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Abstract. Using the 1-D atmospheric chemistry transport

model SOSAA, we have investigated the atmospheric re-

activity of a boreal forest ecosystem during the HUMPPA-

COPEC-10 campaign (summer 2010, at SMEAR II in south-

ern Finland). For the very first time, we present vertically

resolved model simulations of the NO3 and O3 reactivity (R)

together with the modelled and measured reactivity of OH.

We find that OH is the most reactive oxidant (R ∼ 3 s−1) fol-

lowed by NO3 (R ∼ 0.07 s−1) and O3 (R ∼ 2× 10−5 s−1).

The missing OH reactivity was found to be large in accor-

dance with measurements (∼ 65 %) as would be expected

from the chemical subset described in the model. The ac-

counted OH radical sinks were inorganic compounds (∼

41 %, mainly due to reaction with CO), emitted monoter-

penes (∼ 14 %) and oxidised biogenic volatile organic com-

pounds (∼ 44 %). The missing reactivity is expected to be

due to unknown biogenic volatile organic compounds and

their photoproducts, indicating that the true main sink of OH

is not expected to be inorganic compounds. The NO3 radi-

cal was found to react mainly with primary emitted monoter-

penes (∼ 60 %) and inorganic compounds (∼ 37 %, includ-

ing NO2). NO2 is, however, only a temporary sink of NO3

under the conditions of the campaign (with typical tempera-

tures of 20–25 ◦C) and does not affect the NO3 concentration.

We discuss the difference between instantaneous and steady-

state reactivity and present the first boreal forest steady-state

lifetime of NO3 (113 s). O3 almost exclusively reacts with

inorganic compounds (∼ 91 %, mainly NO, but also NO2

during night) and less with primary emitted sesquiterpenes

(∼ 6 %) and monoterpenes (∼ 3 %). When considering the

concentration of the oxidants investigated, we find that OH is

the oxidant that is capable of removing organic compounds

at a faster rate during daytime, whereas NO3 can remove or-

ganic molecules at a faster rate during night-time. O3 com-

petes with OH and NO3 during a short period of time in the

early morning (around 5 a.m. local time) and in the evening

(around 7–8 p.m.). As part of this study, we developed a sim-

ple empirical parameterisation for conversion of measured

spectral irradiance into actinic flux. Further, the meteorolog-

ical conditions were evaluated using radiosonde observations

and ground-based measurements. The overall vertical struc-

ture of the boundary layer is discussed, together with valida-

tion of the surface energy balance and turbulent fluxes. The

sensible heat and momentum fluxes above the canopy were

on average overestimated, while the latent heat flux was un-

derestimated.
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1 Introduction

As most biogenically and anthropogenically emitted trace

gases are oxidised within the Earth’s boundary layer, the

oxidising capacity of this layer may be considered to be

approximately that of the atmosphere. The concentrations

of oxidants and their reactivity towards a vast number of

compounds and pollutants, together with the concentration

of these pollutants, impact on the local air quality. Anthro-

pogenic activity, resulting in increased sources of air pol-

lution and more intense forest management (e.g. deforesta-

tion), results in changes in the composition of the atmosphere

and potentially in its oxidation capacity.

The OH radical is considered the main atmospheric clean-

ing agent, and consequently it has received a lot of attention

(e.g. Levy II, 1971; Mount and Eisele, 1992; Lelieveld et al.,

2008; Mogensen et al., 2011, and references therein). Be-

ing highly reactive, OH has a short lifetime (depending on

the conditions, but usually much less than 1 s; Jacob, 1999)

and is capable of reacting with most functional groups. The

concentration of OH was first measured in the 1970s (Wang

and Davis, 1974), but even with great advances in instrument

development, it is still difficult to detect such low concentra-

tions of such a reactive compound (Mao et al., 2012; Nov-

elli et al., 2014a, b). The measurement is therefore still as-

sociated with large uncertainties. The reactivity of OH, its

summed first-order loss rate constant from the atmosphere,

has been measured in both urban (e.g. Ren et al., 2003; Lou

et al., 2010) and remote and forested environments (e.g. Ko-

vacs et al., 2003; Nölscher et al., 2012a; Sinha et al., 2010).

Common to most investigations, especially those in forested

areas, is the large missing fraction of the OH reactivity. This

means that OH is lost due to unaccounted processes that is

most often attributed to unmeasured and unidentified com-

pounds either originating from direct emission or formed via

oxidation processes (e.g. Mount and Eisele, 1992; Di Carlo

et al., 2004; Sinha et al., 2010).

While the OH concentration has a clear daily profile with

a daytime peak due to its large photolytic source, it is ab-

sent or present at much lower concentrations during the night

when other oxidants such as the NO3 radical or O3 play an

increasingly significant role. Typical O3 mixing ratios are in

the range of tens of ppb, whereas NO3 is rarely present at

mixing ratios more than a few hundred ppt and typically less

than 100 ppt. While the reactivity of NO3 has never been

directly measured (e.g. Brown et al., 2011, and references

therein), some recent studies have addressed O3 reactivity

(Park et al., 2013; Matsumoto, 2014). So far no one has mod-

elled the reactivity of either O3 or NO3.

After the tropical forest, the boreal forest zone and the

temperate forests together represent the largest forested area

worldwide (Guenther, 2013) and it produces a large number

of different volatile organic compounds (VOCs). It is esti-

mated that the boreal forest zone accounts for about 5 % of

the global emission of biogenic VOCs (BVOCs) (Guenther,

2013). These VOCs can react with the above-mentioned oxi-

dants and thereby alter the atmospheric oxidation budget and

produce new products with different chemical and physical

properties. These compounds often have lower vapour pres-

sures than their parent molecule and have the potential to par-

ticipate in aerosol formation and growth as well as in produc-

tion of cloud condensation nuclei (CCN) and thereby affect

the climate (e.g. Makkonen et al., 2012; Ehn et al., 2014).

An accurate description of vertical fluxes, and therefore

validation of the overall meteorological situation, is essential

to reach our main goals, which are the following:

– to evaluate model uncertainties due to the use of mea-

sured input gas concentrations.

– to create a simple empirical parameterisation for con-

version of measured spectral irradiance into actinic flux

in order to calculate photodissociation rates.

– to model the reactivity of OH and – for the first time –

that of O3 and NO3 and to investigate their reactivity to-

wards specific groups of compounds, thereby mapping

the diel behaviour of their relative importance.

Our method in order to achieve these goals is a 1-D chem-

istry transport model so that we are also able to investigate

the vertical importance of the compounds of interest. Our lo-

cation of choice is the SMEAR II station, which is very well

characterised and also located in the boreal forest zone.

2 The site

All compounds presented here were measured during the

HUMPPA-COPEC-10 campaign (Hyytiälä United Measure-

ment of Photochemistry and Particles – Comprehensive Or-

ganic Particle and Environmental Chemistry 2010). This ex-

tensive campaign was carried out at the SMEAR II station

(Station for Measuring Ecosystem–Atmosphere Relations),

Hyytiälä, southern Finland (e.g. Hari and Kulmala, 2005;

Vesala et al., 1998; Kulmala et al., 2001a). The campaign

took place between 12 July and 12 August 2010, and the aim

of the campaign, including instrumental set-up, is provided

by Williams et al. (2011). Continuous measurements (with

less instrumentation than during the campaign) are carried

out at the SMEAR II site.

The SMEAR II station is located in the southern boreal

forest zone. The vegetation mostly consists of conifer trees,

in particular Scots pine (Haapanala et al., 2007). Williams

et al. (2011) describe the meteorological situation, including

anthropogenic influences, during the campaign in detail; thus

we only provide a short summary here: the campaign took

place during an anomalously warm summer, with an average

temperature of 20 ◦C. During the campaign, air advected to

the site mostly from the SW (53.7 %) but also from the SE

(20.7 %) and from the NW (10.3 %). The site was impacted

by periods of advected biomass burning emissions, emissions
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from urban centres in the SW and occasionally by a nearby

sawmill. The periods with anthropogenic influences were not

considered in this study.

3 Measured gases used as input to the model

The ambient concentrations of NO, NO2 (= [NOx]− [NO]),

SO2, O3 and CO are continuously measured at the SMEAR II

station, and their averaged daily profiles are illustrated in

Fig. 1. Since their sources are mostly of anthropogenic ori-

gin, we use the concentration of these compounds as input

to our model. Some model uncertainty stems from the un-

certainty in the concentration of these input gases. For this

reason, in Sect. 7.2, we intercompare critical trace gases

from the SMEAR II site with additional campaign measure-

ments. Since the concentration of SO2 was only measured

by one instrument, we will obviously exclude these data

from the intercomparison. Below we go through the mea-

surement details of the mentioned trace gases. All of the

below-mentioned campaign-based gases were measured by

researchers from the Max Planck Institute (MPI) at 24 m with

an original recording interval of 1 s. The SMEAR II gases are

continuously measured at several heights: 67.2, 50.4, 33.6,

16.8, 8.4 and 4.2 m above the SMEAR II mast base. The

original recording interval was 1 min at 6 min time interval

for each measurement height. For the later intercomparison,

we chose to only focus on the averaged data from 33.6 and

16.8 m. In case of CO the measurements were performed

only at 16.8 m. The campaign-based measurements were car-

ried out on a tower approximately 30 m from the SMEAR II

mast. For details on the non-SMEAR II trace gas measure-

ments, we refer to Williams et al. (2011).

3.1 NO and NOx measurements

The continuous SMEAR II NO and NOx concentrations were

measured with one chemiluminescence analyser (TEI 42C

TL, Thermo Fisher Scientific, Waltham, MA, USA). NO2

was measured indirectly by using a NO2-specific photolytic

converter (Blue Light Converter, Droplet Measurement Tech-

nologies, Boulder, CO, USA). The NO2 concentration was

calculated as the difference between the measured NOx and

NO concentrations. The detection limit was 0.1 ppb for NO

and 0.15 ppb for NO2. The total accuracy for NO was ±0.05

and ±0.09 ppb for NO2. The effect of oxidation of NO to

NO2 by the reaction between NO and O3 inside the sample

lines was estimated to be smaller than the measurement accu-

racy. The concentrations of both NO and NO2 were addition-

ally measured specifically for this campaign by MPI using

a modified commercial chemiluminescence detector (CLD

790 SR) originally manufactured by ECO Physics (Duern-

ten, Switzerland) (Hosaynali Beygi et al., 2011). NO2 was

measured indirectly by conversion to NO using a blue light

converter. The detection limits for the NO and NO2 measure-
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Figure 1. The daily averaged measured concentration of (a) NO,

(b) NO2, (c) O3, (d) CO, and (e) SO2 during the campaign. The

SMEAR II mast data are shown in black, while the extra measure-

ments by MPI are shown in magenta.

ments were 10 and 80 ppt, respectively, for an integration pe-

riod of 2 s. The total accuracy of the original NO data was

±0.01 ppb, while the total accuracy of that NO2 data was

±0.03 ppb.

The high detection limit of the SMEAR II chemilumines-

cence analyser is a problem, since the concentrations of NO

and NO2 are generally low at our site (∼ 0.02 and∼ 0.3 ppb,

respectively, for this campaign). For previous studies (e.g.

Mogensen et al., 2011), we have defined the concentration of

both NO and NO2 to be 5 ppt when the measured concentra-

tions were below the detection limit. Since one of the main

aims of this paper is to investigate the reactivity of NO3, and

since the concentrations of NO and NO2 are crucial in order

to obtain this, we chose to use the MPI-measured NOx con-

centrations for our simulations due to the high sensitivity of

the MPI instrument, unless otherwise specified. For SO2, O3

and CO we used the SMEAR II data.

