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Abstract. Here we present the first steps in developing a

global multi-model aerosol forecasting ensemble intended

for eventual operational and basic research use. Drawing

from members of the International Cooperative for Aerosol

Prediction (ICAP) latest generation of quasi-operational

aerosol models, 5-day aerosol optical thickness (AOT) fore-

casts are analyzed for December 2011 through November

2012 from four institutions: European Centre for Medium-

Range Weather Forecasts (ECMWF), Japan Meteorologi-

cal Agency (JMA), NASA Goddard Space Flight Center

(GSFC), and Naval Research Lab/Fleet Numerical Meteo-

rology and Oceanography Center (NRL/FNMOC). For dust,

we also include the National Oceanic and Atmospheric

Administration-National Geospatial Advisory Committee

(NOAA NGAC) product in our analysis. The Barcelona Su-

percomputing Centre and UK Met Office dust products have

also recently become members of ICAP, but have insufficient

data to be included in this analysis period. A simple con-

sensus ensemble of member and mean AOT fields for modal

species (e.g., fine and coarse mode, and a separate dust en-

semble) is used to create the ICAP Multi-Model Ensemble

(ICAP-MME). The ICAP-MME is run daily at 00:00 UTC

for 6-hourly forecasts out to 120 h. Basing metrics on com-

parisons to 21 regionally representative Aerosol Robotic Net-

work (AERONET) sites, all models generally captured the

basic aerosol features of the globe. However, there is an over-

all AOT low bias among models, particularly for high AOT

events. Biomass burning regions have the most diversity in

seasonal average AOT. The Southern Ocean, though low in

AOT, nevertheless also has high diversity. With regard to

root mean square error (RMSE), as expected the ICAP-MME

placed first over all models worldwide, and was typically first

or second in ranking against all models at individual sites.

These results are encouraging; furthermore, as more global

operational aerosol models come online, we expect their in-

clusion in a robust operational multi-model ensemble will

provide valuable aerosol forecasting guidance.
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1 Introduction

Aerosol modeling, once purely the domain of regional air

quality and climate models, has seen recent rapid develop-

ment at traditional numerical weather prediction (NWP) cen-

ters (e.g., Tanaka et al., 2003; Morcrette et al., 2009; West-

phal et al., 2009; Kukkonen et al., 2012). Applications are

numerous, and include corrections for radiance assimilation

systems for the NWP modeling systems themselves (Wang

and Niu, 2013; Weaver et al., 2007). There is further mount-

ing evidence that for heavily burdened atmospheres, inclu-

sion of the radiative effects of aerosol particles improves

overall NWP forecasts (e.g., Haywood et al., 2005; Pérez et

al., 2006; Wang et al., 2010; Mulcahy et al., 2014) and is

even hypothesized to impact tropical cyclone (TC) develop-

ment (e.g., from Karyampudi and Carlson, 1988; Karyam-

pudi and Pierce, 2002; Dunion and Velden, 2004; to most

recently Dunstone et al., 2013; Reale et al., 2011, 2014). Di-

rect and indirect radiative effects have also been found to

impact common NWP parameters such as temperature. For

example, in response to large biomass burning events, sur-

face temperatures clearly drop (Westphal and Toon, 1991).

Smoke over the Indian Ocean in 1997 and 2006 may have

resulted in a net cooling of sea surface temperatures (e.g.,

Thampi et al., 2009; Rajeev et al., 2008), with dust over the

Atlantic Ocean similarly indicted both physically (Evan et

al., 2008) and as an artifact (Merchant et al., 2006). Atmo-

spheric transport and diffusion can expand aerosol impacts

to continental and global scales thus posing further NWP

impact questions (e.g., Colarco et al., 2004; Damoah et al.,

2004 over North America and Koe et al., 2001 over Asia). For

these reasons, most NWP centers with global modeling man-

dates have some form of aerosol prediction program. Indeed,

increased accuracy in forecasting aerosol particles has bene-

fits for mitigating human impacts: poor air quality negatively

impacts biological processes including human cardiovascu-

lar and respiratory health (Seaton et al., 1995; Pöschl et al.,

2005). Reduced visibility due to aerosols creates operational

hazards on land, at sea and for aviation. Volcanoes represent

a dramatic example, with SO2 and ash reducing visibility,

while silicate tephra induces aircraft engine stalls and flame

outs (Miller and Casdevall, 2000; Carn et al., 2009). Large

volcanic eruptions that inject SO2 in the stratosphere can also

have a long-lasting cooling impact on surface temperature.

