

Supplement of

The role of organic condensation on ultrafine particle growth during nucleation events

D. Patoulias et al.

Correspondence to: S. N. Pandis (spyros@chemeng.upatras.gr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Supplementary material

FABLE S1. Major compounds for each lumpe	d VOC within SAPRC99	(Tsimpidi et al., 2010).
---	----------------------	--------------------------

Species	Major Components	Type of source	V-SOA
			precursors
ALK1	Ethane, Methyl Formate	Anthropogenic	No
ALK2	Propane, Cyclobutane, Ethyl Formate, Methyl Acetate	Anthropogenic	No
ALK3	n-Butane, Ethanol, Isobutane, Dimethyl, Butane,	Anthropogenic	No
	Dimethyl Pentane		
ALK4	n-Pentane, n-Hexane, Branched C5-C6, Alkanes,	Anthropogenic	Yes
	Cyclopetane, Trimethyl Butane, Trimethyl Pentane,		
	Isopropyl Alcohol, n-Propyl Alcohol		
ALK5	C7-C22 n-Alkanes, C6-C16 Cycloalkanes,	Anthropogenic	Yes
	Branched/Unspeciated C8-C18 Alkanes		
OLE1	Propene, C4-C15 Terminal Alkenes	Anthropogenic	Yes
OLE2	Isobutene, C4-C15 Internal Alkenes, C6-C15 Cyclic	Anthropogenic	Yes
	or di-olefins, Styrenes		
ARO1	Toluene, Benzene, Ethyl Benzene, C9-C13	Anthropogenic	Yes
	Monosubstituted Benzenes		
ARO2	Xylenes, Ethyl Toluenes, Dimethyl and Trimethyl	Anthropogenic	Yes
	Benzenes, Ethylbenzenes, Naphthalene, C8-C13 Di-,		
	Tri-, Tetra-, Penta-, Hexa-substituted Benzenes,		
	Unspeciated C10-C12 Aromatics		
TERP	α-pinene, β-pinene, Limonene, Carene, Sabinene,	Biogenic	Yes
	other monoterpenes		
ISOP	Isoprene	Biogenic	Yes
SESQ	Sesquiterpenes	Biogenic	Yes

FIGURE S1: (a) Predicted aerosol dry size distribution during a typical spring day with a nucleation event at Finokalia without condensation of organics. Particle number concentration is plotted against time of day (x-axis) and particle diameter (y-axis). **(b)** Predicted composition of new particles.

FIGURE S2: Predicted composition of organic aerosol in the new particles for different effective saturation concentrations with $\sigma = 0.025$ N m⁻¹ at Hyytiala.

FIGURE S3: Simulation with surface tension of 0.025 N m⁻¹ at Finokalia: (a) predicted particle size distribution and (b) the composition of nucleated particles.

FIGURE S4: Predicted composition of organic aerosol in the new particles for different effective saturation concentrations with $\sigma = 0.025$ N m⁻¹ at Finokalia.

FIGURE S5: Simulation with condensation of organics neglecting the Kelvin effect and without the chemical aging of bSOA precursors at Hyytiala: (a) predicted aerosol dry size distribution and (b) composition of nucleated particles.

FIGURE S6: Predicted composition of organic aerosol in the new particles for different effective saturation concentrations with zero surface energy and without the chemical aging of bSOA precursors at Hyytiala.

FIGURE S7: Simulation with condensation of organics neglecting the Kelvin effect and without the chemical aging of bSOA precursors at Finokalia as function of local time: (a) predicted particles size distribution and (b) the composition of nucleated particles.

FIGURE S8: Predicted composition of organic aerosol in the new particles for different effective saturation concentrations with zero surface energy and without the chemical aging of bSOA precursors at Finokalia.

FIGURE S9: Predicted concentrations of (a) N₃ and (b) N₁₀₀ at Finokalia for the four simulated cases. Black line represents no condensation of organics, red is with condensation of organics with $\sigma = 0.0$ N m⁻¹, blue is with condensation of organics with $\sigma = 0.025$ N m⁻¹ and green is condensation of organics with aging reactions of bSOA precursors and σ =0.025 N m⁻¹.