3.2 O3 measurements

The O3 concentration is continuously measured at SMEAR II

using one ultraviolet light absorption analyser (TEI 49C,

Thermo Fisher Scientific, Waltham, MA, USA). The detec-

tion limit is 1 ppb, while the total accuracy is ±1 ppb. The

O3 concentration was further measured for this campaign by

MPI using a UV instrument, sharing the inlet line with the

MPI chemiluminescence detection system (CLD) for mea-

suring NO and NO2. The detection limit was ∼ 1 ppb, while

the total accuracy was ±4 ppb. Both instruments were cal-

ibrated against ozone standards during (MPI instrument) or

after (SMEAR II instrument) the campaign.

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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3.3 CO measurements

The CO concentration was measured on the SMEAR II mast

with one infrared light absorption analyser (API 300EU,

Teledyne Monitor Labs, Englewood, CO, USA). The detec-

tion limit was 50 ppb, while the total accuracy was ±25 ppb.

Additionally, the CO concentration was also measured dur-

ing the campaign by MPI using a commercial vacuum UV

resonance fluorescence CO instrument (AeroLaser GmbH,

Garmisch-Partenkirchen, Germany). The detection limit was

∼ 1 ppb, while the total accuracy was ±10 ppb.

3.4 SO2 measurements

The SO2 concentration was measured on the SMEAR II mast

with one fluorescence analyser (TEI 43 CTL, Thermo Fisher

Scientific, Waltham, MA, USA). The detection limit was

0.1 ppb and the total accuracy was ±0.05 ppb. The measure-

ment principle is described in Rosman et al. (2001) though

the same analyser is no longer in use at the site.

4 Measurements during the HUMPPA-COPEC-10

campaign

4.1 Meteorological sondes

Ouwersloot et al. (2012) studied the convective boundary

layer during the HUMPPA-COPEC-10 campaign and de-

scribe in detail the radiosondes measurements. In short, dur-

ing the entire campaign, 175 GRAW DFM-06 radiosondes

were launched at a distance of ∼ 300 m from the SMEAR

II station. Five radiosondes were launched every day except

for 4 days when the measurements were made every sec-

ond hour. The radiosondes operated on-line and contained

temperature and humidity sensors together with a GPS. The

GPS was accurate within 10 m, the temperature sensor within

0.2 ◦C, while the humidity sensor measured with an accuracy

of 2 %.

4.2 Photolysis rates

Filter radiometers (from Forschungszentrum Jülich and the

Max Planck Institute for Chemistry) were used to mea-

sure the atmospheric photolysis frequencies J (NO2) (NO2+

hν(λ≤ 420nm)→ O(3P)+NO) and J (O1D)(O3+hν(λ≤

340nm)→ O(1D)+O2) (Bohn et al., 2008). It is very dif-

ficult to estimate the measurement uncertainty in photolysis

rates measured by filter radiometers; however, Bohn et al.

(2008) report that when intercomparing J (NO2), the results

differ by 5–8 % and the instrument correlation for J (O1D) is

poorer with larger scatter at large solar zenith angles. Since

the filter radiometers were compared with a reference spec-

troradiometer instrument before and after the campaign, and

since recent technical developments have improved the mea-

surement of J (O1D), we expect that the uncertainties in our

measured photolysis rates are less than what is reported by

Bohn et al. (2008) (after personal communication with Birger

Bohn, 2014). Both rates were measured at ground level in

a clearing partly blocked by trees, and above the canopy at

24 m, with a full view of the upper hemisphere.

4.3 Measurements of OH reactivity

The total OH reactivity was measured using the comparative

reactivity method (CRM, from the Max Planck Institute for

Chemistry) (Sinha et al., 2008) at 18 and 24 m. We refer to

Nölscher et al. (2012a) and Nölscher et al. (2012b) for details

on the set-up. The instrument operated with a detection limit

of 3–4 s−1 with respect to the baseline noise (2σ ). The over-

all measurement uncertainty is estimated to be 16 % based on

errors in the detector (5 %), rate coefficient (14 %), gas stan-

dard (5 %) and dilution (2 %). The uncertainty is calculated

based on propagation of uncertainty.

4.4 Measurement of NO3 and N2O5

NO3 (and N2O5) mixing ratios were measured using a two-

channel, cavity ring-down system, which has recently been

described in detail (Crowley et al., 2010b; Schuster et al.,

2009). The reported detection limit for NO3 is 1–2 ppt in 3 s

integration. By averaging data over several minutes, this is

reduced significantly (to < 1 ppt) at which point fluctuations

in the zero measurement (obtained by adding NO) prevent

further reduction of the detection limit. The total uncertainty

is reported as 15 % (at least 2 ppt) and 15 % (at least 3 ppt)

for NO3 and N2O5 respectively (Crowley et al., 2010b). The

instrument for measuring NO3 was located on the top of the

24 m tower, approximately 1 m from (and at the same height

as) the inlets of the MPI-CLD instrument measuring NO and

NO2.

5 The SOSAA model

We used the 1-D chemistry transport model SOSAA (model

to Simulate Organic vapours, Sulphuric Acid and Aerosols)

for model simulations. The structure and content of SOSAA

have been described in detail in several other papers (e.g. Boy

et al., 2011; Mogensen et al., 2011; Boy et al., 2013; Smolan-

der et al., 2014; Zhou et al., 2014; Mogensen et al., 2015). We

provide a recap here together with included updates.

SOSAA is programmed in Fortran 90 and consists of mod-

ules for (1) planetary boundary layer meteorology and turbu-

lent mixing, (2) biogenic tree and soil emission of volatile or-

ganic compounds, (3) radiative transfer and gas-phase chem-

ical reactions and (4) aerosol dynamics. The aerosol module

is an extension to the original model SOSA (model to Simu-

late Organic vapours and Sulphuric Acid), and it is described

in the paper by Zhou et al. (2014). Since we are not simu-

lating the aerosol phase in this paper, we will not go through

this particular part of SOSAA. The structure of SOSAA is

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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illustrated in Fig. 2. The internal time step for the meteoro-

logical module is 10 s, while the time step for the additional

modules is 60 s. The chemistry and aerosol modules utilises

parallel computing.

5.1 Meteorology and vertical mixing

The meteorological module in SOSAA is based on the 1-D

version of SCADIS (Scalar Distribution) (Boy et al., 2011,

and references therein). It consists of prognostic equations

for temperature, horizontal wind speed, humidity, turbulent

kinetic energy (TKE) and the specific dissipation rate of

TKE (ω). Since the representation of a three-dimensional

flow in a one-dimensional model is limited, nudging (Anthes,

1974) of temperature, horizontal wind speed and humidity

was done in order to represent effects from local to synoptic-

scale flow patterns. Measurement data from the SMEAR II

station and a nudging factor of 0.01 were used. In order to

solve turbulent fluxes, a TKE-ω type closure scheme, also

called two-equation closure, was applied (Sogachev, 2009).

In this study we used a domain reaching from the surface to

3000 m, with 51 logarithmically distributed vertical layers.

The grid density was highest close to the surface and sparser

higher up with 19 of the layers being inside the canopy in the

lowest 18 m.

Interactions between the atmosphere and vegetative

canopy are described in detail – including plant drag, ex-

change of heat and moisture and radiative processes (reflec-

tion, penetration, absorption and emission for three wave-

length bands) at each modelled canopy layer. For calculat-

ing sensible and latent heat fluxes and for solving the energy

balance closure, prognostic equations for soil moisture and

temperature are included in the model.

Several updates were made in order to improve the model

performance. The changes made in the turbulent closure

scheme and parameterisations for latent and sensible heat

fluxes are described by Sogachev et al. (2012). Accord-

ing to Boy et al. (2011), simulation of thermal radiation

from the atmosphere was not successful due to missing

cloud cover records. To overcome this issue, radiation data

from ERA-Interim reanalysis (Dee et al., 2011) provided

by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) were used as model input. To further im-

prove the accuracy of the surface energy balance, the heat

flux and storage into the soil was taken from observations

made at SMEAR II, when available. In case of measurement

gaps longer than 4 h, the original parameterisation (Sogachev

et al., 2002) was used to estimate the flux, with the addition

of using measured soil temperature as input for the deepest

soil level (40 cm below the surface). Furthermore, measured

soil water content in the humus layer was used as the wa-

ter content of soil layer 1 (Sogachev et al., 2002) and hence

the original prognostic equations for soil moisture were ne-

glected.
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Figure 1. The model structure of SOSAA: SCADIS describes the meteorological evolution of the
vertical domain, followed by either MEGAN or SIMBIM that provide emissions of VOCs from the
individual levels of the canopy. Chemical reactions are chosen from the MCM and processed by the
KPP whereafter aerosol dynamical processes are calculated by UHMA.

52

Figure 2. The model structure of SOSAA: SCADIS describes the

meteorological evolution of the vertical domain, followed by either

MEGAN or SIMBIM that provide emissions of VOCs from the in-

dividual levels of the canopy. Chemical reactions are chosen from

the MCM and processed by the KPP, whereafter aerosol dynamical

processes are calculated by the University of Helsinki Multicompo-

nent Aerosol model.

Upper border boundary condition values for wind speed,

temperature and its gradient, and humidity are from Era-

Interim reanalysis by ECMWF. These data were used instead

of the soundings for two reasons. Firstly, the data are avail-

able at any location and at a fixed resolution for any day of

the year. Secondly, soundings are by nature snapshots of the

vertical column, while the Era-Interim data aim to provide

an average value of the grid cell presented. The Era-Interim

reanalysis data are available with 6 and 3 h (temperature, hu-

midity, horizontal wind speed and thermal radiation, respec-

tively) temporal resolution. Direct and diffuse global radia-

tion measured at SMEAR II were used as input for the me-

teorological scheme to improve the accuracy of the energy

balance closure. All input data used in the model are linearly

interpolated between data points to every model time step.

5.2 VOC emission from trees

SOSAA includes several modules for calculation of the tree

emission of VOCs. For the simulations presented in this pa-

per, we have used a modification of MEGAN (Model of

Emissions of Gases and Aerosols from Nature) version 2.04

(Guenther et al., 2006). The tree emissions of VOCs are cal-

culated using the canopy structure, VOC-specific standard

emission potentials (SEPs) and the emission activity of the

trees. The dominant tree species is Scots pine, the canopy

height is ∼ 18.5 m, while the canopy depth is ∼ 9 m with

a total leaf area index (LAI) of 5.8 (Ilvesniemi et al., 2009;

Palmroth and Hari, 2001) and a biomass of 0.0538 gcm−2.

The leaf area density distribution is based on observations at

the site. The above-ground understorey vegetation consists of

∼ 60 % vascular plants (mostly shrubs) and ∼ 40 % mosses

(Ilvesniemi et al., 2009), but we only considered BVOC

emission from the Scots pine. We included SEPs of iso-

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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prene, 2-methyl-3-buten-2-ol, monoterpenes and sesquiter-

penes measured at the site (Mogensen et al., 2015; Bäck

et al., 2012; Hakola et al., 2006; Simpson et al., 1999). The

monoterpenes included are α-pinene, 13-carene, β-pinene,

limonene, cineol and a lumped group of minor monoter-

penes, and their emission distribution is based on the aver-

age chemotype presented in Bäck et al. (2012). Lastly, the

emission activity depends on the LAI and is furthermore con-

trolled by meteorological factors (radiation and temperature).

For explicit and recent updates in our version of MEGAN, we

refer to Mogensen et al. (2015). The calculated concentration

of a specific BVOC at each model level depends on the pre-

dicted emission of that compound in that specific level, the

concentration of reactants in the same level and the transport

to/from the level.

