

Supplement of

Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010

P. L. Hayes et al.

Correspondence to:

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table SI-1. The VOC parameters used to model the formation of SOA (Atkinson and Arey, 2003; Carter, 2010; Tsimpidi et al., 2010). All aging of VOCs after the initial oxidation reaction occurs with a gas-phase rate constant of $k_{OH} = 1 \times 10^{-11}$ cm³ molec⁻¹ s⁻¹. Note that the aging rate constant was erroneously reported as 4×10^{-11} cm³ molec⁻¹ s⁻¹ in Tsimpidi et al. All SOA from VOCs has a ΔH_{vap} of

 36 kJ mol^{-1} (Volkamer et al., 2006).

Precursor	Compounds k _{oH}	k _{oH}	ΔVOC/ΔCO	Stoichiometric SOA yield High NO 208 K (ug m ⁻³)				M.W.
Family Name Compounds		$(cm^{3}molec^{-1}s^{-1})$	(ppt ppb ⁻¹)	1 10 100 1000		$(\mathbf{g} \mathbf{mol}^{-1})$		
	Madlandana 1	-12	0.5((1	10	100	1000	
	Methylcyclopentane	5.68×10	0.566	-				
	Cyclohexane	6.97×10^{-12}	0.285					
	Methylcyclohexane	9.64×10^{-12}	0.202					
	n-Heptane	6.76×10^{-12}	0.398					
	2-Methyl Hexane	6.89×10^{-12}	0.385					
	3-Methyl Hexane	7.17×10^{-12}	0.460	0.000 0.015				
	2,3-Dimethyl Pentane	7.15×10^{-12}	0.252					
	2,4-Dimethyl Pentane	4.77×10^{-12}	0.171			0.000	0.000	150
	2,2,3-Trimethyl Butane	3.81×10^{-12}	0.031		0.015			
ALKJ	N-Octane	8.11×10^{-12}	0.197		0.000	0.000	150	
	3-Methyl Heptane	8.59×10^{-12}	0.131					
	2-Methyl Heptane	8.31×10^{-12}	0.171					
	2,2,4-Trimethyl Pentane	3.34×10^{-12}	0.476					
	2,3,4-Trimethyl Pentane	6.60×10^{-12}	0.171					
	2,3,3-Trimethyl Pentane	4.40×10^{-12}	0.194					
	N-Nonane	9.70×10^{-12}	0.220					
	N-Decane	11.0×10^{-12}	0.180					
	Undecane	12.3×10^{-12}	0.290					

25 Table SI-1 (continued).

Precursor	Compounds	k _{OH}	ΔVOC/ΔCO	Stoichiometric SOA yield High-NO 298 K (ug m ⁻³)				Molecular Weight
Family Name		(cm [°] molec ^{°1} s ^{°1})	(ppt ppb ⁻¹)	1	$10^{-100} x^{-100} x^{-100}$	100 K, (µg	1000	(g mol)
	Propene	26.3×10^{-12}	3.740				0.150	120
	1-Butene	31.4×10^{-12}	0.340					
OLE1	1-Pentene	31.4×10^{-12}	0.112	0.001	0.005	0.038		
	2-methyl-1-butene	61.0×10^{-12}	0.250					
	3-methyl-1-butene	31.8×10^{-12}	0.058					
	1,3-Butadiene	66.6×10^{-12}	0.350			0.083	0.27	120
OLE2	trans-2-Pentene	67.0×10^{-12}	0.097	0.002	0.026			
OLE2	cis-2-Pentene	65.0×10^{-12}	0.050	0.003	0.020			
	Styrene	58.0×10^{-12}	0.220					
	Toluene	5.63×10^{-12}	3.180		0.165	0.300	0.435	150
	Ethylbenzene	7.00×10^{-12}	0.570					
ARO1	i-Propylbenzene	6.30×10^{-12}	0.030	0.003				
	n-Propylbenzene	5.80×10^{-12}	0.110					
	Benzene	1.22×10^{-12}	1.300					
	o-Ethyltoluene	9.57×10^{-12}	0.120		0.195	0.300	0.435	150
ARO2	1,2,3-Trimethylbenzene	11.9×10^{-12}	0.240					
	1,2,4-Trimethylbenzene	32.7×10^{-12}	0.620	0.002				
	1,3,5-Trimethylbenzene	32.5×10^{-12}	0.310	0.002				
	m-xylene	56.7×10^{-12}	1.790					
	p-xylene	23.1×10^{-12}	1.790					

26 Table SI-1 (continued).

Precursor Family Name	Compounds	$(\text{cm}^{3} \text{ molec}^{-1} \text{ s}^{-1})$	ΔVOC/ΔCO (ppt ppb ⁻¹)	Stoichiometric SOA yield High-NO _x , 298 K, (μg m ⁻³)			Molecular Weight	
				1	10	100	1000	(g mol [°])
NAPH	Naphthalene	24.4×10^{-12}	0.065					
	1-Methylnaphthalene	40.9×10^{-12}	0.01	0.165	0.005	0.516	0.881	150
	2-Methylnaphthalene	48.6×10^{-12}	0.021					
ISOP	Isoprene (Anthropogenic)	100×10^{-12}	N/A (see text)	0.001 0.022		0.015	0.000	126
	Isoprene (Biogenic)	100×10^{-12}	N/A (see text)	0.001	0.025	0.013	0.000	150
TERP	α-Pinene + β-Pinene + Limonene	98.2×10^{-12}	N/A (see text)	0.012	0.122	0.201	0.5	180

