56.2–89.3 % 47.1 % 54.6–81.7 %

2B Chemical industry

Emission (2005) EDGARv4.1 Tg N2O yr−1 0.051 0.027 0.015 0.027 0.006 0.020 0.008 0.120 0.034 0.154

Emission (2006–2007) EDGARv4.2 Tg N2O yr−1 0.040 0.026 0.017 0.046 0.006 0.024 0.010 0.128 0.040 0.169

Emission (2006–2007) UNFCCC Tg N2O yr−1 0.031 0.019 0.008 0.025 0.004 0.015 0.008 0.083 0.026 0.109

Emission range UNFCCC Tg N2O yr−1 0.027–0.034 0.017–0.021 0.000–0.017 0.019–0.031 0.004–0.004 0.011–0.019 0.007–0.009 0.063–0.103 0.021–0.032 0.084–0.135

Relative uncertainty UNFCCC 11.1 % 10.2 % 100.0–100.4 % 24.5 % 2.2 % 29.5 % 13.9 % 23.8 % 21.1 % 23.2 %

4B Manure management

Emission (2005) EDGARv4.1 Tg N2O yr−1 0.009 0.008 0.004 0.004 0.001 0.004 0.001 0.025 0.007 0.032

Emission (2006–2007) EDGARv4.2 Tg N2O yr−1 0.009 0.008 0.004 0.004 0.001 0.004 0.001 0.025 0.006 0.031

Emission (2006–2007) UNFCCC Tg N2O yr−1 0.009 0.016 0.007 0.006 0.003 0.018 0.004 0.038 0.025 0.063

Emission range UNFCCC Tg N2O yr−1 0.004–0.016 0.008–0.024 0.000–0.033 0.000–0.011 0.000–0.006 0.000–0.045 0.002–0.006 0.012–0.083 0.002–0.057 0.014–0.140

Relative uncertainty UNFCCC 60.8-69.1 % 50.2 % 100.0–349.6 % 94.4–94.6 % 100.0–100.3 % 100.0–148.9 % 54.7–54.9 % 68.9–119.1 % 93.2–129.2 % 78.5–123.1 %

4D Agricultural soils

Emission (2005) EDGARv4.1 Tg N2O yr−1 0.086 0.098 0.077 0.025 0.012 0.052 0.013 0.285 0.077 0.363

Emission (2006–2007) EDGARv4.2 Tg N2O yr−1 0.084 0.096 0.075 0.025 0.012 0.050 0.013 0.280 0.075 0.355

Emission (2006–2007) UNFCCC Tg N2O yr−1 0.129 0.155 0.111 0.035 0.017 0.056 0.022 0.431 0.095 0.525

Emission range UNFCCC Tg N2O yr−1 0.036–0.337 0.000–0.565 0.002–0.509 0.005–0.091 0.000–0.064 0.022–0.091 0.007–0.037 0.043–1.502 0.029–0.193 0.072–1.695

Relative uncertainty UNFCCC 72.1–160.6 % 100.0–264.9 % 98.1–358.0 % 87.1–158.3 % 100.0–284.2 % 61.5 % 65.7–72.3 % 90.1–248.9 % 69.3–103.3 % 86.3–222.6 %

6B Waste water

Emission (2005) EDGARv4.1 Tg N2O yr−1 0.007 0.006 0.005 0.002 0.001 0.003 0.001 0.020 0.005 0.025

Emission (2006–2007) EDGARv4.2 Tg N2O yr−1 0.007 0.006 0.006 0.002 0.001 0.003 0.001 0.020 0.005 0.025

Emission (2006–2007) UNFCCC Tg N2O yr−1 0.008 0.003 0.004 0.002 0.001 0.004 0.001 0.017 0.005 0.023

Emission range UNFCCC Tg N2O yr−1 0.007–0.009 0.000–0.006 0.000–0.020 0.001–0.004 0.000–0.010 0.002–0.005 0.000–0.001 0.008–0.039 0.002–0.017 0.010–0.056