5.3 Radiative transfer

5.3.1 Irradiance and actinic flux

As mentioned in Sect. 4.2, the photolysis rates J (NO2)

and J (O1D) were measured during this campaign above the

canopy and at ground level in a clearing. Further, the spectral

irradiance was also measured. In order to calculate all rel-

evant photolysis rates (listed in Sect. 5.3.2) at all simulated

levels inside the canopy, we needed to convert the spectral

irradiance into actinic flux.

In order to calculate photodissociation of any compound,

the following information is crucial: (1) the compound-

specific wavelength- and temperature-dependent absorp-

tion cross section and quantum yield as well as (2) the

wavelength- and altitude-dependent solar actinic flux. Ab-

sorption cross sections and quantum yields are measur-

able laboratory quantities. Measurements of solar actinic

fluxes are rare and difficult; instead the spectral irradiance

is more commonly obtained, which is also the situation at

the SMEAR II station. Here the irradiance is measured by

a Bentham DM150 double monochromator (Boy and Kul-

mala, 2002). The difference in irradiance and actinic flux

arises because the irradiance describes the flow of radiant en-

ergy through the atmosphere, while the actinic flux concerns

probability of an encounter between a photon and a molecule

(Madronich, 1987). Many attempts have been made to de-

velop parameterisations to convert measured irradiance into

actinic flux (e.g. Kazadzis et al., 2000; Webb et al., 2002;

Kylling et al., 2003; Kazadzis et al., 2004); however, most

often the ratio between diffuse and total downwelling irra-

diance or the ratio of direct to global irradiance is needed.

Those ratios are often not measured, and it can be diffi-

cult to estimate since it depends on the aerosol load, po-

tential clouds, surface albedo, solar zenith angle and wave-

length, which are not all available. We used the radiative

transfer tool “uvspec” version 1.7 from the libRadtran pack-

age (http://www.libradtran.org/doku.php) to calculate the ra-

tio between diffuse and total downwelling irradiance (E0/E)

and Eq. (7) in Kylling et al. (2003) in order to convert our

measured irradiance into actinic flux. uvspec provides many

options to specify the atmosphere. However, we are lacking

most of this information; thus we had to estimate the differ-

ent parameters. Unfortunately this parameterisation (due to

lack of input) was not capable of reproducing the measured

photolysis rates. Instead a simpler empirical approach was

taken. Firstly we modelled the two photolysis rates J (NO2)

and J (O1D) assuming that the measured irradiance equaled

the actinic flux. Then the two ratios between the measured

and modelled photolysis rates were calculated as a function

of solar zenith angle for the entire campaign period, and the

median was taken for every integer of the solar zenith angle.

If the solar zenith angle is zero, then our ratio was also de-

fined as zero. Based on the quantum yield, cross section and

irradiance, we estimated that the peak of photolysis of NO2

was found at 390 nm and at 305 nm in the case of photoly-

sis of O3 to form O1D. Therefore the two calculated ratios

were allocated to the wavelengths of 305 and 390 nm. We

then linearly interpolated the ratios between 305 and 390 for

every solar zenith angle. In the interval 280–305 nm we as-

sume a similar ratio as for 305 nm, and in the interval 390–

700 nm we assumed the same ratio as for 390 . In the SOSAA

model, we then multiplied this wavelength- and solar-zenith-

angle-dependent ratio by the wavelength- and solar-zenith-

angle-dependent measured spectral irradiance and obtained

new photolysis rates. Though the ratio in theory is expected

to be greater than unity (since irradiance refers to radiation

weighted with the cosine of the incidence angle, and actinic

flux is equally weighted from every direction), we observe

that the ratio is only larger than unity at 390 nm, but not at

305 nm. In order to match the measured photolysis rates of

NO2, we need to multiply the measured spectral irradiance

by a value of ∼ 1.7–2.8, but in case of obtaining reasonable

photolysis rates of O1D, we need to multiply the irradiance

by a factor of ∼ 0.5–0.7 (this shows a strong decrease with

increasing solar zenith angle).

For comparison, we also calculated photolysis rates us-

ing the Tropospheric Ultraviolet and Visible (TUV) Radi-

ation Model v5.0 (http://cprm.acd.ucar.edu/Models/TUV/).

This model calculates the altitude-dependent clear-sky (there

is also an option to add clouds) actinic flux for any given

latitude, longitude and time. If the clear-sky TUV is used,

this would result in maximum photolysis rates. We calcu-

lated the radiation with a four-stream discrete and used the

defin2 model input with SMEAR II location, but otherwise

only default values were used.

5.3.2 Photolysis reactions

We have included all available photolysis reactions from

MCM (Master Chemical Mechanism) v3.2 (which are orig-

inally mostly from Atkinson et al., 2004). More information

on MCM is found in Sect. 5.4. Additionally we added the

photodissociation of HO2NO2 (via one channel to form HO2

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/

http://www.libradtran.org/doku.php
http://cprm.acd.ucar.edu/Models/TUV/


D. Mogensen et al.: Reactivities in boreal forest 3915

and NO2 and via the other channel to form OH and NO3)

and of N2O5 (via one channel to form NO2 and NO3 and via

the other channel to form NO3, NO and O) (Atkinson et al.,

2004).

5.4 Gas-phase chemical reactions

The measured trace gas mixing ratios which were used

to constrain the model are described in Sect. 3. Further,

we use a constant mixing ratio of H2 (0.5 ppm) and CH4

(1.8 ppm). The concentrations of all other compounds are

calculated based on their emission and their chemical pro-

duction and/or degradation according to the chemical mech-

anistic information from MCM v3.2 (Jenkin et al., 1997;

Saunders et al., 2003; Jenkin et al., 2012) via the following

website: http://mcm.leeds.ac.uk/MCM. The chemical mech-

anisms from MCM are processed using KPP – Kinetic Pre-

Processor (Damian et al., 2002) to produce Fortran90 files

containing the concentration time derivative functions and

their Jacobian for all included compounds, together with

the chemical solver LSODE (Radhakrishnan and Hindmarsh,

1993). We have included the necessary inorganic MCM reac-

tions together with the full MCM chemical degradation paths

for methane, isoprene, 2-methyl-3-buten-2-ol, α-pinene, β-

pinene, limonene and β-caryophyllene. For other emitted or-

ganic compounds where no MCM chemistry path is avail-

able, we have included their first-order oxidation reactions

with OH, O3 and NO3. Those compounds include the fol-

lowing: cineole,13-carene, “other monoterpenes” than those

mentioned here, farnesene and “other sesquiterpenes” than

those mentioned here (Atkinson, 1994). For the reactions of

the stabilised Criegee intermediates (sCIs), we diverted from

the MCM and instead used newer obtained reaction rates.

For the sCIs from α-pinene, β-pinene and limonene, we have

used the rates from Mauldin III et al. (2012) similarly to

“Scenario C” in Boy et al. (2013). For the sCIs from iso-

prene, we used the rates from Welz et al. (2012) as done in

“Scenario D” in Boy et al. (2013). Only biogenic VOC emis-

sions are estimated; thus we do not include the chemistry

mechanisms for anthropogenic VOCs. The abundance of an-

thropogenic VOCs in SMEAR II is generally low, and we

do currently not have a way to predict their concentration.

Sulfuric acid and nitric acid are removed from the gas phase

depending on the condensation sink. The condensation sink

is based on measurements and calculated according to Kul-

mala et al. (2001b).

5.5 Instantaneous and steady-state oxidant reactivity

When considering or calculating the reactivity, loss rate, of,

for example, OH or NO3, we need to differentiate between

instantaneous reactivity (Rinst) and the reactivity that defines

the turnover lifetime of the radical out of steady state (Rss).

The instantaneous OH reactivity has previously been mod-

elled using SOSAA, and we refer to Mogensen et al. (2011)

for how this was explicitly done. Since OH is not the only

important atmospheric oxidant, we extended our calculations

to also cover the reactivities of O3 and NO3 (we will denote

them O3 reactivity and NO3 reactivity, respectively). The re-

activity related to a single reaction is calculated by multiply-

ing the reaction rate coefficient (between either of the oxi-

dants and the reactant) by the concentration of the reactant.

The total instantaneous reactivity is then the sum of all these

terms, which means all sink reactions have been taken into

account regardless of whether these reactions lead to refor-

mation of the radical or not:

ROX,inst =

∑
Reactions

kOX+Y×[Y]. (R1)

ROX,inst is the total instantaneous reactivity of the oxidant

(where OX is either OH, O3 or NO3), and kOX+Y is the bi-

molecular reaction rate coefficient for the chemical reaction

between the oxidant and the chemical species Y, where the

concentration of Y is given by [Y]. Instead of only consider-

ing the total instantaneous reactivities, we also investigated

the reactivities with respect to certain groups of compounds

(e.g. inorganic compounds, isoprene, monoterpenes and the

sesquiterpenes). In our definition of these reactivities, also

the reactivities due to reactions between the oxidants and sec-

ondary or higher-order reaction products arising from a pri-

mary reaction are included. The OH recycling mechanisms

available in MCM version 3.2 are taken into account. For

NO3 we also report the instantaneous reactivity, which is why

its reaction with NO2 (forming N2O5) is included as a loss

term even though NO3 is reformed from thermal decomposi-

tion of N2O5 (see below). This is then entirely analogous to

measured and reported instantaneous reactivity of OH.

The inverse of the instantaneous reactivity is the instanta-

neous lifetime (τinst):

ROX,inst =
1

τinst

. (R2)

This instantaneous lifetime is distinct from turnover lifetimes

(τss) derived from steady-state analysis of, for example, mea-

sured radical concentrations ([radical]) and known produc-

tion (Pnet) terms:

Rss =
Pnet

[radical]
=

1

τss

. (R3)

As the steady-state lifetime deals with net production and

loss terms, it takes into account the reformation of, for exam-

ple, OH or NO3 other than in the primary production term(s).

We illustrate this below for NO3. The formation and loss of

NO3 in the atmosphere can be described by the following set

of Reactions (R4)–(R8) with rate coefficients k4 to k8.

