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Abstract. Particle–water interactions of completely soluble

or insoluble particles are fairly well understood but less is

known of aerosols consisting of mixtures of soluble and in-

soluble components. In this study, laboratory measurements

were performed to investigate cloud condensation nuclei

(CCN) activity of silica particles mixed with ammonium sul-

fate (a salt), sucrose (a sugar) and bovine serum albumin

known as BSA (a protein). The agglomerated structure of the

silica particles was investigated using measurements with a

differential mobility analyser (DMA) and an aerosol particle

mass analyser (APM). Based on these data, the particles were

assumed to be compact agglomerates when studying their

CCN activation capabilities. Furthermore, the critical super-

saturations of particles consisting of pure and mixed soluble

and insoluble compounds were explored using existing theo-

retical frameworks. These results showed that the CCN acti-

vation of single-component particles was in good agreement

with Köhler- and adsorption theory based models when the

agglomerated structure was accounted for. For mixed parti-

cles the CCN activation was governed by the soluble com-

ponents, and the soluble fraction varied considerably with

particle size for our wet-generated aerosols. Our results con-

firm the hypothesis that knowing the soluble fraction is the

key parameter needed for describing the CCN activation of

mixed aerosols, and highlight the importance of controlled

coating techniques for acquiring a detailed understanding of

the CCN activation of atmospheric insoluble particles mixed

with soluble pollutants.

1 Introduction

The atmosphere of the Earth is composed of gases and sus-

pended liquid and solid aerosol particles of different size,

shape and chemical composition. Atmospheric aerosols have

several important impacts on the environment. First, at high

concentrations in urban areas, they are a health hazard to

the respiratory system causing millions of premature deaths

every year (Mackay and Mensah, 2004; Pope and Dock-

ery, 2006; Pope et al., 2009). Second, they scatter and ab-

sorb solar and thermal radiation and thereby directly influ-

ence the heat balance of the Earth and thus the climate (Mc-

Cormick and Ludwig, 1976; Haywood and Boucher, 2000;

Ramanathan et al., 2001) Third, they act as cloud conden-

sation nuclei (CCN) and ice nuclei (IN). Hence, they al-

ter the microphysical properties of clouds and thereby in-

directly affect the climate (Twomey, 1974; Albrecht, 1989;

Lohmann and Feichter, 2005). Fourth, atmospheric surface

and condensed-phase chemistry can occur in the aerosol

phase (Ravishankara, 1997; Seinfeld and Pandis, 2006).

Aerosol–cloud interactions represent the largest uncer-

tainty in predictions of the future climate (IPCC, 2013). To

reduce this uncertainty we need to improve our understand-

ing of the activation of aerosol particles to cloud droplets.

In general, the ability of aerosol particles to act as CCN de-

pends on their composition, size and structure (Kumar et al.,

2011a). Besides soluble aerosol particles, insoluble particles

like soot, mineral dust and silica can act as CCN – particu-
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larly if they are coated with hygroscopic material (Kumar et

al., 2009).

During atmospheric transport and aging, originally insol-

uble particles may acquire soluble species like (NH4)2SO4

(ammonium sulfate) on their surfaces (Levin et al., 1996).

In such cases, the threshold supersaturation of cloud droplet

activation substantially decreases when water adsorbs onto

the slightly soluble particles giving rise to the process of

adsorption activation (Saathoff et al., 2003; Hings et al.,

2008). Thus, the presence of soluble species on insoluble

particle surfaces can enhance water–particle interactions and

CCN activity of the particles. Several recent studies have fo-

cused on the CCN activation of insoluble and mixed soluble–

insoluble particles, leading to the development of new the-

oretical frameworks for describing the relevant phenomena.

The developed theories are often based on multilayer adsorp-

tion models and account for the curvature effects of the parti-

cles. One of these theories introduced by Sorjamaa and Laak-

sonen (2007) combined FHH (Frenkel, Halsey and Hill) ad-

sorption isotherms and traditional Köhler theory to describe

the equilibrium growth of insoluble particles. Sorjamaa and

Laaksonen (2007) showed that adsorption could help wet-

table insoluble compounds to activate in the atmosphere.

Thereafter, Kumar et al. (2009) developed a cloud droplet

formation parametrization in which the CCN constitute an

external mixture of soluble aerosol, that follows Köhler the-

ory, and insoluble aerosol, that follows FHH adsorption ac-

tivation theory (FHH-AT). They tested the new parametriza-

tion by comparing it to a numerical cloud model and found a

good agreement between the parametrization and the model.

Later Kumar et al. (2011a) reported laboratory measurements

of CCN activity and droplet activation kinetics of aerosols

dry generated from clays, calcite, quartz, silica and desert

soil samples. They used FHH adsorption activation theory

for describing fresh dust CCN activity and found that the ad-

sorption activation theory describes fresh dust CCN activity

better than Köhler theory. Afterward, Kumar et al. (2011b)

studied particle size distributions, CCN activity and droplet

activation kinetics of wet generated aerosols from mineral

particles and introduced a new framework of CCN activa-

tion of dust containing a soluble salt fraction, based on a

combination of the traditional Köhler and FHH adsorption

theories. Henning et al. (2010) on the other hand, studied ag-

glomerated soot particles coated with levoglucosan and am-

monium sulfate, and concluded that traditional Köhler theory

was sufficient to describe the CCN activation of these mixed

particles – as long as the amount of soluble material in the

particles was known (see also Stratmann et al., 2010). De-

spite these pioneering studies, CCN activation measurements

of partly insoluble particles containing a soluble fraction are

still scarce.

Combustion processes result in emissions of different

types of anthropogenic nanoparticles. Flame-made (fumed)

silica (SiO2) particles, mainly produced in flame reactors,

are among these kind of particle types (Scheckman et al.,

Table 1. Thermodynamic properties of components used in this

study.

Molar mass Density Solubility in κ

(gmol−1) (gcm−3) water (mass %)

(NH4)2SO4 132.14a 1.77a 43.3a 0.61e

Sucrose 342.3a 1.58a 67.1a 0.084f

BSA 66 500b 1.362b 60d 0.013g

SiO2 60.08a 2.16c – –

a Haynes et al. (2013). b Mikhailov et al. (2004). c Grayson (1985).
d Shiraiwa et al. (2011). e Petters and Kreidenweis (2007). f Ruehl et al. (2010).
g This work.