Relative uncertainty UNFCCC 13.8 % 100.0–104.4 % 91.1–361.1 % 70.8–75.3 % 100.0–1000.0 % 52.2 % 54.4 % 55.2–122.1 % 61.0–218.9 % 56.5–145.0 %

total

total major categories EDGARv4.1 Tg N2O yr−1 0,172 0,150 0,112 0,064 0,021 0,092 0,036 0,497 0,149 0,646

Total major categories EDGARv4.2 Tg N2O yr−1 0.158 0.147 0.111 0.082 0.021 0.094 0.031 0.497 0.146 0.643

Total major categories UNFCCC Tg N2O yr−1 0.194 0.207 0.147 0.072 0.025 0.099 0.038 0.621 0.163 0.784

Total all categories UNFCCC Tg N2O yr−1 0.197 0.209 0.148 0.074 0.026 0.100 0.040 0.627 0.166 0.793

Relative uncertainty UNFCCC 48.3–107.3 % 75.0–198.2 % 75.1–271.3 % 43.9–78.1 % 67.5–192.7 % 39.8–44.6 % 38.6–42.2 % 62.9–173.0 % 43.0–63.8 % 58.5–149.8 %

is estimated to be rather small for the European countries

analysed here. Given the large uncertainty of the UNFCCC

inventories, the N2O emissions derived by the inverse mod-

els are surprisingly close to the UNFCCC values and the

range from all models is well within the UNFCCC uncer-

tainty range for all countries (or aggregated countries). The

uncertainty in the UNFCCC emissions is generally domi-

nated by the uncertainty in the N2O emissions from agricul-

tural soils, for which several countries estimate uncertainties

well above 100 % (UK estimate: 424 %). For our estimate of

the total uncertainty from the reported uncertainties per cat-

egory (see Table 8), we take account of the non-symmetric

nature of errors above 100 %, assuming zero emissions for

the specific category as the lowermost boundary for any rel-

ative error larger than 100 %. Figure 9 shows that the range

of the inverse modelling estimates is much smaller than the

UNFCCC uncertainty range for most countries (including the

total emissions from north-western and eastern Europe). This

finding is consistent with the analysis of error statistics of

bottom-up inventories by Leip (2010), suggesting that the

current UNFCCC uncertainty estimates of N2O bottom-up

emission inventories are likely too high.

It is important to note, however, that significant biases in

N2O measurements exist between different laboratories that

require corrections (Table 7). The bias corrections calculated

by TM5-4DVAR and LMDZ-4DVAR are within ∼ 0.3 ppb

compared to the bias determined for those stations for which

parallel NOAA discrete air measurements are available (for

stations with at least 10 coinciding hourly measurements

per year). This is somewhat worse than the agreement of

0.1–0.2 ppb reported by Corazza et al. (2011) and may indi-

cate some limitations of the applied bias correction scheme,

which does not account for potential changes of the bias

within the inversion period (TM5-4DVAR: 1 year, LMDZ-

4DVAR: 2 years).

Figure 11 shows the correlation coefficients and rms dif-

ferences between (bias-corrected) observed and simulated

N2O mixing ratios at the monitoring stations used in inver-

sion S1–N2O. The mean correlation coefficients for the four

models are in the range between 0.6 and 0.7 (averaged over

all stations), which is somewhat lower than for CH4 (aver-

age correlation coefficients between 0.7 and 0.8; Fig. 5). This

is probably mainly due to the lower atmospheric N2O vari-

ability compared to CH4, but may be partly also due to the

mentioned limitations of the quality of the N2O data.
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Figure 10. N2O emissions over European seas. Left: total N2O emissions between 35◦ and 62◦ N, and 12◦ W and 35◦ E, representing the
largest common domain of all models; right: total N2O emissions over the North Sea.

Figure 11. Comparison of modeled and observed N2O at stations: correlation coefficients (top) and root mean square (RMS) differences
(bottom) for inversion S1–N2O (after bias correction of observations). “All” denotes the mean correlation coefficient and RMS difference,
averaged over those stations, for which results were available from all models.

Figure 11. Comparison of modelled and observed N2O at stations: correlation coefficients (top) and rms differences (bottom) for inversion

S1–N2O (after bias correction of observations). “All” denotes the mean correlation coefficient and rms difference, averaged over the stations

for which results were available from all models.