NO2+O3→ NO3+O2,k4 (R4)

NO3+NO2+M→ N2O5+M,k5 (R5)

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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N2O5+M→ NO2+NO3+M,k6 (R6)

N2O5→ products,k7 (R7)

NO3→ products,k8 (R8)

Reaction (R7) represents loss of N2O5 to aerosol and sur-

faces, and Reaction (R8) represents all gas-phase reactions

of NO3 (mainly with NO and hydrocarbons). We assume that

the gas-phase loss of N2O5 via reaction with water vapour is

not significant (IUPAC, 2014; Brown et al., 2006; Crowley

et al., 2010b). Considering Reactions (R4) to (R8), the con-

centration of N2O5 in steady state ([N2O5]ss) is given by

[N2O5]ss =
k5[NO2][NO3]

k6+ k7

, (R9)

whilst that of NO3, ([NO3]ss), is given by

[NO3]ss =
k4[NO2][O3]

k5[NO2] −
k5k6[NO2]

k7+k6
+ k8

. (R10)

To simplify, we consider two extreme cases. In case 1, the

fate of N2O5 is dominated by thermal dissociation to NO2

and NO3 (k6� k7). In case 2, the fate of N2O5 is dominated

by heterogeneous loss to particles/surfaces (k7� k6). In case

1, the reaction of NO2 with NO3 does not represent a sink of

NO3 as the N2O5 product regenerates NO3. The steady-state

concentration of NO3 is then

[NO3]ss =
k4[NO2][O3]

k8

. (R11)

As discussed above, the numerator is the NO3 production

term so that the steady-state reactivity (denominator) is given

simply as k8. In case 2 the reaction of NO3 with NO2 is a sink

of NO3 as the reformation of NO3 via the thermal dissocia-

tion of N2O5 is insignificant. Here, the steady-state concen-

tration of NO3 is given by

[NO3]ss =
k4[NO2][O3]

k5[NO2] + k8

(R12)

so that the steady-state reactivity is given by k5[NO2] + k8,

which is the same as the instantaneous reactivity. We can

now evaluate which of these two scenarios more closely rep-

resents the situation during the HUMPPA-COPEC-10 cam-

paign. We note that the N2O5 thermal dissociation rate con-

stant (k6) is highly temperature dependent, and for typical

HUMPPA conditions (20–25 ◦C) it is∼ 4×10−2 s−1. In con-

trast, k7 is defined by a combination of available aerosol sur-

face area and reactivity and dry deposition and is given by

k7 ∼ 0.25γ c̃A+ kdd, where A is the aerosol surface area,

γ the uptake coefficient and c̃ the mean molecular veloc-

ity (Crowley et al., 2010a), while kdd is the loss frequency

of N2O5 due to dry deposition. Combining a typical value

of A= 1× 10−7 cm2 cm−3 at SMEAR II with γ = 0.03–

0.001 (Bertram et al., 2009; Chang et al., 2011) with c̃=

24 000cms−1, and an upper limit of 3× 10−5 s−1 for the

loss frequency of N2O5 due to dry deposition in a neutrally

stratified nocturnal boundary layer of 100 m height (Geyer

et al., 2001), we derive k7 ∼ 1× 10−4–5× 10−5 s−1. This

implies that for the warm temperatures encountered during

HUMPPA, case 1 is dominant, and the instantaneous re-

activity, which includes a contribution from reaction with

NO2, will be larger than the steady-state reactivity. Simi-

lar arguments apply when considering the reactivity of OH.

In this case, due to the many reactions of OH which lead

to its reformation on relatively short timescales, the differ-

ence between instantaneous and steady-state lifetimes will be

greater. Examples are the reaction of OH with CO and hydro-

carbons in the presence of NO which reform OH (via HO2)

on timescales of a few minutes. In the rest of the paper, we

will refer to the instantaneous reactivity as just “reactivity”

but specify when using steady-state reactivity.

Computing oxidant reactivity

In order to model the reactivity of the three oxidants, we

wrote a script in the Python programming language (using

the pattern matching operations in the regular expressions

module) in order to find the bimolecular reactions involv-

ing OH, NO3 and O3 from the MCM files. The reactions

were postprocessed into additional “bookkeeping reactions”,

whereby we could calculate the time evolution of the instan-

taneous reactivities along with the time evolution of the real

chemical concentrations.

6 Model validation

For the traces gases used to constrain the model, the pho-

tolysis rates and the OH reactivity, the following uncertainty

and error analysis is provided: SDs, the Pearson’s product-

moment correlation coefficient which describes colinearity

between the measured and modelled parameters and the co-

efficient of determination which describes the proportion of

the total variance explained by the model. We also provide

the slope and the intercept of the linear least-square regres-

sion, where the slope will be one and the intercept zero, if

the model predicts the measured results perfectly. Also pro-

vided is the mean square error (MSE) together with the total

root mean square error (RMSE) that shows the actual error,

since it has the same unit as the parameter investigated, and

the systematic (linear error) component, which is the square

of the sum of the additive and proportional components of

the mean square error together with their interdependence.

The unsystematic (i.e. nonlinear error) RMSE is also given.

For comparison, bias, which gives the difference between the

mean of the measured and the mean of the modelled variable,

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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is also included. Lastly we also included the “index of agree-

ment” (d), which reflects the degree to which the measured

parameter is accurately modelled and is error free. If d is

one, the model and measured values are identical; however,

if d is zero, the model cannot represent the measured value

at all. For a detailed description on the included validation

methods, we refer to Willmott (1981).

7 Results and discussion

In order to provide results for the unperturbed boreal forest,

we filtered out the measurement periods during which pollu-

tion occurred. The pollution originated from either biomass

burning, anthropogenic influence or from the local sawmill.

We refer to Williams et al. (2011) for the specific times and

details on classification of the pollution events.

7.1 The meteorological situation

The validation of the meteorological scheme is done firstly

for the full vertical domain using data obtained by the

radiosonde measurements and secondly in the surface

layer using the continuous measurements conducted at the

SMEAR II station. The polluted periods are also included in

this analysis, since it will not affect the meteorology.

7.1.1 Vertical profiles

Examples of vertical profiles of wind speed, potential tem-

perature and absolute humidity on two occasions, 12 p.m. on

12 July and 3 a.m. on the 11 July, are shown in Fig. 3. The

model values shown are 30 min averages during which the

radiosondes were started. Data from the SMEAR II tower

are included in order to supplement the radiosonde data in

the lowest 100 m. These data are also averaged for 30 min,

and one should keep in mind that they were obtained with

different instruments than those used on the sondes. The up-

per panel is from 12 p.m.; the mixed layer has been develop-

ing throughout the morning and has reached 1100–1300 m,

which is observed both in the model and by the radiosonde.

The model underestimates the depth of the mixed layer, de-

termined here as the depth where the gradient of potential

temperature is approximately zero or negative. In the model

the height of the atmospheric boundary layer (ABL) is de-

fined as the lowest model level where the Richardson number

(Ri) exceeds the limit of 0.25. The figure suggests that this

parameterisation is able to set the top of the boundary layer

close to the height assessed by the potential temperature and

wind speed profiles. The underestimation of the height of the

mixed layer could be caused by too strong temperature gradi-

ents above the boundary layer (clearly visible in the example

chosen), which would limit the growth of the mixed layer.

However, since the focus in this study is on chemistry close

to the surface, we found the agreement between the simula-

tions and observations satisfactory as well as the possibilities

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

0 4 8 12
0

500

1000

1500

2000

Wind speed [m s−1]

A
lti

tu
de

 [m
]

298 300 302 304 306
Potential temperature [K]

12 pm 12th July 2010

2 4 6 8 10 12 14 16
0

500

1000

1500

2000

Absolute humidity [g m−3]

A
lti

tu
de

 [m
]

292 296 300 304
Potential temperature [K]

3 am 11th July 2010

 

 

sonde

model

tower

model BL

observed
mixed layer

model
residual

model BL

observed
residual
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on 11 July (bottom). Solid lines are data obtained from radiosonde observations, and the dots are
30 min averages from the SMEAR II tower. The model values are representing the 30 min during
which the soundings were made.
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Figure 3. Examples of modelled and observed vertical profiles at

12 p.m. on 12 July (top) and 3 a.m. on 11 July (bottom). Solid lines

are data obtained from radiosonde observations, and the dots are

30 min averages from the SMEAR II tower. The model values rep-

resent the 30 min during which the soundings were made.

for improving the accuracy of the model close to the top of

the boundary layer to be out of the scope of this work. A sin-

gle radiosonde flight provides a snapshot from a given mo-

ment, whilst the model aims to represent average conditions

of 30 min for a horizontally homogeneous area. As a conse-

quence the simulated horizontal wind speed profile (Fig. 3a)

differs significantly from the observed one. In the model the

wind speed increases first rapidly in the surface layer and

then more slowly in the boundary layer, having the maximum

at the top of the boundary layer, above which it reaches the

geostrophic wind speed and stays constant in the free tropo-

sphere. The difference in observed and modelled wind speed

in the free-troposphere seen in the figure is caused by the

difference between the ECMWF reanalysis and the observa-

tions and the fact that in the model the wind speed is kept

constant above the boundary layer. For accuracy of the re-

analysis see Dee et al. (2011).

The lower part of Fig. 3 shows a typical nocturnal stable

boundary layer at 3 a.m., which is characterised by a stable

layer with strong gradients and a residual layer of the previ-

ous day’s mixed layer where quantities are almost constant

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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with altitude. In these types of cases the top of the boundary

layer is ambiguous (Zilitinkevich and Mironov, 1996). The

model parameterisation sets the ABL depth at a height that

coincides with approximately the layer in the observations

which is most stable. Above the stable layer an almost neu-

trally stratified residual layers is clearly visible in the obser-

vations. The residual layers shown in the figure are defined as

the layer where water vapour concentration is roughly con-

stant with altitude. The model underestimates the residual

layer height, which is a consequence of the tendency to un-

derestimate the height of the mixed layer. The different na-

ture of the radiosonde and ground-based observations is ev-

ident in the stable layer, and the aim of our model is not to

reproduce the profile of the soundings exactly. However, it is

obvious that the model underestimates the concentration of

water vapour in the air. For the campaign period, the model

underestimated the water vapour concentration by 23.7 % on

average at 23 m. This underestimation only has a minor ef-

fect on the modelled reactivities. A sensitivity test shows

that when the water vapour concentration is constrained by

the measurements, the reactivity of OH and NO3 is always

smaller than when the modelled water concentration is used.

The reactivity of O3 is also mostly lower, but not always. The

maximum changes in the reactivities are 1.4 % for OH, 5 %

(but usually 1–2 %) for NO3 and 0.4 % for O3.

7.1.2 Surface energy balance

The diurnal averages of the components of the surface en-

ergy balance – net radiation, heat flux and storage into the

soil, and turbulent fluxes of sensible and latent heat – are

presented in Fig. 4. The positive values suggest that the at-

mosphere is gaining heat from the surface and vice versa for

negative values. The net radiation from the model was calcu-

lated as the sum of all radiation components (the direct and

diffuse global radiation, atmospheric thermal radiation, PAR

and NIR reflected and emitted by the vegetative canopy, and

the thermal radiation by the soil surface) and is compared

to the net radiation measured for 300–40 000 nm. Using the

reanalysis values as input for atmospheric thermal radiation

(Sect. 5.1) instead of the parameterisation (Sogachev et al.,

2002) improved the model performance considerably: RMSE

for net radiation improved from 82 to 69 Wm−2 (for the pe-

riod studied here). The soil heat flux and storage term in the

model would follow exactly what was measured since the

values used in the model are based on the observations; hence

only observed values are shown.

The observed turbulent fluxes shown in Fig. 4 are obtained

with an eddy-covariance system described by Markkanen

et al. (2001). Both the average latent and sensible heat flux

differ from the observed most of the day, which is mainly due

to the limitations of the utilised turbulence closure scheme

that performs best under near-neutral stratification. The un-

derestimation of the latent heat flux in the model can also

partly be caused by underestimation of water available to
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Figure 3. Diurnal averages of the components of the surface energy balance. Net radiation: sum of
all radiation components in the model (the direct and diffuse global radiation, atmospheric thermal
radiation, PAR and NIR reflected and emitted by the vegetative canopy, and the thermal radiation by
the soil surface) compared to the net radiation measured for 300–40 000 nm above the canopy. Heat
flux and storage in the soil is the average of four heat plates, and observed values were used as
model input. Turbulent fluxes of sensible and latent heat measured with an eddy covariance system
at 23.3 m. The shaded areas represents the uncertainty on the measurements which are estimated
to be ±20 % for the heat fluxes and ±10 % for the net radiation.
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Figure 4. Diurnal averages of the components of the surface energy

balance. Net radiation: sum of all radiation components in the model

(the direct and diffuse global radiation, atmospheric thermal radia-

tion, PAR and NIR reflected and emitted by the vegetative canopy,

and the thermal radiation by the soil surface) compared to the net

radiation measured for 300–40 000 nm above the canopy. Heat flux

and storage in the soil is the average of four heat plates, and ob-

served values were used as model input. Turbulent fluxes of sensible

and latent heat measured with an eddy covariance system at 23.3 m.