The path to the development of NWP aerosol capabilities

has been quite different among centers. Certainly, the un-

derlying meteorology driving aerosol models is from largely

independent models. The aerosol source, microphysics and

sink functions have also been developed or drawn from a va-

riety of air quality and climate data sources. The differences

in meteorology and assumed aerosol heritage when many

aerosol parameterizations were developed lead to significant

amounts of model tuning. Sometimes unphysical tuning pa-

rameters are required in order to get physical results against

key metrics. Given the complexity of the aerosol and me-

teorological environment, this tuning can lead to high scor-

ing in one metric (aerosol optical thickness - AOT) and poor

scoring on another (particulate matter dp < 2.5 µm, PM2.5).

With the advent of AOT data assimilation, models have been

driving towards that metric (e.g., Reid et al., 2011) and AOT

model analyses have dramatically improved. But even here,

assimilation methods diverge significantly between centers

(Reid et al., 2011; Benedetti, 2014), and eventually this must

be reconciled for multi-day forecasts.

Due to the stochastic nature of the atmosphere, for any

NWP variable, aerosol species or dynamical, deterministic

forecasts eventually reduce in quality with increasing fore-

cast time no better than climatological values (or some-

times worse). There are many sources of forecast error, but

there are two categories in particular that garner signifi-

cant NWP attention: systemic errors from the imperfect na-

ture of the model and sensitivity of models to initial condi-

tions. Lorenz (1963, 1965, 1969a, b) showed in his classic

papers that small errors in initial conditions produce large

errors and divergence even within a perfect model. Errors

ranging up to the synoptic scale have been found to not be

the result of model deficiencies, but rather a small varia-

tion in initial states (Reynolds et al., 1994). To help con-

trol these errors, ensemble-based prediction, single-model

ensemble meteorological forecasts are used by nearly all

the major operational weather centers (Buizza et al., 2005).

However, while single-model probabilistic ensemble fore-

casting is clearly enhancing model solutions (particularly in

data sparse regions), multi-model ensembles are an ever in-

creasing tool for forecasters. Multi-model ensemble (or con-

sensus) forecasting, using independent and skilled forecasts,

has long proven valuable to atmospheric sciences. Ensem-

ble techniques have been applied to the benefit of tropical

cyclone tracking (Leslie and Fraedrich, 1990; Mundell and

Rupp, 1995; Goerss, 2000) and intensity forecasting (Kaplan

and DeMaria, 2001; DeMaria et al., 2006; Sampson et al.,

2008). The consensus of cyclone track forecasts was found,

on average, to be more accurate than the individual member

deterministic models. Consensus style multi-model ensem-

bles and their interpretation are a mainstay of the climate

change community (e.g., Meehl et al., 2007; Knutti et al.,

2010). Fordham et al. (2012) used a multi-model ensemble

of general circulation models to explore potential impacts of

climate change following the demonstration of general cir-

culation model (GCM) consensus values by Reichler and

Kim (2008). Non-NWP methods also benefit from consen-

sus techniques, as Sanders (1973) showed when the average

forecast from a group of forecasters often proved better than

any of the individual contributions given. Taken a step fur-

ther, error weighting a multi-model ensemble leads to the de-

velopment of the super ensemble (e.g., Krishnamurti et al.,

1999; Casanova and Ahrens, 2009). However, equal weight-

ing in a consensus style appears to provide the most robust

result overall for a host of forecasting applications (e.g., Del-

Sole et al., 2013; Sansom et al., 2013), especially if model
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errors are not precisely known (Weigel et al., 2010). Since

error estimates are often quickly out of date as models de-

velop rapidly, this final point is salient here.

The rapid increase in the number of operational and quasi-

operational global aerosol models coupled with the NWP

community’s wide experience of ensemble systems has re-

sulted in an opportune moment to explore the development

of a global operational multi-model aerosol forecast con-

sensus. The International Cooperative for Aerosol Prediction

(ICAP), consisting of developers servicing aerosol programs

at forecasting centers and remote-sensing data providers,

began meeting in April 2010 to discuss issues germane

to the operational aerosol forecasting community (Reid et

al., 2011). As a relatively nascent community, ICAP has

worked to build the standards for data protocols, valida-

tion and verification between international centers. Data ex-

change for the purposes of consistent error analysis and con-

sensus forecasting began in early 2011 and now includes

four complete aerosol forecast models (European Centre for

Medium-Range Weather Forecasts-Monitoring Atmospheric

Composition and Climate Model (ECMWF-MACC); FN-

MOC/NRL Fleet Numerical Meteorology and Oceanogra-

phy Center-Navy Aerosol Analysis and Prediction System

(NAAPS); Japan Meteorological Agency (JMA)-Model of

Aerosol Species in the Global Atmosphere (MASINGAR);

and NASA GMAO (Global Modeling and Assimilation Of-

fice) Goddard Earth Observing System Version 5 – GEOS-5).