5 Conclusions

We estimated European CH4 and N2O emissions for 2006

and 2007 using four different inverse modelling systems that

were constrained by quasi-continuous observations from var-

ious European monitoring stations (including five tall tow-

ers), complemented by further European and global discrete

air sampling sites. Although the range of CH4 emissions esti-

mated by the inverse models overlaps for most countries with

the uncertainty range of the UNFCCC emissions, three of

four models show a clear tendency to higher emissions com-

pared to the anthropogenic emissions reported under UN-

FCCC for the total of north-western and eastern European

countries (range of TM5-4DVAR, LMDZ-4DVAR and TM3-

STILT after correction for natural sources 26–56 % higher

than UNFCCC), while NAME-INV yields estimates of coun-

try totals very close to UNFCCC. This analysis suggests that

(1) CH4 emissions reported to UNFCCC could be underes-

timated for some of the European countries analysed in this

study, or (2) natural CH4 emissions are underestimated, or (3)

atmospheric models may have significant biases. Although

the flux inversions do not allow direct conclusions about spe-

cific source categories, the comparison between UNFCCC

and EDGARv4.2 shows the critical importance of fugitive

emissions from fossil fuels (coal mining, oil production, and

production, transmission and distribution of natural gas), for

which large differences are apparent between UNFCCC and

EDGARv4.2 inventories, outside the estimated UNFCCC

uncertainties for some countries. In addition, it is important

that natural CH4 emissions are better quantified in the future,

especially CH4 from wetlands and wet soils. Isotope analy-

sis (δ13C and δD) could provide some additional information

on the relative contribution of different sources; however, the

constraints on the European scale might be limited by over-

lapping isotopic signatures of the sources.

Furthermore, the transport models need better validation.

Although the presented validation against independent air-

craft CH4 observations suggests that vertical mixing is re-

alistically modelled overall, we emphasize the need to ex-

tend this validation to more sites and to include further diag-

nostics such as 222Rn and boundary layer height dynamics.

These are currently being investigated in more detail in the

framework of the InGOS (“Integrated Non-CO2 Greenhouse

Gas Observing System”; http://www.ingos-infrastructure.

eu/) project. In addition, it would be useful to include more

models in future comparisons to allow more robust estimates

of the “inter-model” uncertainties.

The N2O emissions derived by the inverse models are in

general very close to the UNFCCC values, with the range

of the inverse modelling estimates being much smaller than

the UNFCCC uncertainty range for most countries. This

finding suggests that atmospheric observations and inverse

modelling can probably constrain N2O emissions better than

bottom-up approaches, and/or that UNFCCC uncertainties

(which are dominated by the uncertainties for N2O emis-

sions from agricultural soils) might be overestimated. How-

ever, we emphasize the limitations of the atmospheric N2O

data set used (with biases between different laboratories ex-

ceeding the WMO compatibility goal of±0.1 ppb), which re-

quired significant bias corrections. A major effort is currently

being undertaken within the InGOS project to improve and

harmonize the European N2O measurements, which should

improve N2O inversions in the future. A fundamental chal-
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lenge for the atmospheric measurements of N2O, however,

remains the generally much lower signal in N2O compared

to CH4, owing to lower N2O emissions and the long atmo-

spheric lifetime of N2O (∼ 130 years compared to ∼ 9 years

for CH4, Prather et al., 2012).

This study demonstrates the general feasibility of indepen-

dent top-down verification of bottom-up inventories. This is

particularly important for CH4 and N2O because of the large

uncertainties (and variability) of emission factors for major

CH4 and N2O source categories. Future, post-Kyoto inter-

national agreements on reductions of GHG emissions would

strongly benefit from comprehensive and independent verifi-

cation to monitor the effectiveness of the emission reduction

measures and to ensure the reliability of the reported emis-

sions. However, the application of inverse modelling in this

context requires high-quality long-term monitoring of GHGs

in the atmosphere with increased density of the monitoring

stations, improved atmospheric transport models, and a re-

alistic quantification of uncertainties, in both bottom-up and

top-down emission estimates.
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