The shaded areas represent the uncertainty in the measurements,

which are estimated to be ±20 % for the heat fluxes and ±10 % for

the net radiation.

evaporate, which further could lead to increased surface tem-

perature and to overestimated sensible heat flux. The low la-

tent heat flux can also play a role in the underestimation of

absolute humidity (Fig. 3). In general, the accuracy of the

eddy-covariance method varies between 5–20 and 10–30 %

for sensible and latent heat flux, respectively (Foken, 2008).

Furthermore, the measurements are made in the roughness

sublayer, which tends to decrease the observed scalar fluxes

(Simpson et al., 1998). Hence, the difference between the

model and measured values, especially for the sensible heat

flux, is too large to be fully explained by inaccuracy of the

eddy-covariance method.

7.1.3 Turbulent mixing

To validate the turbulence scheme, the observed and simu-

lated friction velocity (u∗) were compared. Friction velocity

is defined as the square root of the ratio of momentum flux

and air density; thus it describes the amount of turbulent mix-

ing (Stull, 1988, p. 67).

The diurnal mean u∗ at each model level for the lowest

40 m, together with an average horizontal wind profile at 1–

2 a.m. and p.m., is shown in Fig. 5. The midday profile rep-

resents clearly the turbulent conditions, while in the night-

time stratification is typically stable or near neutral (Fig. 5b,

c). Inside the canopy the horizontal wind speed and friction

velocity decrease rapidly. Above the canopy the wind speed

continues to increase until the top of the mixed layer (Fig. 3),

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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Figure 4. Average wind speed profile±SD at 1–2 a.m. and p.m. (a). Red and blue lines and area are
simulated values for day and night (3 m/s added for clarity), respectively, black from measurements.
Simulated diurnal mean friction velocity (u∗) (b). The top of the canopy is shown with a solid line and
the measurement heights of the eddy covariance systems with dash lines. Observed and simulated
mean friction velocity in (d) and above the canopy (c). The shaded areas in the (c and d) represents
the estimated uncertainty of ±20 % (c) and ±50 % (d), respectively.
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Figure 5. Average wind speed profile ±SD at 1–2 a.m. and p.m. (a). Red and blue lines and area are simulated values for day and night

(3 m s−1 added for clarity), respectively, black from measurements. Simulated diurnal mean friction velocity (u∗) (b). The top of the canopy

is shown with a solid line and the measurement heights of the eddy covariance systems with dashed lines. Observed and simulated mean

friction velocity in (d) and above the canopy (c). The shaded areas in (c) and (d) represent the estimated uncertainty of ±20 % (c) and

±50 % (d), respectively.

whilst friction velocity has its maximum right above the

canopy and slowly decreases towards the top of the bound-

ary layer. The observed values of u∗ (Fig. 5c and d) are ob-

tained from eddy-covariance systems at 3.5 and 23.3 m and

calculated from the measured covariances of horizontal and

vertical wind fluctuations (u′w′ and v′w′). At both compari-

son heights the model reproduces the diurnal behaviour, but

the magnitude is overestimated above the canopy, especially

at night-time. This is partly due to the strong gradient at the

region of the canopy top in the simulations, which causes

the comparison to be very sensitive to altitude. Furthermore,

the top of the canopy might cause differences just above the

canopy (Fig. 5c), since all dynamics caused by scattered tree

tops are not necessarily accounted for in a one-dimensional

model. Horizontal wind speed increases more rapidly with

altitude in the model, which could partly also explain the

overestimation of friction velocity by the overestimated wind

shear. The turbulence closure scheme is known to perform

best under near-neutral stratification. However, the overesti-

mation of friction velocity was found persisting for all stabil-

ity conditions.

7.2 Comparison of trace gas measurements

In this section we intercompare the measured concentra-

tions of NO, NO2, O3 and CO. For the comparison we have

also excluded the pollution periods, since the concentrations

of these gases are often larger during the pollution events,

whereby the uncertainties in the measurements are expected

to decrease. For statistical purposes it is therefore better to

only consider the same period as our model results.

In general there was satisfactory agreement between the

different instruments. The differences between the results

(time series in Fig. 6, mean values in Table 1) were within

the uncertainty limits in case of the NO and NO2 data. In
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Figure 5. Difference in measured gas concentration of (a) NO, (b) NO2, and (c) O3 (blue, left hand
side) and CO (green, right hand side). The difference is calculated by subtracting the campaign
measured concentrations by the SMEAR II obtained concentrations.
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Figure 6. Difference in measured gas concentration of (a) NO,

(b) NO2 and (c) O3 (blue, left-hand side) and CO (green, right-hand

side). The difference is calculated by subtracting the campaign-

measured concentrations by the SMEAR II-obtained concentra-

tions.

case of the O3 concentration results there was a systematic

difference of 4 ppb. Also the variabilities in the averaged con-

centrations were in the same magnitude (Fig. 1). In the CO

concentration data there was a distinct variability between

the SMEAR II and campaign results. The observed differ-

ence (22 ppb) was within the uncertainty limits. There were

periodical malfunctions of the SMEAR II instrument causing

false readings. During post-processing the SMEAR II data

were filtered, but obviously some inconsistency remained in

the data.

7.3 Photolysis

We present the measured J (NO2) and J (O1D) in Fig. 7

(time series) and in Fig. 8 (scatter plot) together with the

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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Table 1. Measurement uncertainty and estimates for quality of fit for the measured input gas concentrations. H is height, MES and MEC

the estimated total accuracies calculated as a combination of precision and the accuracy of reading for the SMEAR II (MES) and campaign

(MEC) instrumentation. DP is the number of measured data points considered, S and C the SMEAR II-measured (S) and campaign-measured

(C) means, SDS and SDC the corresponding SD, r Pearson’s product-moment correlation coefficient which describes colinearity between

measured and modelled parameters, r2 the coefficient of determination which describes the proportion of the total variance explained by

the model, b the slope, a the intercept of linear least-square regression. MSE is the mean square error, RMSEs systematic RMSE, RMSEu

unsystematic RMSE, RMSE total root mean square error, bias the difference between C and S and d the index of agreement.

[NO] [NO2] [O3] [CO]

H [m] 24 24 24 24

MES [ppb] ±0.05 ±0.09 ±1 ±25

MEC [ppb] ±0.01 ±0.03 ±4 ±10

DP 1066 1066 1066 833

S [ppb] 2.32× 10−2 3.64× 10−1 3.70× 101 1.20× 102

SDS [ppb] 3.35× 10−2 3.03× 10−1 9.89× 100 2.53× 101

C [ppb] 2.90× 10−2 3.38× 10−1 3.99× 101 9.82× 101

SDC [ppb] 3.28× 10−2 2.14× 10−1 9.69× 100 1.32× 101

r 6.84× 10−1 9.27× 10−1 9.94× 10−1 6.23× 10−1

r2 4.68× 10−1 8.60× 10−1 9.89× 10−1 3.88× 10−1

b 6.98× 10−1 1.31× 100 1.02× 100 1.19× 100

a [ppb] 2.89× 10−3
−7.94× 10−2

−3.51× 100 2.89× 100

MSE [ppb2] 3.29× 10−2 6.72× 10−1 8.04× 103 3.48× 105

RMSEs [ppb] 1.20× 10−2 6.24× 10−2 2.96× 100 2.23× 101

RMSEu [ppb] 1.81× 10−1 8.17× 10−1 8.96× 101 5.89× 102

RMSE [ppb] 1.81× 10−1 8.20× 10−1 8.97× 101 5.90× 102

Bias [ppb] −5.89× 10−3 2.66× 10−2
−2.90× 100 2.16× 101

d 8.18× 10−1 9.30× 10−1 9.76× 10−1 6.21× 10−1

Table 2. Measurement uncertainty and estimates for quality of fit for photolysis rates (J (NO2) and J (O1D)) and the reactivity of OH (ROH).

ME is reported measurement uncertainty, O and P the measured (O) and modelled (P ) means, SDO and SDP the corresponding SDs and

the bias the difference between the mean measured and mean modelled parameter. For the meaning of the remaining symbols, we refer to

the description in the Table 1.

J (NO2) J (O1D) ROH ROH

H [m] 24 24 18 24

ME [%] ∼ 5–8 > 8 16 16

DP 1019 1019 357 320

O [s−1] 6.41× 10−3∗ 1.55× 10−5∗ 1.26× 101 1.05× 101

SDO [s−1] 1.80× 10−3∗ 4.76× 10−6∗ 1.34× 101 9.79× 100

P [s−1] 5.37× 10−3∗ 1.55× 10−5∗ 2.59× 100 2.52× 100

SDP [s−1] 1.88× 10−3∗ 4.99× 10−6∗ 4.96× 10−1 4.47× 10−1

r 9.00× 10−1 9.28× 10−1 3.17× 10−1 3.49× 10−1

r2 8.10× 10−1 8.62× 10−1 1.01× 10−1 1.22× 10−1

b 1.31× 100 1.02× 100 1.17× 10−2 1.59× 10−2

a [s−1] −7.94× 10−2
−3.51× 100 2.44× 100 2.35× 100

MSE [s−2] 6.72× 10−1 8.04× 103 3.59× 104 2.05× 104

RMSEs [s−1] 6.24× 10−2 2.96× 100 1.66× 101 1.25× 101

RMSEu [s−1] 8.17× 10−1 8.96× 101 1.89× 102 1.43× 102

RMSE [s−1] 8.20× 10−1 8.97× 101 1.90× 102 1.43× 102

Bias [s−1] 2.66× 10−2
−2.90× 100 1.00× 101 8.01× 100

d 9.30× 10−1 9.76× 10−1 4.33× 10−1 4.43× 10−1

∗ only noon value

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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Figure 7. Above-canopy measured (black dots) and SOSAA mod-

elled (red line) photolysis rate for (a) NO2→ NO+O and (b) O3→

O(1D)+O2. For comparison, also the TUV (Tropospheric Ultravi-

olet and Visible Radiation Model) predicted rates are included.

predicted SOSAA values where we used the parameterisa-

tion suggested in Sect. 5.3. For comparison, also the TUV

predicted rates, which provide the fastest possible photolysis

(since clear sky was assumed), are included. The surface re-

flectivity was assumed to be independent of wavelength and

was fixed to 0.1. The performance of our simple parameteri-

sation is good, even though the conversion factor used is cal-

culated as the median over the entire measurement period.

The modelled rates are always found below the TUV clear-

sky predicted rates. Different checks for quality of fit are pre-

sented in Table 2. On average, the modelled noon photoly-

sis peak of NO2 is slightly underestimated (∼ 16 %), though

when considering the entire day, the difference is larger. Pho-

tolysis rates were also obtained near ground, however, not in-

side the canopy, but instead in a clearing only partly covered

by overhanging branches. It is therefore difficult to compare

those rates with our predicted below-canopy rates, where

we use a canopy penetration factor, which decreases the in-

coming irradiance when going down through the canopy. At

ground the photolysis rates are decreased by∼ 40–80 %. The

reduction is by ∼ 30–50 % in the measurements.