2009). Recently, fumed silica particles have been taken into

consideration due to their industrial importance (Scheckman

et al., 2009; Keskinen et al., 2011). In this study we use

fumed silica particles as an experimental model to investi-

gate the CCN activation of the insoluble and partly solu-

ble particles and the applicability of the current theoretical

frameworks developed to describe this phenomenon. Further-

more, since the presented theories generally assume that the

insoluble particles are spherical, the agglomerated structure

of the silica particles could cause uncertainties in the CCN

activation parametrizations. Taking into account the shape

characterization of aggregated silica particles may overcome

these uncertainties. Different studies have recently focused

on parametrizing the structure of aggregated particles, espe-

cially silica agglomerates (Fuchs, 1964; DeCarlo et al., 2004;

Virtanen et al., 2004; Biskos et al., 2006; Scheckman et al.,

2009).

The main aims of this study are (1) measuring the CCN

activity of pure and mixed soluble–insoluble particles, (2)

analysing and comparing the experimental results with the-

oretical calculations using the existing frameworks and (3)

connecting the mass analysis and shape characterization

of agglomerated silica particles to the existing theoretical

frameworks to gain a better understanding of the structure

effects of these particles. Laboratory measurements on the

particle size distribution, mass, morphology and CCN activa-

tion of insoluble fumed silica mixed with different amounts

of soluble materials have been conducted. Furthermore, the

experimental CCN activity results are compared to theoreti-

cal calculations using the framework introduced by Kumar et

al. (2011b), and the distribution of soluble material on wet-

generated particle populations was discussed.
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Figure 1. Schematic of the experimental setup and three types of

measurements: CCN activity measurements, size distribution mea-

surements by SMPS and particle mass analysing by APM.

2 Experimental setup

Pure soluble or insoluble and mixed soluble–insoluble par-

ticles were generated and analysed in this study. The inves-

tigated mixed particles consisted of fumed silica (Degussa,

Aerosil-90) as the insoluble part and three different hygro-

scopic components as the soluble part. The first hygroscopic

component was ammonium sulfate which is a water-soluble

inorganic salt with high hygroscopicity (Table 1); the sec-

ond one was sucrose which is a sugar, i.e. a water-soluble or-

ganic; the third one was bovine serum albumin (BSA) which

is a large water-soluble protein with molecular dimensions

of approximately 4× 4× 14 nm (Sugio et al., 1999; Jey-

achandran et al., 2010). The SiO2 used in the experiments

was hydrophilic fumed silica, with a specific surface area of

90 m2 g−1 and purity of ≥ 99.8 % from Evonik Industries.

Ammonium sulfate and BSA were purchased from Sigma-

Aldrich, and sucrose was purchased from VWR International

BVBA. All chemicals had purities higher than 99 %.

Figure 1 shows a schematic of the experimental setup used

in this study. Pure silica and pure soluble particles as well as

mixed particles made of silica and soluble species were pro-

duced using the atomization-drying method described in Ke-

skinen et al. (2011). Particles were generated by an aerosol

generator (Model 3076, TSI Inc., USA) after dissolving ma-

terials in deionized water (Model Maxima LS, USF Elga Ltd)

with the production resistivity > 10 M� cm and total organic

carbon concentration < 5 ppb. The solute content in the water

suspension was 0.06 wt %. For mixed particles, the ratios of

soluble components to silica were 1 : 19, 1 : 9 and 1 : 3, im-

plying that the fractions of soluble species were expected to

be 5, 10 and 25 % of total particulate mass in the atomized

solution. We use the term solution, despite the fact that the in-

soluble silica particles were suspended in the water (instead

of dissolved).

After the particles had been produced they were fed into

a diffusion drier (Fig. 1) consisting of a porous tube sur-

rounded by silica gel (Rotronic AG, model HC2-C04), result-

ing in a relative humidity (RH) below 5 % and they were neu-

tralized using a charge neutralizer. Thereafter particle num-

ber size distributions were measured using a scanning mo-

bility particle sizer (SMPS). The SMPS system was com-

posed of an electrostatic classifier, which included a differen-

tial mobility analyser (DMA) (Model 3071; TSI, Inc.) to bin

the particles according to electrical mobility, and an ultrafine

condensation particle counter (CPC, model 3025; TSI, Inc.)

to count the size-binned particles exiting the DMA.

Simultaneously, size-resolved CCN activity of the gener-

ated particles was measured using a CCN counter (CCNc;

Droplet Measurement Technologies Inc.) (Roberts and

Nenes, 2005) (Fig. 1). Before entering the CCNc, particles

were size classified by a DMA, of the same model as the

DMA used in the SMPS. The CCNc operates by super-

saturating sample air to the point where the CCN become

detectable particles. Humidified sheath air (454 cm3 min−1)

surrounds the sample flow (45.4 cm3 min−1) in the CCN col-

umn to hold it in the centre of the column in the region of

maximum supersaturation. The ratio of the flows was around

1 part of sample air to 10 parts of sheath air and the total flow

rate was 500 cm3 min−1. The supersaturation in the column

could be varied between 0.1 and 1.5 %. The total number

concentration of the particles entering the CCNc was mea-

sured by a CPC (Model 3772; TSI, Inc.) and the number of

activated droplets was counted by an optical particle counter

(OPC) over 20 size bins in the diameter range from 0.75 to

10 µm.

The effect of the silica particle morphology on activation

was investigated by measuring the mass of size classified par-

ticles by aerosol particle mass analyser (APM) (model APM-

3600; Kanomax Inc.) (Fig. 1) (McMurry et al., 2002; Park et

al., 2003a and 2003b). The APM provides a direct relation-

ship between the applied voltage, rotation speed, and particle

mass (Liu et al., 2012). Therefore, by measuring the outlet

number concentration of the APM corresponding to different

applied voltages of the instrument, it was possible to mea-

sure the mass distribution of the size selected particles. For

each APM voltage, the downstream number concentration

was measured by a CPC (Model 3772; TSI, Inc.) (Fig. 1).

