

Supplement of

Vapor wall deposition in Teflon chambers

X. Zhang et al.

Correspondence to: J. H. Seinfeld (seinfeld@caltech.edu)

1. Time-scale for gas-wall equilibrium partitioning

Eqs (S1) and (S2) describe the dynamic behavior of compound *i* in the gas phase ($\overline{C}_{v,i}$) and on chamber walls ($\overline{C}_{w,i}$), respectively.

$$\frac{d\overline{C}_{\rm v,i}}{dt} = -k_{\rm w,depo,i}\overline{C}_{\rm v,i} + k_{\rm w,evap,i}\overline{C}_{\rm w,i}$$
(S1)

$$\frac{dC_{\rm w,i}}{dt} = -k_{\rm w,evap,i}\overline{C}_{\rm w,i} + k_{\rm w,depo,i}\overline{C}_{\rm v,i}$$
(S2)

where $k_{w,depo,i}$ (s⁻¹) is the deposition rate coefficient to the wall and $k_{w,evap,i}$ (s⁻¹) is the evaporation rate coefficient from the wall. The relationship between these two parameters is

$$k_{\rm w,evap,i} = \frac{k_{\rm w,depo,i}}{K_{\rm w,i}C_{\rm w}}$$
(S3)

where C_w is the total mass of equivalent absorbing organic material on the chamber walls, and $K_{w,i}$ is the gas-wall partition coefficient, which depends on the vapor pressure of compound *i*,

$$K_{\rm w,i} = \frac{RT}{p_{\rm L,i}^0 \gamma_i \overline{M_{\rm w}}}$$
(S4)

where $p_{L,i}^0$ is the vapor pressure of compound *i* as a liquid, γ_i is its activity coefficient on a mole fraction basis, *R* is the gas constant, *T* is temperature, and $\overline{M_w}$ is the average molecular weight of the absorbing organic material on the wall.

Simulations were performed to estimate timescales associated with gas-wall equilibrium partitioning for the 25 intermediate/semi-volatile organic vapors investigated. Although the deposition rate coefficient ($k_{w,depo,i}$) for each organic vapor is unknown, upper and lower limits can be obtained. Note that CIMS measured overall decay rate of organic vapor *i* ($k_{w,i}$) is a function of $k_{w,depo,i}$ and $k_{w,evap,i}$. The upper limit ($k_{w,depo,i} = 6 \times 10^{-4} \text{ s}^{-1}$) is governed by the mixing status in the chamber,

$$k_{\rm w,depo} = \frac{\pi}{2} \left(\frac{\rm A}{\rm V} \right) \left(\mathcal{D}_{\rm v} K_{\rm e} \right)^{1/2}$$
(S5)

The lower limit $(k_{w,depo,i} = 1 \times 10^{-6} \text{ s}^{-1})$ is chosen as the lowest dark decay rate among 25 organic vapors measured by CIMS. The middle value $(k_{w,depo,i} = 3 \times 10^{-5} \text{ s}^{-1})$ is the average of upper and lower limits. The evaporation rates $(k_{w,evap,i})$ can be obtained via Eq (S3) using the C_w values calculated from Section 4.2 in the main text. Predicted temporal profiles of $\overline{C}_{v,i}$ and $\overline{C}_{w,i}$ are shown in Figure S1. In general, vapors with lower volatilities tend to require a longer time to establish gas-wall equilibrium. For a specific compound, the equilibrium timescale is estimated to vary from a few minutes to over a day, depending on the deposition rate coefficients applied (upper limit $k_{w,depo,i} = 6 \times 10^{-4} \text{ s}^{-1} \text{ vs.}$ lower limit $k_{w,depo,i} = 1 \times 10^{-6} \text{ s}^{-1}$). For the 25 vapors studied, gas-wall equilibrium partitioning is estimated to require > 20 min to < 25 h when the average deposition rate coefficient is employed ($k_{w,depo,i} = 3 \times 10^{-5} \text{ s}^{-1}$) in the simulation. These results suggest that it is generally reasonable to estimate C_w assuming equilibrium partitioning after ~ 18 h of wall-induced vapor decay.

Figure S1. Timescales for gas-wall equilibrium partitioning of intermediate/semi-volatile organic vapors generated from photooxidation of isoprene, toluene, α -pinene, and dodecane. Three values of $k_{w,depo,i}$ are incorporated in the simulation here, representing the upper limit ($k_{w,depo,i} = 6 \times 10^{-4} \text{ s}^{-1}$), average ($k_{w,depo,i} = 3 \times 10^{-5} \text{ s}^{-1}$), and lower limit ($k_{w,depo,i} = 1 \times 10^{-6} \text{ s}^{-1}$) of vapor deposition rate on chamber walls, respectively. The evaporation rates from chamber walls ($k_{w,evap,i}$) are calculated using C_w derived from Eqs (12) and (13) in the main text (See Section 4 for more details). Initial concentrations of vapor *i* in the gas phase and on chamber walls are assumed to be 5 and 0 µg m⁻³, respectively.