<i>c</i> * @ 300 K	ΔH_{vap}		Molecula	r Weight	Fraction of total P-S/IVOC	
(µg m ⁻³)	(kJ n	(kJ mol ⁻¹)		iol ⁻¹)	(%)	
ROB & GRI	ROB	GRI	ROB	GRI	ROB & GRI	
0.01	112	77	250	524	1.2	
0.1	106	73	250	479	2.4	
1	100	69	250	434	3.6	
10	94	65	250	389	5.6	
100	88	61	250	344	7.2	
1,000	82	57	250	299	12	
10,000	76	54	250	254	16	
100,000	70	50	250	208	20	
1,000,000	64	46	250	163	32	

Table SI-2. Summary of the Robinson et al. (2007) and the Grieshop et al. (2009) parameterizations for P-S/IVOCs.

	ROB	GRI
k_{OH} at 300 K (cm ³ molec ⁻¹ s ⁻¹)	4×10^{-11}	2×10^{-11}
Oxygen gain per oxidation generation (%)	7.5	40
Volatility bin decrease per oxidation generation	1 order of magnitude	2 orders of magnitude

Table SI-3. Initial concentrations of primary IVOCs predicted by the box model (ROB parameterization) in comparison with data

from Zhao et al. (2014) as a function of the saturation concentration (C*) at 298 K. Note that the corresponding results for the GRI

parameterization are very similar with the concentration being 8% higher due to differences in the ΔH_{vap} .

35				
	C* (µg m ⁻³)	Estimated Primary IVOCs (µg m ⁻³)	Estimated Primary IVOCs without cooking emissions (µg m ⁻³)	Measured Primary IVOCs (µg m ⁻³)
	10^{3}	2.47	1.70	0.21 (± 0.07)
	10^{4}	3.30	2.27	1.39 (± 0.29)
	10^{5}	4.12	2.84	2.64 (± 0.64)
	10 ⁶	6.59	4.54	3.82 (± 0.99)

Table SI-4. Summary of tracers used by the EPA group to determine the concentration of SOA from a certain precursor.

Tracer Molecule	Precursors	Reference
2-Methylglyceric acid	Isoprene	Edney et al. Atmos. Environ. 2005, 5281-5289.
2-Methylthreitol	Isoprene	Edney et al. Atmos. Environ. 2005, 5281-5289.
2-Methylerythritol	Isoprene	Edney et al. Atmos. Environ. 2005, 5281-5289.
3-Acetyl pentanedioic acid	Monoterpenes	Jaoui et al. Environ. Sci. Technol. 2005, 5661-5673.
3-Acetyl hexanedioic acid	Monoterpenes	Jaoui et al. Environ. Sci. Technol. 2005, 5661-5673.
3-Methyl-1,2,3-butanetricarboxylic acid	Monoterpenes	Szmigielski et al. J. Geophys. ResAtmos. 2007, L24811.
3-Hydroxyglutaric acid	Monoterpenes	Claeys et al. Environ. Sci. Technol. 2005, 1628-1634.
3-Hydroxy-4,4-dimethylglutaric acid	Monoterpenes	Claeys et al. Environ. Sci. Technol. 2005, 1628-1634.
Pinic acid	Monoterpenes	Claeys et al. Environ. Sci. Technol. 2005, 1628-1634.

40 Figure Captions

41

Figure SI-1. The evolution of OA/ΔCO versus photochemical age for CalNex separated by cloudy days and mostly clear days. ΔCO is
calculated as the difference of the ambient CO and the background CO (105 ppb) (Hayes et al., 2013). The cloudy days are 17 and 27
May 2010, as well as 11 June 2010.

45

Figure SI-2. Model/measurement comparisons of the diurnal cycles for selected VOC mixing ratios as well as for POA mass concentrations. Note that for the VOCs the GRI+TSI, ROB+TSI, PYE+TSI, ROB+4xV model variations give the same results.

48

Figure SI-3. (Top) Scatter plots for naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene versus CO mixing ratios. Data includes only measurements from 00:00 – 06:00 (local time) to minimize the impact of photochemical oxidation on the PAH concentrations. Also shown in the top panels are the linear ODR analyses of the data with the y-intercept fixed at 105 ppb CO, which is the background CO concentration (Hayes et al., 2013). For more information on the methodology used to measure naphthalene and the methylnaphthalenes see Presto et al. (2011; 2012). (Bottom) Model and measurement diurnal cycles for naphthalene, 1methylnaphthalene, and 2-methylnaphthalene.

55

Figure SI-4. Anthropogenic CO fluxes on a 12 km grid in Southern California that are used in the WRF-Chem simulation. The box indicates the region around and inside LA where the emissions of atmospheric species are set to zero in order to determine the concentration of background SOA.