From the voltage corresponding to the highest concentration

the average particle mass was calculated using the following

equation (McMurry et al., 2002; Park et al., 2003b):

m=
qV

r2ω2 ln(r2/r1)
, (1)

wherem is the particle mass, ω is the APM angular speed, V

is the applied voltage, q is the particle charge, and r1, r2 and

r are the inner, outer and rotating radius of the instrument,

respectively.

www.atmos-chem-phys.net/15/3815/2015/ Atmos. Chem. Phys., 15, 3815–3829, 2015



3818 M. Dalirian et al.: CCN activation of fumed silica aerosols

3 Theoretical frameworks

3.1 Non-sphericity of particles

Particle shape can affect the physical dimensions of the par-

ticle in terms of the surface available for water vapour to ad-

sorb onto, as well as for the effective curvature determining

the Kelvin effect (see e.g. Kumar et al., 2011a). In the case

of highly non-spherical or porous particles the conversion be-

tween the electrical mobility (the quantity measured with the

SMPS system) and the available surface area or particle vol-

ume and density is not straightforward. As mentioned above,

we used measurements of particle mass for the pure silica

agglomerates to complement the information about the mo-

bility of these particles.

Two parameters, the dynamic shape factor and fractal

dimension, have been widely used to characterize non-

sphericity of aerosol particles. Dynamic shape factor is de-

fined as the ratio of the drag force on the agglomerated parti-

cles to the drag force on the volume equivalent spherical par-

ticles (χ ′, volume-based shape factor) or to the drag force on

the mass equivalent spherical particles (χ , mass-based shape

factor) (Kelly and McMurry, 1992; DeCarlo et al., 2004). The

fractal dimension (Df) is the coordination number in the ag-

gregate and links properties like surface area of a particle to

the scale of the measurements (Hinds, 1999; Ibaseta and Bis-

cans, 2010). These parameters are applicable to quantify the

morphology of agglomerated particles.

The mass-based shape factor is defined as (Kelly and Mc-

Murry, 1992)

χ =
db

dme

·
C(dme)

C(db)
, (2)

where db and dme are mobility diameter and mass equiva-

lent diameter, while C(db) and C(dme) are the correspond-

ing Cunningham slip correction factors. The slip correction

factors are given by (Kulkarni, et al., 2011)

C(di)= 1+
2λ

di

(
1.142+ 0.558exp

(
−0.999

di

2λ

))
, (3)

where λ is the mean free path of the gas molecules and di cor-

responds to either of dme or db. The mass equivalent diameter

(dme) was calculated using the following equation (Kelly and

McMurry, 1992):

dme =

(
6m

πρp

)1/3

, (4)

where ρp is the material density of the silica particle (see

Table 1).

To calculate the volume and surface equivalent diameters

(dve and dse) of the silica particles, which will be required to

estimate the CCN capability of these particles, in addition to

the mobility and mass data, knowledge on the volume-based

shape factor (χ ′) is also required (see DeCarlo et al., 2004

and Kumar et al., 2011a, for details):

dve

C(dve)
=

db

χ ·C(db)
(5)

dse =
3χdve− db

2
. (6)

In this regard two limiting assumptions can be made. The first

one is to assume compact agglomerates with nearly spherical

shape and internal voids. In this case the mobility and volume

equivalent diameters are approximately equal (χ ′ =1) and

also equal to the surface equivalent diameter, but larger than

the mass equivalent diameter, i.e. db = dve = dse > dme. The

particle density is in this case lower than the pure silica ma-

terial density, but equal to the effective density. The second

assumption is to approximate the silica particles as chain-like

agglomerates with no internal voids, for which mass and vol-

ume equivalent diameters are equal (χ =χ ′), but smaller than

surface equivalent and mobility diameters, i.e. dve = dme < dse

and db. In this case the particle density would be the same as

the pure silica material density but higher than the effective

density.

The fractal dimension (Df) of the silica particles pro-

vides further insight on their sphericity (DeCarlo et al., 2004;

Boldridge, 2010; Keskinen et al., 2011): for perfect spheres

Df = 3 and for line-like structures Df = 1.

The fractal dimension of the pure silica particles was de-

termined using the scaling law for effective density versus

mobility diameter (Skillas et al., 1998, 1999):

ρe ∝ d
(Df−3)
b , (7)

where ρe is the particle effective density. The ρe was esti-

mated using the following equation (Virtanen et al., 2004):

ρe =m/
(
πd3

b/6
)
, (8)

where m is the mass of the particles determined using APM

(Eq. 1).

3.2 CCN activation of soluble particles

κ-Köhler theory (Petters and Kreidenweis, 2007) was used

to estimate the critical supersaturation of pure ammonium

sulfate, sucrose and BSA particles. The saturation ratio (S)

is expressed as

S =
d3

p − d
3
dry

d3
p − d

3
dry(1− κ)

exp

(
4σwMw

RT ρwdp

)
, (9)

where σw is the water surface tension, ρw is the water den-

sity, Mw is the molar mass of water, R is the universal gas

constant, T is the temperature, ddry is the dry particle diam-

eter, dp is the droplet diameter and κ is the hygroscopicity

parameter of soluble particles.
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The supersaturation (s) is equal to (S−1) and is expressed

as a percentage. The maximum value of the supersaturation

is called critical supersaturation (sc) – similar definition nat-

urally holding for critical saturation ratio Sc as well. Thus, at

the critical point,

ds

ddp

∣∣∣∣
dp=dc

= 0, (10)

where dc is called the critical diameter. The κ values for pure

soluble particles were extracted from previous studies or, in

the case of BSA, derived by applying the following relation

introduced by Petters and Kreidenweis (2007) to our obser-

vations of the critical supersaturations of the pure soluble

particles:

κ =
4A3

27ddryln2Sc

, (11)

where Sc is the saturation ratio at the critical

point, A= 4σMw

RT ρw
, σ = 0.072 Jm−2, T = 298.15 K,

Mw = 0.018 kgmol−1 and ρw = 1000 kgm−3.

The pure soluble particles were assumed to be compact

and spherical, and thus the mobility diameter was used as the

ddry in Eqs. (9)–(11).