Three dust-only models are also included (NMMB (National

Materials and Manufacturing Board)/BSC-CTM (Barcelona

Supercomputing Center-Chemical Transport Model) Non-

hydrostatic Multi-scale Meteorological; NOAA NCEP (Na-

tional Oceanic and Atmospheric Administration-National

Centers for Environmental Prediction) NEMS (NOAA En-

vironmental Modeling System) GFS (Global Forecast Sys-

tem) Aerosol Component; NGAC (National Geospatial Ad-

visory Committee) UKMO (United Kingdom Met Office)

Unified Model). In this paper we briefly describe the Interna-

tional Cooperative for Aerosol Prediction Multi-Model En-

semble (ICAP-MME) framework and explore the first year

of ensemble and ensemble member AOT products. For this

study we only include the four complete aerosol models and

NGAC (NMMB and the UKMO Unified Model will be in

subsequent publications once sufficient data are incorporated

for robust statistics). Forming an arithmetic mean of model

parameters, the ICAP Multi-Model Ensemble (ICAP-MME)

was generated. Climatological characteristics of the ensem-

ble mean are presented. Verification statistics against Aerosol

Robotic Network (AERONET) sun–sky radiometer data are

presented including bias and root mean square error (RMSE),

and we highlight areas of relative consensus and divergence.

Finally, to set the stage for the next round of analyses, an ex-

ample for Cape Verde dust is presented on ICAP-MME for

issues to be addressed in predicting extreme aerosol events.

2 Methodology

For this introductory paper on the ICAP-MME, we briefly

describe the included models and outline the fundamen-

tal metrics for model performance for AOT. The analysis

period for this paper spans 1 year from December 2011

through November 2012. A further seasonal breakdown was

also performed for boreal winter–spring (December–May)

and summer–fall (June–November) periods. As per original

ICAP agreements, we do not identify specific models to spe-

cific metrics other than the ensemble model itself. All such

evaluations are to be performed and presented by the individ-

ual model’s developers. Rather, we emphasize relative spread

in skill for different sites. There are multiple reasons for this

anonymous approach. These include the developmental na-

ture of some of the input models and the very rapid updates

the input models are receiving (e.g., by the time this paper

is published, the model performance statistics will be cer-

tainly out of date). This paper is intended to demonstrate the

usefulness of a multi-model ensemble in both forecasting ap-

plications, as well as a way to identify areas of common de-

velopment needs in aerosol prediction.

2.1 Input models

The ICAP-MME is currently based on four comprehensive

global aerosol models (GEOS-5, NAAPS, MACC, MASIN-

GAR), and three dust-only global models (NOAA NGAC,

NMMB/BSC-CTM, UKMO Unified Model). Requirements

for entry in the ICAP-MME are a global model with at least

quasi-operational status and reliable data distribution from a

large data center. During the development of this paper, there

were insufficient data to fully evaluate two of the dust models

(BSC and UKMO). Thus, while we include these two models

in the description, they are not used in this early evaluation.

We provide brief synopses of the input models in the

current quasi-operational ICAP-MME consensus in Ap-

pendix A. As can be seen, these models tend to be quite

independent in the parameterizations used for sources – par-

ticularly for dust and biomass burning. Although, biomass

burning emissions all have some lineage back to MODIS

(Moderate Resolution Imaging Spectroradiometer) active fire

hotspot counts. Sea salt is treated similarly in nature be-

tween models in terms of functional form, but tuning based

on underlying meteorology and sink terms results in sig-

nificant differences between the models. Perhaps the most

similar aspect of the models is in emissions of anthro-

pogenic emissions which are poorly constrained and thus

similar inventories are developed. MACCity (Monitoring At-

mospheric Composition and Climate/CityZen inventory) is

used by both ECMWF and NRL. NASA GMAO GEOS-5

uses Edgar, which has similar components to MACCity. Fi-

nally, the NOAA NCEP NGAC dust model has the same GO-

CART (Goddard Chemistry, Aerosol, Radiation, and Trans-
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port Model) foundation as GEOS-5, although with different

driving meteorology and without data assimilation.