7.4 Oxidant reactivity

The total reactivities of the three most important atmospheric

oxidants (OH, O3 and NO3) have been modelled and will

be presented here together with the measured OH reactiv-

ity. No measurements of O3 and NO3 reactivity were con-

ducted during this campaign. Instead we have measurements

of the concentrations and production rate of NO3, which

enable a steady-state turnover lifetime to be calculated and

compared to the model result. The daily and seasonal oxi-

dation capacity with respect to monoterpenes at SMEAR II

has previously been estimated based on measurements and
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Figure 8. Scatter plots of the measured versus the SOSAA modelled

(red dots) and the TUV (Tropospheric Ultraviolet and Visible Ra-

diation Model, blue dots) predicted above-canopy photolysis rates

for (a) NO2→ NO+O and (b) O3→ O(1D)+O2. The solid lines

indicate the 1 : 1 reference line, whereas the broken lines represent

the least-squares line.

is presented in Peräkylä et al. (2014). The HOx budget dur-

ing this campaign has been discussed in detail by Hens et al.

(2014). Below we will discuss the daily pattern of the investi-

gated reactivities, together with their vertical profile. In case

of the reactivity of OH, we will also discuss the missing OH

reactivity and in case of the NO3 reactivity we will present

both the modelled instantaneous reactivity and the calculated

steady-state reactivity.

7.4.1 Contribution to the reactivities

We have investigated the compound-specific chemical con-

tributions to the three different oxidant reactivities. The con-

tributions at noon and during night (at 18 m) together with

the total reactivities are presented in Table 3. The reactivities

toward methane, isoprene and all individual monoterpenes

and sesquiterpenes are included separately. Furthermore, ac-

cording to the MCM chemistry, OH is reacting with 1071

other organic species, while an additional BVOC sink con-

sisting of 437 organic species is included for NO3, but only

28 other BVOC species react with O3. The normalised con-

tribution of the individual inorganic compounds to the total

inorganic reactivity of the three oxidants that we consider is

presented in Fig. 10 as a daily average for the campaign pe-

riod (at 18 m), while the absolute contributions are visualised

in Fig. 11. The inorganic sink of OH is due to reactions with

H2, H2O2, O3, NO, NO2, SO2 and CO, while the inorganic

sink of O3 includes three species – OH, NO, and NO2 – and

lastly the inorganic sink of NO3 includes NO and NO2.

7.4.2 OH reactivity

The daily averaged profiles of the modelled and measured

OH reactivity at 18 and 24 m are presented in Fig. 9b and c.

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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Table 3. Time-dependent contribution to the investigated instantaneous reactivities. The contribution distributions and total reactivities are

given as means for 18 m at noon and at night (2 a.m.) for the OH, O3 and NO3 reactivity. The contributions are given with respect to inorganic

compounds (see Sect. 7.4 for which compounds are included), methane (CH4), isoprene (C5H8), total and individual monoterpenes (C10H16)

and sesquiterpenes (C15H24) (see Sect. 5.4) together with the resisting organic compounds that the three oxidants are reacting with (see

Sect. 7.4 for how many compounds this includes).

OH reactivity O3 reactivity NO3 reactivity

Noon Night Noon Night Noon Night

Total [s−1] 2.79 3.00 1.58× 10−5 1.67× 10−5 6.07× 10−2 6.45× 10−2

Inorganics [s−1] 1.18 1.20 1.44× 10−5 9.17× 10−7 2.68× 10−2 1.29× 10−2

CH4 [s−1] 2.71× 10−1 2.45× 10−1 0 0 0 0

C5H8 [s−1] 4.39× 10−2 7.18× 10−3 5.67× 10−9 7.45× 10−10 3.07× 10−4 4.65× 10−5

α-pinene [s−1] 1.02× 10−1 1.47× 10−1 1.76× 10−7 2.32× 10−7 1.22× 10−2 1.75× 10−2

β-pinene [s−1] 3.56× 10−2 7.87× 10−2 6.86× 10−9 1.47× 10−8 1.10× 10−3 2.40× 10−3

13-carene [s−1] 1.44× 10−1 2.59× 10−1 6.29× 10−8 1.08× 10−7 1.53× 10−2 2.63× 10−2

Limonene [s−1] 1.00× 10−2 1.38× 10−2 1.30× 10−8 1.63× 10−8 7.44× 10−4 9.89× 10−4

Cineol [s−1] 3.40× 10−4 4.34× 10−4 4.68× 10−12 5.93× 10−12 5.24× 10−9 6.67× 10−9

Other C10H16 [s−1] 1.25× 10−2 1.82× 10−2 2.06× 10−8 2.73× 10−8 1.50× 10−3 2.20× 10−3

Total C10H16 [s−1] 3.05× 10−1 5.16× 10−1 2.79× 10−7 3.98× 10−7 3.08× 10−2 4.94× 10−2

β-caryophyllene [s−1] 1.50× 10−2 4.20× 10−3 8.76× 10−7 2.46× 10−7 1.40× 10−3 4.04× 10−4

Farnesene [s−1] 3.40× 10−3 9.59× 10−4 1.96× 10−7 5.50× 10−8 3.22× 10−4 9.02× 10−5

Other C15H24 [s−1] 1.00× 10−3 2.90× 10−4 5.85× 10−8 1.67× 10−8 9.63× 10−5 2.73× 10−5

Total C15H24 [s−1] 1.94× 10−2 5.42× 10−3 1.13× 10−6 3.18× 10−7 1.86× 10−3 5.21× 10−4

Other VOCs [s−1] 1.25 1.26 2.86× 10−8 3.14× 10−8 9.33× 10−4 1.65× 10−3
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Figure 7. Daily averaged measured and modelled total OH-reactivity together with daily averaged
modelled total O3- and NO3-reactivity. (a) indicates the amount of measured half hour data points
that has been used for the averaging of the measured reactivity, (b) measured OH-reactivity at 18
(solid red line) and 24 m (dashed blue line), where the shaded areas are the 75 and 25 percentiles,
(c) modelled OH-reactivity at 18 m (solid red line) and at 24 m (dashed red line), and (d) modelled
reactivities of NO3 (blue line, left sided y axis) and O3 (green line, right sided y axis).

60

Figure 9. Daily averaged measured and modelled total OH reactiv-

ity together with daily averaged modelled total O3 and NO3 reactiv-

ity. (a) indicates the number of measured half hour data points that

has been used for the averaging of the measured reactivity, (b) mea-

sured OH reactivity at 18 (solid red line) and 24 m (dashed blue

line), where the shaded areas are the 75 and 25 percentiles, (c) mod-

elled OH reactivity at 18 m (solid red line) and at 24 m (dashed red

line) and (d) modelled reactivities of NO3 (blue line, left-hand side

on y axis) and O3 (green line, right-hand side on y axis).

The modelled reactivities include all values modelled when

the pollution periods have been filtered out, while the mea-

sured reactivities contains fewer data due to instrumental dis-

ruption. It is clear that the modelled reactivity is much lower

than the measured (see also below). During noon–early after-

noon, the difference in measured above- and in-canopy reac-

tivity increases and the in-canopy reactivity is found to be al-

most twice that of the above-canopy reactivity. The modelled

in-canopy reactivity is consistently higher than the above-

canopy reactivity. While the modelled OH reactivity shows

little variability throughout the day (minimum /maximum

reactivity= 0.85), excluding a small late afternoon dip due to

lower ambient monoterpene concentrations (Mogensen et al.,

2011), the measured reactivity shows a stronger daily trend

(minimum /maximum reactivity= 0.17) with a noon–early

afternoon maximum. However, as indicated in Fig. 9a, very

few measured data points were used for the averaging of the

reactivity in the time slot where the peak is observed. The

OH reactivity has previously been both measured and mod-

elled at SMEAR II, and also then a small early afternoon

maximum was seen from the observations, while the mod-

elled reactivity was found to be more or less constant (Mo-

gensen et al., 2011; Sinha et al., 2010). These new simula-

tions, however, show larger daily variability than in the study

by Mogensen et al. (2011), which is mostly due to improve-

ments in the meteorological scheme. A combination of the

different schemes for meteorology, emission and chemistry

was validated by Mogensen et al. (2011). This study showed

good agreement between measured and modelled monoter-

pene concentrations for several heights.

The apportioned and total instantaneous reactivity of OH

are reported in Table 3. For the list of specific inorganic

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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Figure 8. The daily averaged fractional contribution of individual inorganic compounds to the total
inorganic reactivity of OH (a), O3 (b) and NO3 (c) at 18 m.
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Figure 10. The daily averaged fractional contribution of individual

inorganic compounds to the total inorganic reactivity of OH (a),

O3 (b) and NO3 (c) at 18 m.

compounds, and total number of compounds that OH reacts

with, we refer to Sect. 7.4.1. The contribution from inor-

ganic compounds and methane is more or less constant at

both shown times, and together they make up about half of

the total OH reactivity. The contribution from the individ-

ual inorganic compounds to the total inorganic reactivity is

shown in Fig. 10a, while their absolute reactivities are pre-

sented in Fig. 11a. We observe that the contributions from

the specified inorganic compounds do not vary significantly

throughout the day. One exception is the contribution from

the reaction with NO2, which is greatest during night-time.

By far the largest contribution is made up by the reaction with

CO (∼ 80 %). The contributions from H2, O3 and NO2 are

similar (∼ 5 %). The contribution from isoprene is 5 times

larger during day than night, since the emission of isoprene

is controlled by light. However, the reactivity towards iso-

prene is at all times insignificant due to the very low ambient

concentration at the SMEAR II station (campaign average

was 1.8× 108 moleculescm−3). The reactivity attributable

to sesquiterpenes is even lower, which is also due to low

emissions but also due to competing reactivity towards other

compounds (e.g. O3). Since SMEAR II is a monoterpene-

dominated environment, the reactivity of OH due to reac-

tions with these terpenes is significant and they make up the

largest fraction of the OH reactivity due to primary emit-

ted terpenoids (on average 89 % at 18 m). Since monoterpene

emissions are driven by temperature and the night-time tem-

peratures were high during the campaign, while the turbulent

mixing was slow, the OH reactivity due to monoterpenes is

clearly largest during night-time. Rinne et al. (2012) stud-

ied the effect of oxidation chemistry on above-canopy bio-

genic fluxes during the HUMPPA campaign and found that

the chemical degradation had a major effect on the fluxes of

sesquiterpenes, while the monoterpene fluxes were only af-

fected during night-time. We found that the largest contribu-

tion was due to oxidation products (called “other VOCs” in
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Figure 11. The daily averaged reactivity of OH (a), O3 (b) and

NO3 (c) at 18 m due to reactions with specific individual inorganic

compounds. Please note the log scale on the y axis.

Table 3), which were responsible for slightly more than two-

fifths of the total reactivity. By far most of these compounds

are not usually measured and they are generally not included

in the calculated OH reactivity (e.g. Nölscher et al., 2012a).

The vertical profile of the OH reactivity covering from the

ground to approximately 10 m above the canopy is presented

in Fig. 12a as a daily average for the campaign period. The

vertical profile of the OH reactivity is somewhat different

than the findings for summer 2008 (Mogensen et al., 2011),

which is partly due to an improvement of the meteorological

scheme with more vertical mixing as well as due to updates

in the emission and chemistry schemes. As in Mogensen

et al. (2011) we find that the highest OH reactivity is dur-

ing night, which is due to the shallow boundary layer. When

the sun rises, the residual layer breaks up, and the OH reac-

tive compounds are diluted in a larger volume. Also, a con-

tinuously high reactivity is found in the entire canopy. After

the break-up of the ABL, the OH reactivity is still high(er)

in the crown of the canopy, near the emitting source. The

difference between night-time and daytime OH reactivity is

approximately 0.5 s−1, which is 15 % of the night-time OH

reactivity.