3.3 CCN activation of insoluble silica

The critical supersaturation of pure silica particles was cal-

culated using FHH adsorption theory (Sorjamaa and Laak-

sonen, 2007, Kumar et al., 2009, 2011a). In this case the re-

lationship between water supersaturation s and particle size

can be expressed as

s =
4σwMw

RT ρwdp

−AFHH

(
dp− ddry

2dH2O

)−BFHH

, (12)

where dH2O(= 2.75 Å) is the diameter of the water molecule,

and AFHH and BFHH are the FHH adsorption isotherm pa-

rameters. The first and second terms on the right-hand side

of Eq. (12) correspond to the contributions from the Kelvin

and adsorption effects, respectively.

In the literature, different values of the parameters AFHH

and BFHH for silica particles have been reported. Kumar

et al. (2011a) obtained the values 2.95 and 1.36 for AFHH

and BFHH of quartz silica, respectively, and Keskinen et

al. (2011) assigned values of 4.82 and 2.16 for A and B for

non-agglomerated fumed silica particles (Degussa, Aerosil-

300) with the diameter of 8 and 10 nm.

To yield a reasonable estimate of the surface available for

adsorption, the surface equivalent diameter of the pure silica

particles was used as ddry in Eq. (12).

3.4 CCN activation of mixed soluble and insoluble

particles

Kumar et al. (2011b) used adsorption activation theory as-

suming that the particles are spheres and presented a model

describing mixed particles with an insoluble and a soluble

fraction. They introduced the following relation between wa-

ter supersaturation, particle size and composition:

s =
4σwMw

RT ρwdp

−

εsd
3
dryκ(

d3
p − εid

3
dry

)
−AFHH

(
dp− ε

1/3

i ddry

2dH2O

)−BFHH

, (13)

where εi and εs = 1− εi are the insoluble and soluble vol-

ume fractions in the dry particles and κ is the hygroscopicity

parameter of the soluble part. AFHH and BFHH are the FHH

adsorption isotherm parameters of the insoluble part, which

is assumed to interact with the water through adsorption onto

its surface.

To estimate the average insoluble volume fractions of the

mixed particles, the following relation was used:

εi =
mi/ρi

mi/ρi+ms/ρs

, (14)

wheremi andms are the insoluble and soluble mass fractions

in the total mixed aerosol population, and ρi and ρs are the

densities of the insoluble and soluble parts, respectively. The

bulk densities of the used components are listed in Table 1.

In the second term of Eq. (13) the volume equivalent diam-

eter was used as ddry, while the surface equivalent diameter

was assumed to represent the ddry in the last term.

4 Results and discussion

4.1 Particle size distributions

The SMPS measurements yielded the average number size

distributions for silica particles mixed with (NH4)2SO4, su-

crose and BSA (Fig. 2). Figure 2a displays average num-

ber size distributions for particles made of pure fumed sil-

ica, pure (NH4)2SO4 and particles made of silica and differ-

ent amounts of (NH4)2SO4. As is evident in the figure, size

distributions of particles generated from pure silica or pure

(NH4)2SO4 are unimodal while size distributions of parti-

cles generated from the silica–(NH4)2SO4 mixtures are bi-

modal. The mean mobility diameter is ∼ 30 nm for the pure

(NH4)2SO4 particles, and approximately 150 nm for the pure

silica particles. The first mode of the bimodal size distribu-

tions, associated with particles generated from the aqueous

bulk mixtures, is centred at a diameter of less than 30 nm. The

second mode, with lower number concentration, is centred at

approximately 150 nm. Figure 2b shows the average num-

ber size distributions of particles made of sucrose and silica.

Particles made of pure sucrose have a mean diameter of ap-

proximately 50 nm. Size distributions associated with parti-

cles generated from the silica–sucrose mixtures are bimodal

(Fig. 2b); the first mode centred at a diameter of less than

www.atmos-chem-phys.net/15/3815/2015/ Atmos. Chem. Phys., 15, 3815–3829, 2015
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Figure 2. Average particle number size distributions (SMPS) for sil-

ica particles mixed with (a) (NH4)2SO4, (b) sucrose and (c) BSA.

Each average size distribution is based on at least 70 individual size

distributions, and the error bars represent the standard deviation of

the measurements.

50 nm and the second mode centred at a diameter of about

150 nm. Similarly, Fig. 2c shows the average SMPS num-

ber size distributions of particles made of silica and BSA.

These data are comparable with previous two measurements

in Figs. 2a–b. The particles made of the large BSA protein

have a mean diameter of about 75 nm. The mode associated

with particles made of a mixture of BSA and silica is centred

at about 150 nm.

In the case of mixed aerosols, the particles in the first

mode of the bimodal size distributions are likely pure sol-

uble particles, while the second mode of the bimodal dis-

tribution curves represents silica particles mixed with solu-

ble species. Hence, when analysing the activation behaviour

of mixed particles we omitted the CCNc data of the small-

est particles by subtracting their contribution from the CCN

numbers and restricted our analysis to particle sizes larger

than 100 nm.

To estimate the average soluble volume (mass) fractions

in the mixed particles, we calculated the fraction of soluble

material lost to the first pure mode of the particle size dis-

tributions and subtracted it from the total soluble mass. In

this regard, we fitted log-normal distribution curves to the

number size distributions associated with particles from the

mixtures and estimated the volume and mass distributions re-

lated to each particle number size distribution. Hereupon, it

was possible to estimate the fraction of total soluble mass re-

maining in the first mode of the bimodal size distributions for

each mixture, and the fraction of the total soluble mass which

was mixed with silica (Table 2). By multiplying this fraction

with the soluble mass fraction in the bulk mixture we gained

an estimate of the real average soluble mass fraction in the

mixed/coated particles excluding the portion of the pure sol-

uble particles. As is evident from Table 2, the overall mass

losses of the soluble material from the first mode are small,

and 87–100 % of the total soluble masses were mixed with

silica particles.