2.2 ICAP-MME

The International Cooperative for Aerosol Prediction Multi-

model Ensemble (ICAP-MME) is a consensus style multi-

model ensemble where all members are equally weighted.

ICAP-MME was born out of a simple ICAP proposition

that some uniform basis of AOT plotting be adopted across

centers. This quickly led to data exchange and ultimately

the formation of the AOT ensemble. Because of differences

in member center’s data policy, data availability of ICAP-

MME members and consensus fields is limited to participat-

ing centers. However, consensus plots are available on the

web (http://www.nrlmry.navy.mil/aerosol/) with further ex-

pansion in the coming year.

The basic resolution of ICAP-MME is 1◦×1◦, with mem-

ber model data re-gridded through linear interpolation to

1◦×1◦ model grid. Three-dimensional aerosol and AOT

fields are then generated in a member agreed NetCDF for-

mat. The ICAP consensus is the arithmetic mean of the in-

terpolated fields. Because of latency constraints by some of

the members, ICAP-MME is generated with a 24 h lag. This

will be reviewed as those constraints change. Forecasts are

available 6-hourly out to 120 h. At the moment the ensemble

is limited to speciated AOT at a standard 550 nm wavelength.

The data continuity for ICAP-MME for the current study pe-

riod is presented in Fig. 1a. Because data are provided in an

operational data stream, it was not always possible to back

populate to make a completely contiguous data set. Outages

could be due to a combination of network issues either at

NRL, where the data are assembled, or at the production cen-

ter. For this study, ICAP-MME is only generated when all

four core models populate the ensemble, which holds data

for 90 % of forecasts.

ICAP-MME has four broad species, dust, sea salt, pol-

lution/sulfate and biomass burning/smoke. The largest diffi-

culty in combining model data is in the various member mod-

els’ speciation. For example, NAAPS separates out species

by source (as is done in the ICAP-MME). Other models,

such as GEOS-5, carry species by chemical species (e.g., sul-

fate, organic carbon, black carbon – BC). Also, some models

carry size information (MACC), and others ignore biogenic

organic carbon emissions. In the case of coarse mode aerosol

species such as sea salt or dust, the speciation vs. source is

easy to reconcile as the source and chemistry are one in the

same, and size information can be integrated. The separa-

tion between anthropogenic pollution, biomass burning and

sometimes included biogenic emissions is much more am-

biguous. Therefore, we developed the simple rubric that sul-

fate and biogenic are considered in the pollution/sulfate cate-

gory, whereas organic carbon is listed with biomass burning,

which, if not physical, is in line with how the species are

input and transformed into the models. Clearly, this is unsat-
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AERONET sites used for verification.  Labels are listed in Table 1.  
 
 
 
 
 
 
 
 
 

Figure 1. (a) Timeline of available data within this paper’s study pe-

riod. (b) Location of AERONET sites used for verification. Labels

are listed in Table 1.

isfying from multiple points of view. To clarify the situation,

our analysis reduces the degrees of freedom further, and we

largely analyze on a simple fine and coarse mode species

AOT (e.g., dust and sea salt is coarse, pollution, biomass

burning is fine). While there is some residual coarse mode

material in sub-micron size ranges, the spectral deconvolu-

tion method (SDA) algorithm takes these tails into account.

There are a number of products that are then generated

from ICAP-MME. Most commonly used is the consensus

arithmetic mean coupled with the standard deviation for the

so-called mean-spread plot. Similarly, the median is calcu-

lated and sometimes used, as it is robust in the face of a ma-

jor outlier. For event-based metrics, such as scores for dust

storms, several cut points (e.g., thresholds) were used. The

most notable and consistent is a 550 nm AOT of 0.8, high

enough for the sky to have a complete haze color. Now that

there are suitable data to develop a climatology, a dynamic

event cut point will be developed in the future based on mul-

tiples of regional standard deviations or geometric standard

deviations (e.g., 1σ or 2σ event).

Figure 2 presents example data from the ICAP-MME for

the 72 h forecast for a particularly large dust event on 29 June

2012, including contributions from all four core and the three

dust members. Plots and data such as these are expected to

be released to the public following the publication of this pa-

per. Figure 2a presents the simple ICAP-MME AOT mean. In

Fig. 2b, a mean/spread plot is presented where the isopleths

are AOT and the color is standard deviation. From these plots

we can see that in many dust areas the models are very con-

sistent, whereas in the Sahel and Arabian Gulf there is more

uncertainty. In Fig. 2c, isopleths of AOT of 0.8 are presented,

showing spatial differences in models, whereas in Fig. 2d, a

simple warning area mask is plotted where at least half the

models predict AOT > 0.8. All of these products are designed

for easy interpretation and verification.