A detailed analysis of the measured, calculated (by using

measured gas concentrations of OH reactive compounds) to-

gether with the missing (the difference between measured

and calculated or modelled OH reactivity) OH reactivity for

the HUMPPA-COPEC-10 campaign is provided by Nölscher

et al. (2012a). These researchers divide the measured period

into “stressed”, “transported pollution” and “normal boreal

conditions” (which is not the same as our period, but instead

covers 30 July–10 August) and report a missing OH reac-

tivity of 58 % for the last mentioned category, whereas for

“stressed” boreal conditions a missing OH reactivity of 89 %

was determined. Nölscher et al. (2012a) also give sugges-

tions for potential missing sources. We calculate the miss-

ing OH reactivity at 18 m as 10.0 s−1
= 64.7 % (mean) and

4.7 s−1
= 70.0 % (median), and at 24 m as 8.0 s−1

= 68.7 %

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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Figure 12. Daily averaged vertical total reactivity of OH (a), O3 (b)

and NO3 (c). The top of the canopy is indicated by a black solid line.

(mean) and 4.4 s−1
= 67.7 % (median). As the simulated OH

reactivity shows less variance throughout the day, the vari-

ability in the missing OH reactivity with time (not shown) is

mostly due to the measured OH reactivity. As already pointed

out by Mogensen et al. (2011), even though the meteorolog-

ical description is satisfactory, the modelled forest is too ho-

mogeneous to capture the variability in the measured OH re-

activity. While the modelled OH reactivity is only slightly

higher than the predicted for the BFORM campaign (Mo-

gensen et al., 2011), the missing OH reactivity is found to

be larger during the HUMPPA-COPEC-10 campaign, which

is most probably due to higher temperatures and therefore

a higher concentration of unknown BVOCs. Nölscher et al.

(2012a) also calculated the OH reactivity due to some mea-

sured anthropogenic gases (xylene, ethylbenzene, acetoni-

trile, toluene, butane, pentane, PAA and PAN) that are not

included in our model simulations, due to lack of emission

estimates. The missing reactivity of 4.7 s−1 (median miss-

ing fraction for 18 m) corresponds to a concentration on the

order of approximately 9× 1010 moleculescm−3 for a miss-

ing compound that has a similar reaction rate with OH as

α-pinene. Nölscher et al. (2012a) found that these anthro-

pogenic compounds are not significant contributors to the

OH reactivity during non-polluted times as we have consid-

ered here. The exclusion of these anthropogenic gases can

therefore not explain our missing OH reactivity. Further un-

certainty estimations are provided in Table 2, and correlation

plots are shown for both heights in Fig. 13. All parameter

values in the table are calculated based on only those time

periods when measurement data were available (after exclud-

ing the pollution periods). We observe that the bias is largest

at 18 m, inside the canopy, therefore closer to the emission

source. Furthermore, almost the entire RMSE is unsystem-

atic, indicating that it is not a single parameter that drives the
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Figure 13. Scatter plots of the measured versus the modelled reac-

tivity of OH at 18 (a) and 24 m (b). The solid lines indicate the 1 : 1

reference line, whereas the broken lines represent the least-squares

line.

missing sink term. One should be aware that evaluating mod-

elled OH reactivity with observed is not a good measure for

quantifying the quality of a model, since it is well known that

the missing OH reactivity is large, and often larger than the

known fraction, especially in forested areas (e.g. Stone et al.,

2012, and references therein). Many investigators have spec-

ulated on the origin of the missing reactivity, and it is mostly

thought that the difference between measured and modelled

or calculated OH reactivity is due to unknown organic com-

pounds (e.g. Sinha et al., 2010; Nölscher et al., 2012a; Stone

et al., 2012). Since the SMEAR II site is well studied with

respect to tree emissions (e.g. Hakola et al., 2003; Hakola

et al., 2006; Tarvainen et al., 2005; Bäck et al., 2012; Aalto

et al., 2014), we are quite confident which specific VOCs

are emitted, and it seems unlikely that our missing OH re-

activity is due to emitted VOCs (which are measurable with

gas chromatograph – mass spectrometer (GC-MS) and pro-

ton transfer reaction – mass spectrometer (PTR-MS)). The

missing reactivity is more likely due to either emitted VOCs

that are not detectable by GC-MS and PTR-MS and/or un-

known oxidation products of the known emitted compounds.

7.4.3 NO3 reactivity

The daily averaged profile of the reactivity of NO3 at 18 m is

presented in Fig. 9d (left y axis). The NO3 reactivity is ap-

proximately 1 order of magnitude less than the modelled OH

reactivity. The NO3 reactivity steadily increases from around

7 p.m. (reactivity of∼ 0.05 s−1) until midnight where it stays

approximately constant (∼ 0.07 s−1) until 5 a.m. where it in-

creases again and peaks around 7 a.m. (∼ 0.1 s−1). Within

the following 2 h the NO3 reactivity decreases rapidly (with

∼ 0.03 s−1) followed by a more steady decrease until 7 p.m.

The averaged maximum variation throughout the day in the

NO3 reactivity is approximately 50 %, with higher reactiv-

ities during night (see below when the contribution to the

individual reactivities is discussed).

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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Figure 14. (a) The steady state (ss, in black) and instantaneous

(inst, in dashed blue, when using SMEAR II NOx concentrations,

inst MPI, in dashed green, when using MPI NOx concentrations)

NO3 reactivity (RNO3
) together with the corrected steady-state re-

activity where also the reactions of NO3 with NO2 have been

taken into account (NO3–NO2, in red), (b) the production term

(PNO3
= k6[NO2][O3]) of NO3 and (c) the measured concentration

of NO3 ([NO3]). Please note the log scale in the (a) section.

The contributions to the reactivity together with the total

reactivity of NO3 are presented in Table 3. For the list of spe-

cific inorganic compounds, and total number of compounds

that NO3 reacts with, we refer to Sect. 7.4.1. The inorganic

contribution to the NO3 reactivity is largest during daytime

(44 % vs. 20 % during night-time). The contribution from the

individual inorganic compounds to the total inorganic NO3

reactivity is shown in Fig. 10c, while their absolute reactiv-

ities are shown in Fig. 11c. During night-time the inorganic

instantaneous reactivity is due to reaction with NO2, while

the daytime inorganic reactivity is due to reactions with NO.

The other main contributors to the total NO3 reactivity are the

emitted monoterpenes. During daytime, their contribution is

about 50 %, though during night the contribution from the

monoterpenes is 77 %. The difference in daytime vs. night-

time monoterpene concentration is partly due to difference in

emission (due to difference in temperature and exposed light)

and partly due to turbulent mixing. The dominant monoter-

penes are at all times α-pinene and 13-carene. The inor-

ganic contribution, together with the contribution from di-

rectly emitted monoterpenes, accounts for 96 % of the total

instantaneous reactivity. Known oxidised BVOCs are there-

fore insignificant in our simulations of the NO3 reactivity.

Organic atmospheric chemistry involving reactions with the

NO3 radical has been much less studied than the chemistry of

OH, but recent studies suggests its importance (e.g. Browne

and Cohen, 2012; Browne et al., 2014). Due to this unex-

plored chemistry, it is therefore expected that the NO3 reac-

tivity due to reactions with oxidised VOCs is significantly

larger than simulated here.

The vertical profile of the NO3 reactivity covering from

the ground to approximately 10 m above the canopy is pre-

sented in Fig. 12c as a daily average for the campaign period.

The pattern of the vertical NO3 reactivity is somewhat simi-

lar to the vertical OH reactivity, since the main sink of NO3

is the monoterpenes that are also emitted during the warm

nights. As also seen in the vertical profile for the OH reac-

tivity, the NO3 reactivity peaks in the canopy crown, close to

the emission source. Since the only significant organic source

is the primary emitted monoterpenes, the difference between

daytime and night-time reactivity is larger for NO3 than OH.

The concentration of NO3 was measured (Fig. 14c) on 18

nights during the HUMPPA-COPEC-10 campaign. The low

NOx levels and large biogenic emissions (mainly monoter-

penes) resulted in NO3 mixing ratios which were below the

instrumental detection limit (< 1 ppt in 10 min averaging).

On average, the model predicted NO3 night-time concentra-

tions of 0.8 ppt. In order to calculate the steady-state reac-

tivity (Rss) of NO3 during the HUMPPA campaign, we have

taken an upper limit of 0.5 pptNO3 for the whole campaign

and divided it by the production term (PNO3
= k6[NO2][O3],

Fig. 14b), resulting in a lower limit to the Rss. The results

are shown in Fig. 14a. In order to make this result compa-

rable to the instantaneous reactivity, which the model gen-

erates, we have also added a term that accounts for the re-

actions of NO3 with NO2 (red line in Fig. 14a). The red

line is thus Rss+kNO2+NO3
[NO2]. We call this the corrected

steady-state reactivity, Rss (cor). The variability in the calcu-

lated steady-state reactivity of NO3 is due to the production

term (Fig. 14b). In Fig. 14a we show both the instantaneous

reactivity of NO3 modelled using the SMEAR II-obtained

NOx concentrations (inst) and the NOx concentrations mea-

sured by MPI (inst MPI, which is our default). In general,

the model over-predicted the measured (and corrected) NO3

reactivity (on average by a factor 4–5), but on some occa-

sions reasonable agreement was obtained (e.g. on 3 August).

On average, the instantaneous NO3 reactivity was 0.069 s−1

(lifetime of 14 s) when using SMEAR II NOx concentrations

and 0.058s−1 (lifetime of 17 s) when using MPI NOx con-

centrations, while the steady-state reactivity was 0.0089 s−1

(lifetime of 113 s), and the corrected steady-state reactivity

was found to be 0.015 s−1 (lifetime of 68 s). There are several

possible explanations for the difference between the mod-

elled reactivity (Rinst) and that based on measurements of

NO3 concentrations (Rss (cor)). Though the averaged mod-

elled night-time NO3 concentration was 0.8 ppt, the con-

centration was simulated to be significantly lower than the

0.5 ppt taken as the upper limit for the calculations of Rss

(cor) on several nights. Alternatively, the steady-state anal-

ysis is only valid when production and loss terms are bal-

anced. For NO3, achieving steady state can take several hours

after sunset, depending on the size of its sink reactions. In

this campaign, where the NO3 sinks are clearly quite large,

this should, however, not be an issue. A further explanation

is that the trace gases that act as sinks for NO3 are overes-

timated in the model. These sinks are largely terpenes and

their concentrations, which are based on an emission model,
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can contribute to the discrepancy – though in which direction

the model bias might go is unclear. Further, we can consider

the effects of recycling NO3 or the effects of unknown NO3

sources. So far we have considered only the reaction of NO2

with O3 as source of NO3 in the calculation of its steady-state

lifetime. Any other reaction that forms NO3 would result in

an underestimation of the NO3 reactivity for a given steady-

state concentration. Similarly, if there are routes to NO3 ref-

ormation from the organic nitrates formed in the initial reac-

tions with terpenes, this will have the effect of enhancing the

modelled, instantaneous reactivity compared to that obtained

from a steady-state analysis. Further measurements of NO3

steady-state concentrations (above the detection limit) and

reactivity and comparison with modelled instantaneous reac-

tivity in the boreal forest would be useful in order to resolve

this issue. Direct measurement of the NO3 lifetime in this

environment would be most informative and is the subject of

ongoing instrument development with a summer campaign at

this site planned for the near future.

7.4.4 O3 reactivity

The daily averaged profile of the reactivity of O3 at 18 m is

presented in Fig. 9d (right y axis). The O3 reactivity shows

an early morning peak (sharp build-up from 5 a.m. until ∼

8 a.m.) and the reactivity is generally higher during daytime.