4.2 Mass analysis and size characterization of pure and

mixed silica particles

Since fumed silica particles are agglomerates, mass analy-

sis of the pure silica particles could help us to get a better

understanding of their shape (see Sect. 3.1). As an example,

Fig. 3a shows the observed average number concentrations

of 100 nm size-selected silica particles (by DMA) for differ-

ent APM voltages. A log-normal distribution was fitted to

provide the voltage value corresponding to the peak of the

distribution. After determining the mass of size selected par-

ticles using Eq. (1), the effective density of the silica particles

was estimated (Eq. 3). The APM measurements were per-

formed for two different rotation speeds of the APM (3000

and 5000 rpm). The achieved effective particle densities us-

ing these two rotation speeds are presented in Fig. 3b. There

is only a small difference in effective density between the

two different speeds, giving confidence in the results. Fig-

Atmos. Chem. Phys., 15, 3815–3829, 2015 www.atmos-chem-phys.net/15/3815/2015/
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Table 2. The total soluble fraction of the solute masses in the bulk mixtures, the fraction of total soluble mass mixed with silica, the average

soluble mass fraction of the mixed particles (calculated from particle size distributions, see text for details).

Soluble mass fraction Fraction of total soluble mass mixed with silica (%) Total soluble mass fraction in the mixed particles (%)

in the bulk mixture (%) Silica+ (NH4)2SO4 Silica+ sucrose Silica+BSA Silica+ (NH4)2SO4 Silica+ sucrose Silica+BSA

25 92 98 87 23.4 24.6 22.5

10 88 99 99 8.9 9.9 9.9

5 87 99 ∼ 100 4.4 4.9 ∼ 5

ure 3c displays the mass-based shape factor (χ) of silica par-

ticles for different mobility diameters. The χ is clearly larger

than 1 and increases by increasing mobility diameter. This

indicates that internal voids and/or irregularities of the par-

ticles increase with increasing particle diameter (Kelly and

McMurry, 1992).

The fractal dimension of the silica particles was estimated

using the slopes of the curves in Fig. 3b and Eq. (6) yield-

ing Df values of 2.54 and 2.55 for the 3000 and 5000 rpm

rotation speeds, thus suggesting closer to spherical rather

than rod- or chain-like structures. The fitted Df values are

also close to the value (Df = 2.57) reported by Keskinen et

al. (2011) and Ibaseta and Biscans (2010) (Df = 2 to 2.5) for

fumed silica (Degussa, Aerosil-300 and -200, respectively).

We therefore expect the silica particles to be better repre-

sented by the “compact agglomerates” assumption and ap-

plying this assumption (χ ′ = 1, see Sect. 3.1), the volume

and surface equivalent diameters used in all the CCN activity

calculations were thus approximated with the mobility diam-

eters.

The mass analysis results were only available for the pure

silica particles. When analysing the CCN activation data for

the mixed particles, we assumed that the effective density of

the silica in the mixed particles was similar to the effective

density of the pure silica particles. The physical meaning of

this assumption would be that the silica present in the mixed

particles would contain the same volume of voids per unit

silica mass as the pure particles. Furthermore, when calculat-

ing the critical supersaturations using Eq. (13) the adsorption

term was calculated using the surface equivalent diameter dse

as ddry and the solubility term using the volume equivalent

diameter dve as ddry, which in our case, by compact agglom-

erates assumption dve = dse = db.

4.3 CCN activation results

Before analysing the CCN activity of the generated parti-

cles, all the activation curves were charge-corrected using

the procedure introduced by Moore et al. (2010). The ratio

of the corrected CCN and CN (condensation nuclei, mea-

sured by CPC) time series thus determines the activated frac-

tion (also referred to as activation ratio) of the specified par-

ticles (Kumar et al., 2011a). Furthermore, as described in

Sect. 4.3.2, for the mixed particles the contributions of the

smaller completely soluble particle mode (see Fig. 2) were

subtracted from the CCN concentrations. Finally, all the ac-

tivation curves used in the further analysis were normalized

using a correction factor derived from the ammonium sulfate

(AS) experiments, assuming that AS activation probability

reaches unity at high supersaturations. In the cases where

the normalization with the AS data would have produced

CCN / CN values larger than unity, the value was set to unity

instead.

4.3.1 CCN behaviour of pure components

Figure 4 shows the activation ratio dependence on super-

saturation for 120 nm (mobility diameter) pure silica, BSA,

sucrose and ammonium sulfate particles. A sigmoid curve

was fitted to each set of activation ratio data. Critical su-

persaturation (sc) is often associated with the supersatura-

tion where 50 % of the particles are CCN activated – equiv-

alent to a CCN / CN ratio of 50 %, and we will follow this

convention although the two are not necessarily equal when

the CCN / CN curve is not a step function. As expected,

(NH4)2SO4 particles, which are the most hygroscopic parti-

cles investigated in this study (see κ values in Table 1), acti-

vated at lower supersaturations than was the case for sucrose,

silica and BSA particles. The pure silica particles, which are

insoluble and non-hygroscopic, exhibited the highest critical

supersaturation of the investigated compounds (Fig. 4).

Figure 5 displays activation ratio against supersaturation

for pure silica particles of different mobility diameters. As

is evident from Fig. 5, the critical supersaturation decreases

with increasing particle diameter. Experimentally and the-

oretically determined critical supersaturations of pure sil-

ica particles as a function of particle mobility diameter are

shown in Fig. 6. Previously, the values for FHH adsorption

parameters (Eqs. 10 and 12) of different types of silica have

been determined by Kumar et al. (2011a) (quartz), and Keski-

nen et al. (2011) (fumed silica, Aerosil-300). To compare our

results to these studies, we fitted the FHH adsorption param-

eters for the pure silica particles (fumed silica, Aerosil-90).