Figure SI-5. Model/measurement comparison of SOA mass concentrations after excluding from the model P-S/IVOC emissions, or in
 the case of the PYE+TSI variation, SVOC emissions from cooking-related activities. Otherwise the figure is identical to Figure 4 in
 the main text.

63

Figure SI-6: The estimated relative concentration of SOA from gasoline vehicles, diesel vehicles, cooking emissions, in-basin
 biogenic emissions, and the regional background.

66

Figure SI-7: Model/measurement comparison of SOA mass concentration after reducing the emission of IVOCs in the model by one half. Otherwise the figure is identical to Figure 4 in the main text.

69

Figure SI-8: Scatter plots of (**A**) benzene, (**B**) low-yield aromatic VOCs, and (**C**) high-yield aromatic VOCs measured by GC-MS against the concentration predicted by WRF-CMAQ. The low-yield aromatics correspond to the family ARO1 and the high-yield aromatics to the family ARO2 in Table SI-1. Also shown for reference are the 5:1, 1:1, and 1:5 lines. (**D**) SOA/ Δ CO as a function of photochemical age as determined by measurements (black circles) and predicted by WRF-CMAQ (red squares). The left and right axes are plotted on different scales for clarity. Photochemical age is determined from the ratio of NO_Y to NO_X (Hayes et al., 2013).

75

Figure SI-9: Time series of inorganic and organic aerosols at the Pasadena ground site during CalNex measured by an AMS or modeled by WRF-CMAQ. For SOA, the concentration was determined using positive matrix factorization analysis of the AMS measurements. The AMS measurements have a PM_1 size cut, and the WRF-CMAQ model results are the sum of the Aiken and accumulation modes, which corresponds to $PM_{2.5}$. (Note: In WRF-CMAQ all SOA species are assigned to the accumulation mode.)

- 80
- 81 Figure SI-10: Scatter plots of the inorganic aerosol measurements from an AMS against the modeled concentrations from WRF-
- 82 CMAQ. The data shown are the same as in Figure SI-9. Also shown are the corresponding linear ODR analyses and corresponding fit
- 83 parameters.

84 References

- Atkinson, R. and Arey, J. (2003) Atmospheric degradation of volatile organic compounds. Chem. Rev. 103, 4605-4638.
- 86 Carter, W.P.L. (2010) Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 44, 5324-5335.
- Grieshop, A.P., Logue, J.M., Donahue, N.M. and Robinson, A.L. (2009) Laboratory investigation of photochemical oxidation of
 organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution. Atmos. Chem. Phys. 9, 1263 1277.
- Hayes, P.L., Ortega, A.M., Cubison, M.J., Froyd, K.D., Zhao, Y., Cliff, S.S., Hu, W.W., Toohey, D.W., Flynn, J.H., Lefer, B.L.,
 Grossberg, N., Alvarez, S., Rappenglück, B., Taylor, J.W., Allan, J.D., Holloway, J.S., Gilman, J.B., Kuster, W.C., de Gouw,
 J.A., Massoli, P., Zhang, X., Liu, J., Weber, R.J., Corrigan, A.L., Russell, L.M., Isaacman, G., Worton, D.R., Kreisberg, N.M.,
 Goldstein, A.H., Thalman, R., Waxman, E.M., Volkamer, R., Lin, Y.H., Surratt, J.D., Kleindienst, T.E., Offenberg, J.H.,
 Dusanter, S., Griffith, S., Stevens, P.S., Brioude, J., Angevine, W.M. and Jimenez, J.L. (2013) Organic aerosol composition
 and sources in Pasadena, California during the 2010 CalNex campaign. J. Geophys. Res.-Atmos., 9233-9257.
- Presto, A.A., Hennigan, C.J., Nguyen, N.T. and Robinson, A.L. (2012) Determination of Volatility Distributions of Primary Organic
 Aerosol Emissions from Internal Combustion Engines Using Thermal Desorption Gas Chromatography Mass Spectrometry.
 Aerosol Sci. Technol. 46, 1129-1139.
- Presto, A.A., Nguyen, N.T., Ranjan, M., Reeder, A.J., Lipsky, E.M., Hennigan, C.J., Miracolo, M.A., Riemer, D.D. and Robinson,
 A.L. (2011) Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine. Atmos. Environ. 45, 3603-3612.
- Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pierce, J.R. and Pandis,
 S.N. (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259-1262.
- Tsimpidi, A.P., Karydis, V.A., Zavala, M., Lei, W., Molina, L., Ulbrich, I.M., Jimenez, J.L. and Pandis, S.N. (2010) Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area. Atmos.
 Chem. Phys. 10, 525-546.
- Volkamer, R., Jimenez, J.L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L.T., Worsnop, D.R. and Molina, M.J.
 (2006) Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res.
 Lett. 33, L17811.

Zhao, Y., Hennigan, C.J., May, A.A., Tkacik, D.S., de Gouw, J.A., Gilman, J.B., Kuster, W.C., Borbon, A. and Robinson, A.L. (2014)
 Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol. Environ. Sci. Technol. 48, 13743-13750.