This is due to the fact that the known O3 sink mainly consists

of inorganic compounds (see below) and their concentration

is largest at the beginning of the day. The largest difference

in the O3 reactivity throughout the day is found between

∼ 8 a.m. (∼ 2.5×10−5 s−1) and 8 p.m. (∼ 2×10−6 s−1), and

the reactivity is close to constant from 8 p.m. to 5 a.m. The

O3 reactivity is approximately 5 orders of magnitude less

than the modelled OH reactivity, which of course informs

us that O3 is much less reactive than OH; however, we also

need to take the concentration of our respective oxidants

into consideration when evaluating their relative importance

(Sect. 7.4.5).

The contributions to the O3 reactivity together with the

total reactivity of O3 are presented in Table 3. For the list

of specific inorganic compounds, and total number of com-

pounds that O3 reacts with, we refer to Sect. 7.4. Indepen-

dent of time, the controlling O3 sink is by far the inorganic

compounds (> 90 % of the total sink). The remaining O3 re-

activity is made up by reactions with monoterpenes (< 2 %

at noon, ∼ 2 % during night) and sesquiterpenes (∼ 7 % at

noon and < 2 % at night). As in the case of the NO3 reac-

tivity, known oxidised BVOCs are also insignificant for our

simulations of the O3 reactivity. However, the chemistry of

O3 has also received much less attention than the chemistry

of OH, and we therefore expect that O3 undergoes many im-

portant reactions in the atmosphere (e.g. Ehn et al., 2014),

which are still to be discovered. We therefore expect that the

O3 reactivity due to reactions with oxidised VOCs is signifi-

cantly larger than simulated here. The contribution from the

individual inorganic compounds to the total inorganic O3 re-

activity is shown in Fig. 10b, and their absolute reactivities

are presented in Fig. 11b. At all times, the main fraction of

the inorganic O3 reactivity is due to reaction with NO. Dur-

ing daytime, NO accounts for ∼ 98 % of the total inorganic

O3 reactivity. During night-time NO2, however, also plays

a role, since its contribution to the total inorganic reactivity

is ∼ 30 %. The inorganic O3 reactivity due to reaction with

OH is at all times small (> 0.5 %).

The vertical profile of the reactivity of O3 covering from

the ground to approximately 10 m above the canopy is pre-

sented in Fig. 12b as a daily average for the campaign period.

The vertical profile of the O3 reactivity is opposite of that

of the two other oxidant reactivities, due to the main sink

of O3, which consists of inorganic compounds. As shown in

Fig. 10b O3 reacts with NOx and these are mostly transported

to the site.

Since the OH reactivity is highly underestimated due to

missing sinks, it is also possible that our modelled O3 and

NO3 reactivities are underestimated due to potentially miss-

ing sinks (Wolfe et al., 2011, and references therein).

7.4.5 Relative oxidative strength

O3 and NO3 reactivities have not received nearly as much

attention as the OH reactivity. To our knowledge, direct to-

tal NO3 reactivity has never been measured, but the steady-

state NO3 reactivity has been calculated, but mostly in en-

vironments very different to SMEAR II (Brown et al., 2011,

and references therein). Crowley et al. (2010b) measured at

a mountain site surrounded by spruce forest and reported

steady-state NO3 reactivities that were about an order of

magnitude lower than ours. Ozone has been, and still is, a hot

topic, due to its unresolved canopy flux. The non-stomatal

ozone flux usually makes up more than half of the total ozone

flux, but it seems that gas-phase chemical reactions can only

account for a few percentages of the flux (e.g. Rannik et al.,

2012; Wolfe et al., 2011). Until now there has been only one

publication about direct measurements of O3 reactivity, in

which the author measured the reactivity in the lab (Mat-

sumoto, 2014). Unfortunately, the detection limit of that in-

strument is so high that ambient measurements are impossi-

ble. Park et al. (2013) have developed a new method called

ORMS (Ozone Reactivity Measurement System) and tested

this in ambient conditions during the SOAS (Southeast Oxi-

dant and Aerosol Study) campaign in summer 2013.

When considering the importance and strength of an oxi-

dant, one should not only focus on its reactivity but also con-

sider its concentration. We evaluate the oxidation strength

(OS, or rate of removal) of the oxidant (OX) by multiply-

ing its concentration ([OX]) by its reactivity towards organic

compounds (ROX,org):

OSOX = ROX,org×[OX]. (R13)

Atmos. Chem. Phys., 15, 3909–3932, 2015 www.atmos-chem-phys.net/15/3909/2015/
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Figure 15. The daily averaged oxidation strength (see Sect. 7.4.5

for definition) of OH (blue line), O3 (green line) and NO3 (blue

dotted line) at 18 m. Please note the log scale on the y axis.

The time-dependent oxidant strength of each of the oxi-

dants considered is illustrated in Fig. 15, and the 24 h in-

tegrated oxidation strength is 9.90× 10+10 molecule cm−3

for OH, 4.35× 10+10 molecule cm−3 for NO3 and 8.55×

10+10 molecule cm−3 for O3. During daytime, OH is capa-

ble of removing compounds much more than the two other

oxidants. From around midnight till about 4:30 a.m. NO3 is

the dominant remover of organic compounds, whereas O3

slightly prevails for less than an hour around 5 a.m. and for a

few hours in the early evening. O3 is by itself not the fastest

oxidant at any time; however, at times, O3 removes reactants

more than other oxidants, since it is much more abundant in

concentration at the site. The daily patterns of the oxidant

strength of all oxidants are mainly controlled by the daily

pattern of the oxidant concentration. The campaign-averaged

O3 concentration is depicted in Fig. 1, and we expect that

the major night-time removal process of O3 is by deposition

(Rannik et al., 2012).

When evaluating this relative oxidative strength or rate of

removal, we should keep a few things in mind. Firstly, we

know that we are underestimating the OH reactivity with

∼ 65 %, while it is uncertain how large a fraction of the

NO3 and O3 reactivity we are underestimating. As men-

tioned previously, the chemistry involving NO3 and O3 has

been much less studied than the OH chemistry; thus the

missing reactivities of NO3 and O3 have the potential to be

large. Secondly, we have to evaluate the concentration of

the oxidants. The concentration of O3 is taken from mea-

surements. As seen from the intercomparison in Sect. 7.2,

the difference was ∼ 10 %. This propagates linearly into the

uncertainty in the oxidative strength. The concentration of

NO3 is mostly determined by NO2 (source of NO3), which

is from measurements, O3 (source of NO3), which is also

from measurements, and finally the monoterpenes (sink of

NO3), which are predicted. It is difficult to evaluate the

correctness of the predicted NO3 concentration, since the

measured concentration was mostly below detection limit.

Lastly, we have only considered the strength of the respec-

tive oxidants, which basically means at what rate the oxi-

dant is capable of removing organic compounds from the at-

mosphere, but we also have to consider the variety of com-

pounds that the oxidants are reacting with. In our chemistry

scheme, which includes known chemical reactions, OH re-

acts with 1082 organic compounds, whereas NO3 reacts with

448 and O3 only with 38 species of organic origin. When

considering known chemistry, OH therefore has the capac-

ity to clean the atmosphere of much more compounds than

the other oxidants. Further, we have to consider what kind

of organic compounds it is that our oxidants are reacting

with. O3 almost only participates in the first oxidation step

of primary emitted organic compounds (especially sesquiter-

penes), though O3 also reacts with some second or higher

generation products from primary emitted compounds (e.g.

methacrolein and methyl vinyl ketone). Ehn et al. (2014)

recently showed that O3 participates in the production of

ELVOCs (extremely low volatility compounds) which, due

to their extremely low volatility, condense immediately unto

aerosol particles, which are later lost from the atmosphere

via deposition. O3 is thereby capable of removing carbon

from the atmosphere. The primary role of NO3 is to oxi-

dise directly emitted monoterpenes (first oxidation step). The

main path for NO3 to remove carbon from the atmosphere

is by oxidation of terpenes to soluble nitrates which can be

washed out. OH has the capacity to remove carbon, since

it has the capability of oxidising compounds until the com-

pounds have such a low vapour pressure that they go into

the particle phase and then later can deposit out of the atmo-

sphere. As a final remark, we therefore emphasise that the

oxidative strength is not equal to the oxidative importance.

8 Conclusions

Using a 1-D chemistry transport model we have performed

the following:

– Validation of the full vertical profile with sonde obser-

vations showed a tendency to underestimate the depth of

the mixed layer and, consequently, also the depth of the

night-time residual layer. The absolute humidity in the

model was lower than measured. The largest discrepan-

cies of surface energy balance were with the sensible

and latent heat fluxes, reflecting the challenge of mod-

elling turbulent fluxes. Evaluating the momentum flux

showed satisfactory agreement, and we can conclude

that the meteorology module works well.

– We discussed the model uncertainty due to use of mea-

sured inorganic gases by intercomparison of the gas

concentrations obtained by different measurement tech-

niques. Mostly the gas concentrations were within mea-

surement uncertainty. The largest problem seems to

www.atmos-chem-phys.net/15/3909/2015/ Atmos. Chem. Phys., 15, 3909–3932, 2015
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arise due to the high detection limit and low concen-

tration of NOx .

– We aimed and managed to successfully create a sim-

ple conversion for measured spectral irradiance to ac-

tinic flux only based on measurements of photolysis fre-

quency of NO2 and O3 (to form O1D). We showed that

the modelled rates compared well with the measured

(with index of agreement of 0.93 and 0.98).

– For the first time we have modelled the reactivity of O3

and NO3 and compared those to the reactivity of OH.

We conclude that OH is the main cleaning agent of or-

ganic compounds in the atmosphere. We find that OH is

approximately 1 order of magnitude more reactive than

NO3 and 5 orders of magnitude more reactive than O3

when considering the total reactivity.

We introduced a term that we call oxidative strength that

takes both the reactivity towards organic compounds

and the concentration of an oxidant into account. It de-

scribes the rate at which a given oxidant is capable of

removing organic compounds from the atmosphere. We

show that OH is the strongest oxidant at our boreal site

during daytime, while NO3 is strongest during night-

time. O3 competes with OH and NO3 during short peri-

ods in the early morning and evening.

We observed little difference between modelled in-

canopy and above-canopy reactivity. The largest differ-

ence in reactivity when considering the full day and

canopy was∼ 15 % in case of OH,∼ 50 % for NO3 and

about a factor of 3 in case of O3.

In the model, about 50 % of the OH reactivity was due to

inorganic compounds and methane,∼ 14 % due to reac-

tions with primary emitted monoterpenes, while about

44 % was due to oxidised biogenic volatile organic com-

pounds. When comparing the modelled OH reactivity

to the measured, we find a large discrepancy (∼ 65 %)

which is very common in this type of environment. Most

probably the actual main sink of OH is therefore not

the modelled inorganic compounds, but instead unac-

counted hydrocarbons. Almost the entire reactivity of

O3 was due to inorganic compounds. In case of NO3,

∼ 37 % of the reactivity was accounted for by inorganic

compounds, while the remaining reactivity was mostly

due to first-order reactions with monoterpenes. NO2,

which was included in the inorganic sink term, is, how-

ever, an instantaneous sink of NO3 and it does therefore

not control the boreal NO3 concentrations.

– Furthermore, we performed the first steady-state

lifetime calculations of NO3 in a boreal forest. We

obtained a summertime steady-state reactivity of NO3

on the order of ∼ 0.009 s−1 (campaign average), which

corresponds to a steady-state lifetime of 113 or 68 s

if loss due to reaction with NO2 is considered. For

comparison, the averaged instantaneous NO3 lifetime

was calculated to be 14–17 s.
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