AFHH and BFHH values of 2.50 and 1.62 explain our results

on the activation diameter vs. critical supersaturation (Fig. 6),

although the fits were difficult to constrain uniquely. Our re-

sults are closer to those reported by Keskinen et al. (2011)

than Kumar et al. (2011a), but the AFHH and BFHH values

are close to those reported by Kumar et al. (2011a). This

highlights the sensitivity of the fits to adsorption parameters,
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Figure 3. (a) Average number concentration of 100 nm (mobility

size) pure silica particles downstream the APM and at a rotation

speed of the APM of 3000 rpm. The number concentrations were

averaged over 1 min for each APM voltage, and the error bars rep-

resent the standard deviation of about 60 measurements recorded

under the same conditions. (b) Effective density of silica particles

for different mobility diameters and two different rotation speeds

of the APM (3000 and 5000 rpm). The fitted fractal dimensions are

2.54 and 2.55, respectively. (c) Mass-based shape factor versus elec-

trical mobility diameter for silica particles.

reflecting the fact that our data set is not sufficient for con-

straining any physical or chemical phenomena behind these

values. In particular, the parameter AFHH, describing the in-

teractions of the first monolayer with the adsorbent surface,

seems to be difficult to constrain based on the CCN activa-

tion data. This is perhaps not surprising as at the point of

activation the rapid condensation of water might relatively

Figure 4. The average activation ratio of pure soluble or insoluble

particles with the mobility diameter of 120 nm at different super-

saturations. Error bars represent the standard deviation of the acti-

vation efficiency of about 20 measurements corresponding to each

supersaturation of the instrument. Critical supersaturation sc is de-

fined as the point where the activation ratio is equal to 50 %.

Figure 5. The average activation ratio versus supersaturation for

different mobility diameters of silica particles. Error bars represent

the standard deviation of the measured activation efficiency as a re-

sult of about 20 measurements corresponding to each supersatura-

tion of the instrument.

soon destroy the information of the very first steps of the ad-

sorption/monolayer formation. For the parameter BFHH, on

the other hand, the fits seem to reproduce relatively robust

values. CCN activation measurements are probably not the

best approach for yielding accurate data of the physical phe-

nomena behind the adsorption parameters – as a lot of infor-

mation has already been lost at the point where the CCN are

activated and detected – but should be rather regarded as a

valuable source of information on the processes limiting at-

mospheric cloud droplet formation. It should also be pointed

out that the quartz silica (Kumar et al., 2011a) is not as hy-
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Figure 6. Critical supersaturations against activation mobility diam-

eter of pure silica particles with different FHH adsorption isotherm

parameters from different studies compared to experimental results.

Error bars represent the minimum vs. maximum values of supersat-

uration to estimate the sc corresponding to each db.

drophilic as fumed silica which probably affects the critical

supersaturation. Furthermore, the FHH adsorption parame-

ters in the Keskinen et al. (2011) study were fitted for only

8 and 10 nm fumed silica particles which were most likely

spherical and thus potentially not fully representative of the

agglomerated particles that we used. Impurity of the silica

could also affect the results even though the deionized water

was used in all studies. To conclude, the experimental results

for sc of pure silica particles were in good agreement with

theoretical calculations using FHH adsorption isotherm and

small deviations were only observed for larger diameters.

To estimate the critical supersaturations of pure soluble

particles, κ-Köhler theory (Eqs. 9 and 10) was applied. Ta-

ble 1 lists κ values of the soluble materials used in this study.

The ability for ammonium sulfate particles to act as CCN has

been widely studied (e.g. Garland, 1969; Kreidenweis et al.,

2005; Hiranuma et al., 2011), and here we employed the pre-

viously reported hygroscopicity (κ) values (Petters and Krei-

denweis, 2007), given the relatively good agreement between

the κ value fitted to our results (0.78) and the literature val-

ues. The κ value for pure sucrose was extracted from (Ruehl

et al. (2010), which was also in reasonable agreement with

the value 0.08 that best described our results. For the pure

BSA particles κ was calculated based on Eq. (11) using the

CCN activation results of pure BSA particles in this study.

The experimentally and theoretically determined critical su-

persaturations for pure (NH4)2SO4, BSA and sucrose par-

ticles are shown in Fig. 7. Indeed, κ-Köhler theory results

using the literature values for the hygroscopicity parameter

were in good agreement with the experimentally determined

critical supersaturations of pure soluble particles.

Figure 7. Experimental and theoretical critical supersaturations of

pure (NH4)2SO4, sucrose and BSA particles for different mobil-

ity diameters based on κ-Köhler theory. Error bars represent the

minimum vs. maximum values of supersaturation to estimate the sc
corresponding to each db.

4.3.2 CCN behaviour of the mixtures

Here we present the CCN activation results of co-synthesized

silica particles mixed with (NH4)2SO4, sucrose or BSA con-

sidering the determined total soluble fractions in the mixed

particle population from Table 2.

The activation ratio curves were determined for different

diameters of mixed particles and different ratios of soluble

to insoluble materials. For mixed particles the activation ra-

tio curves were modified by subtracting the contributions of

the smaller completely soluble particle from the CCN and

CN concentrations using the following procedure: first, the

contribution of pure soluble particles to the total number of

CN for each size were estimated by fitting two log-normal

modes to the size distributions such as those shown in Fig. 2.

The pure soluble mode was then subtracted from the CN data

for each size to yield an estimate of the total numbers of

mixed CN. Second, using the CCN / CN ratios of the pure

soluble particles (shown for 120 nm in Fig. 4) we could esti-

mate the number of CCN originating from pure CN at each

mobility diameter and supersaturation. Subtracting this from

the total number of CCN, we could yield an estimate for the

CCN / CN ratio for the mixed particles. Figure 8 represents

the activation ratio curves for 150 nm (mobility diameter)

pure and mixed particles. Although both the raw data (un-

normalized) and the normalized curves are shown for com-

pleteness, only the normalized data were used in the follow-

up analysis. It can be seen that the normalization procedure

caused only very small adjustments to the 50 % points in-

ferred from the curves.

Figure 8a shows the activation probabilities of mixed

silica–(NH4)2SO4 particles. The critical supersaturation

(corresponding to CCN / CN = 50 %) is higher for pure sil-
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Figure 8. (a) Activation ratio curves for different supersaturations of silica + (NH4)2SO4 particles of 150 nm mobility diameter, (b) ac-

tivation ratio curves for different supersaturations of silica + sucrose particles of 150 nm mobility diameter, (c) activation ratio curves for

different supersaturations of silica + BSA particles of 150 nm mobility diameter. The activation curves on the left side (subplots a1–c1) rep-

resent the unnormalized data, while the activation curves on the right side (subplots a2–c2) show the normalized ones. Error bars represent

the standard deviation of the measured activation efficiency as a result of about 20 measurements corresponding to each supersaturation of

the instrument.

ica particles than for the particles with soluble material. Evi-

dently, the pure (NH4)2SO4 particles have the lowest critical

supersaturation. Furthermore, the critical supersaturation de-

creases when the fraction of soluble material in the particles

increases, and the CCN / CN curves are shallower (i.e. fur-

ther from a step function) for the mixed as compared with the

pure particles. The same behaviour can be observed in Fig.

8b for 150 nm silica particles mixed with sucrose. Pure su-

crose particles were activated at a supersaturation of 0.22 %

which is comparable to previous studies (e.g. Rosenorn et

al., 2006). The sc decreases with increasing sucrose ratio in

the mixed particles, similar to what was observed for ammo-

nium sulfate in Fig. 8a. In the case of particles containing

BSA, however, a different behaviour was observed: sc was

higher for particles made of 5 and 10 % BSA than for par-

ticles made of pure silica (Fig. 8c). The reason for this be-

haviour is not clear but it is known that adsorption of BSA

on silica can affect the structural properties of BSA. As was

explained by Larsericsdotter et al. (2005), for soft proteins

such as BSA the structural stability decreases when adsorp-

tion onto other materials occurs. On the other hand, the BSA

can also affect the agglomerate structure of the mixed parti-

cles – for instance through more compact agglomerates with

increasing BSA concentrations (see e.g. Kiselev et al., 2010

and Stratmann et al., 2010 for discussion on effects of coat-

ing on agglomerate compactness). However, it is also possi-

ble that this effect is solely due to different distribution of the

soluble materials as a function of particle size for the differ-

ent bulk solution compositions, which is discussed in detail

below.

To estimate the soluble mass fractions (ωs) in the

coated/mixed particles required for the application of

Eq. (13), the total amount of soluble material was first esti-

mated by fitting log-normal size distributions to the observed

size distributions (Sect. 4.1). The dashed lines in Fig. 9 show

the theoretical critical supersaturations (using Eq. 13) of par-
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Figure 9. Experimental and theoretical critical supersaturations for

mixed silica + (NH4)2SO4 (AS) particles for different particle mo-

bility diameters using the model of Kumar et al. (2011b). Dashed

lines represent calculated critical supersaturations based on an as-

sumption of constant soluble mass fractions (ωs) with changing

diameter and solid lines show the critical supersaturations based

on the size-dependent soluble mass fractions. Error bars repre-

sent the minimum vs. maximum values of supersaturation to es-

timate the sc corresponding to each mobility diameter. The inset

represents assumed constant soluble mass fractions as well as size-

dependent ones corresponding to the 50 % points in the CCN / CN

curves for different size vs. supersaturation pairs of mixed silica +

(NH4)2SO4 particles.

ticles consisting of a mixture of silica and ammonium sul-

fate assuming soluble volume fractions (εs) corresponding

to these constant ωs (see Table 2 and the dashed lines of

the inset in Fig. 9) with changing diameter. These theoreti-

cal values of critical supersaturations are mostly lower than

the observed critical supersaturations (stars), and the size-

dependence of the critical supersaturation is not captured

by the theory. We observed the same (although less pro-

nounced) behaviour for silica particles mixed with sucrose

and BSA (Figs. 10 and 11). In all three cases, the observed

critical supersaturations were higher than expected from the

model by Kumar et al. (2011b) using constant soluble mass

fractions. The calculations are very sensitive to the κ val-

ues and the deviation between experimental and estimated

Figure 10. Experimental and theoretical critical supersaturations

for mixed silica + sucrose particles for different particle mobility

diameters using the model of Kumar et al. (2011b). Dashed lines

represent calculated critical supersaturations based on an assump-

tion of constant soluble mass fractions (ωs) with changing diam-

eter and solid lines show the critical supersaturations based on the

size-dependent soluble mass fractions. Error bars represent the min-

imum vs. maximum values of supersaturation to estimate the sc cor-

responding to each mobility diameter. The inset represents assumed

constant soluble mass fractions as well as size-dependent ones cor-

responding to the 50 % points in the CCN / CN curves for different

size vs. supersaturation pairs of mixed silica + sucrose particles.

sc for mixed particles increases with increasing hygroscopic-

ity. The largest deviations were observed for particles mixed

with (NH4)2SO4, which is more hygroscopic (κ = 0.61) than

the other compounds. The adsorption term contribution to

the critical supersaturation in Eq. (13) was generally minor:

< 0.72 % for silica + (NH4)2SO4, < 3.8 % for silica + su-

crose and < 7 % for silica+ BSA of the total (Kelvin+ solu-

bility+ adsorption) contribution for all the studied composi-

tions and supersaturations. The theoretical predictions were

thus dominated by the Kelvin and solubility effects – simi-

larly to the case of soot agglomerates studied by Henning et

al. (2010).

The small contribution of the adsorption term to the theo-

retical predictions combined with the shallow activation ratio

curves (see Fig. 8) suggest that the reason for the apparent
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Figure 11. Experimental and theoretical critical supersaturations

for mixed silica + BSA particles for different particle mobility di-

ameters using the model of Kumar et al. (2011b). Dashed lines

represent calculated critical supersaturations based on an assump-

tion of constant soluble mass fractions (ωs) with changing diam-

eter and solid lines show the critical supersaturations based on the

size-dependent soluble mass fractions. Error bars represent the min-

imum vs. maximum values of supersaturation to estimate the sc cor-

responding to each mobility diameter. The inset represents assumed

constant soluble mass fractions as well as size-dependent ones cor-

responding to the 50 % points in the CCN / CN curves for different

size vs. supersaturation pairs of mixed silica + BSA particles.

discrepancy between the theoretical and the observed critical

supersaturations is a non-constant distribution of the soluble

material with varying particle size. This explanation seems

particularly feasible taking into account the good agreement

between the experiments and theory for the pure particles,

and the fact that the particle generation method (atomization

and drying of aqueous solutions) does not allow for control-

ling the ratio of soluble to insoluble materials at a given par-

ticle size – only for the overall aerosol population. To yield

further insight into this, we estimated the distribution of the

soluble material by fitting size-dependent εs distributions to

the CCN / CN vs. sc curves (e.g. Fig. 8) using Eq. (13) –

thus assuming that all the mixed particles that activate at a

given supersaturation interval contain a specific soluble vol-

ume (mass) fraction. It is worthwhile to note that the εs de-

termined in this way corresponds to the surface or volume

equivalent diameters (linked to the particle mass through the

modified silica density including internal voids, see Sect. 3),

and is thus not directly comparable to the mass fractions in

the atomized solution.

The sc (defined as the 50 % point in the CCN / CN curves)

vs. mobility diameter results obtained through the fitting pro-

cedure are shown by the solid lines in Figs. 9–11, and the

resulting soluble mass fractions ωs corresponding to the εs
fitted to the 50 % points in the CCN / CN curves as a func-

tion of particle size are shown as the solid lines in the insets.

The results suggest a very uneven distribution of the solu-

ble material as a function of particle size: the small particles

contain considerably higher fractions of soluble material than

the larger ones, and the effect increases with the amount of

soluble material. In the case of BSA (Fig. 11), the differ-

ent mixture compositions lie relatively close to each other in

terms of their critical supersaturations – making it difficult

to constrain the soluble contents of these particles. However,

it seems clear that at the small particle sizes (< 150 nm) the

particle population is dominated by pure BSA particles. At

sizes between 150 and 250 nm, on the other hand, extremely

low BSA content is required to reproduce the observed criti-

cal supersaturations. This is of course also visible in Fig. 8c,

where the mixtures with low BSA content seem to activate at

even higher supersaturations than pure silica. The exact rea-

son for this is not clear, but the effect of BSA on silica parti-

cle structure (e.g. density, etc.) could be speculated upon.

While the size-dependent ωs shown in Figs. 9–11 corre-

sponds to the points at which 50 % of the CN activate as

CCN for a given particle diameter and supersaturation, the

ωs values vary even for a given particle size – as indicated by

non-step function shape of the activation curves in Fig. 8. An

example distribution of the soluble mass as deduced from

the CCN / CN vs. sc data (Fig. 8) using Eq. (13) is shown

in Fig. 12 for the 150 nm mobility diameter mixed particles.

The figure shows that for each mixture, there is an uneven

distribution of soluble mass fraction in the particles of a given

size. In all cases, there is a large number of particles with

very low soluble mass fractions (less than initial bulk so-

lution) and the composition of the size-selected particles is

not constant. Similar conclusions were drawn by Dusek et

al. (2006) for soot particles coated by NaCl. When compared

to the mass fractions in the atomized solution, it can be seen

that only in the case of sucrose are the distribution peaks at

soluble mass fractions similar to the original solution, while

the mixtures containing ammonium sulfate and BSA have

widely varying compositions.

5 Summary and conclusions

In this study, the CCN activation of pure and mixed parti-

cles of silica and soluble compounds (AS, sucrose and BSA)

was investigated. Furthermore, the morphology and effective
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Figure 12. The distribution of soluble material on 150 nm (mobility diameter) particles in the mixed particles made of (a1–a3) silica +

(NH4)2SO4 (AS), (b1–b3) silica + sucrose, (c1–c3) silica + BSA. Note that the smallest solubility bin extends down to zero, i.e. particles

consisting of pure silica.

density of silica particles were investigated based on APM

measurements. In addition, size distributions of the sampled

particles were measured using a SMPS. Then non-sphericity

of the particles was investigated by applying APM measure-

ments and estimating mass-based dynamic shape factors and

fractal dimensions of pure silica particles. Assuming that our

pure and mixed silica particles are compact agglomerates,

which is the most reasonable assumption for our silica parti-

cles with fractal dimension of 2.54–2.55 close to the spher-

ical particles with fractal dimension of 3, the surface and

volume equivalent diameters become identical to the mobil-

ity diameter of these particles. The SMPS results showed

that the particles generated from pure compounds resulted

in unimodal size distributions, while the particles generated

from mixtures were associated with bimodal size distribu-

tions. The first peak of the bimodal size distribution indicated

that also the mixture generated some pure soluble particles.

The size distributions allowed us to estimate the total solu-

ble vs. insoluble mass fractions present in the mixed particle

population.

CCN activity measurements were conducted in various su-

persaturations up to 1.5 %, and activation ratio curves were

determined for the evaluated particles. Afterward, the exper-

imental data were compared to theoretical values using ad-

sorption theory (e.g. Sorjamaa and Laaksonen, 2007) for the

pure silica particles, κ-Köhler-theory (Petters and Kreiden-

weis, 2007) for the pure soluble particles, and a model de-

scribing mixtures of soluble and insoluble components intro-

duced by Kumar et al. (2011b). The CCN activation of pure

soluble and insoluble particles was in good agreement with

κ-Köhler theory and adsorption theory. For mixed particles,

however, the observed critical supersaturations were higher

than those expected from the model by Kumar et al. (2011b),

if constant soluble and insoluble mass fractions were as-

sumed for the whole mixed particle population. This indi-

cates that the particles were less hygroscopic than expected,

indicating an uneven distribution of the soluble material in

the aerosol size distribution. As the calculations were gov-

erned by the soluble mass (volume) fraction in the particles

instead of adsorption effects, we could use the experimental

critical supersaturations to estimate size-dependent distribu-

tion of the soluble material in the mixed particles. For parti-

cles > 150 nm in mobility diameter the soluble fractions were

smaller and for particles < 150 nm mostly larger than in the

total mixed particle population – indicating that the soluble

material preferentially accumulated to particles < 150 nm, in-

dependent of the exact identity of the soluble species. If the

uneven distribution of the soluble material was accounted for,

the framework by Kumar et al. (2011b) could be successfully

used to describe the CCN activation of insoluble particles

mixed with soluble pollutants.

Our results indicate that knowing the fraction of soluble

material (instead of the adsorption properties of the surfaces)

is the key prerequisite for describing the CCN activation of

silica mixed with soluble pollutants – at least for the rela-

tively large soluble fractions studied here. Furthermore, our

results indicate that well-defined descriptions of the coating

processes are crucial for elucidating the phenomena govern-

ing the CCN activation of insoluble particles mixed with sol-

uble compounds. We also conclude that although the model

by Kumar et al. (2011b) was originally introduced for fresh

dust coated by a layer of soluble salt after ageing, it gives a

reasonable estimate of the potential importance of adsorption
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as compared with the bulk solubility of the mixed soluble–

insoluble particles.
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