Atmos. Chem. Phys., 15, 335–362, 2015 www.atmos-chem-phys.net/15/335/2015/
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Table 1. List of + 1-day biases from study core AERONET sites. Included are the 550 nm total AOTs. These are followed by list of model

biases for the four core ICAP members listed sequentially low to high for each site. The ICAP-MME ensemble mean bias is bold.

Site Location 550 nm 550 nm total AOT 550 nm 550 nm total AOT

Winter Dec–May model biases summer Jun–Nov model biases

total (ensemble bold) total (ensemble bold)

AOT AOT

Alta Floresta 1. Brazil: 9◦ S; 56◦W 0.12 −0.06, −0.01, −0.01, +0.02, +0.02 0.24 −0.04, −0.03, −0.02, −0.01, 0.00

Baengnyeong Island 2. Yellow Sea: 37◦ N; 124◦ E 0.40 −0.01, +0.01, +0.05, +0.08, +0.12 0.36 +0.03, +0.04, +0.06, +0.06, +0.10

Banizoumbou 3. Sahel: 13◦ N; 2◦ E 0.65 −0.17, −0.09, −0.09, −0.06, −0.04 0.45 −0.24, −0.16, −0.15, −0.12, −0.10

Beijing 4. China: 39◦ N; 116◦ E 0.61 −0.09, −0.07, −0.07, −0.01, +0.01 0.72 −0.19, −0.14, −0.10, −0.07, 0.01

Cape Verde 5. Sub-trop. Atlantic: 16N; 22◦W 0.34 +0.01, +0.06, +0.07, +0.07, +0.13 0.36 −0.05, 0.00, 0.00, 0.00, +0.05

CART Site 6. Great Plains: 36◦ N; 97◦W 0.12 −0.02, +0.02, +0.02, +0.02, +0.07 0.15 −0.04, +0.01, +0.01, +0.02, +0.04

Chapais 7. Quebec: 49◦ N; 74◦W 0.17 −0.08, −0.04, −0.04, −0.02, −0.02 0.13 −0.02, 0.00, +0.01, +0.03, +0.04

Chiang Mai 8. Thailand: 18◦ N; 98◦ E 0.59 −0.41, −0.26, −0.25, −0.22, −0.17 0.21 −0.07, −0.06, 0.00, 0.00, +0.12

Crozet Islands 9. Southern Ocean: 46◦ S; 51◦ E 0.12 −0.02, −0.02, +0.01, +0.01, +0.05 0.10 +0.02, +0.03, +0.05, +0.06, +0.09

Gandhi College 10. Rural India: 25◦ N; 84◦ E 0.63 −0.28, −0.19, −0.17, −0.11, −0.09 0.66 −0.27, −0.19, −0.18, −0.17, −0.07

GSFC 11. E. CONUS: 38◦ N; 76◦W 0.12 −0.01, +0.03, +0.03, +0.04, +0.04 0.17 0.00, +0.02, +0.02, +0.02, +0.06

Ilorin 12. Sahel: 8◦ N; 4◦ E 0.89 −0.38, −0.26, −0.26, −0.20, −0.20 0.30 −0.11, −0.04, −0.03, −0.02, +0.01

Kanpur 13. Urban India: 26◦ N; 80◦ E 0.60 −0.28, −0.19, −0.16, −0.11, −0.07 0.67 −0.32, −0.19, −0.16, −0.16, 0.00

Minsk 14. Western Asia: 53◦ N; 27◦ E 0.18 −0.01, 0.0, +0.01, +0.01, +0.02 0.16 0.00, 0.01, +0.01, +0.02, +0.03

Moldova 15. Eastern Europe: 47◦ N; 28◦ E 0.19 −0.01, 0.00, +0.01, +0.02, +0.03 0.18 0.00, 0.00, +0.01, +0.01, +0.03

Monterey 16. W. CONUS: 36◦ N; 121◦W 0.09 0.0,+0.01, +0.02, +0.03, +0.03 0.09 −0.02, −0.01, −0.01, 0.00, 0.00

Palma de Mallorca 17. Mediterranean: 39◦W; 2◦ E 0.19 −0.07, −0.05, −0.05, −0.04, −0.03 0.19 −0.01, −0.01, +0.01, +0.03, +0.04

Ragged Point 18. Sub-trop. Atlantic: 13◦ N; 59◦W 0.15 −0.02, −0.01, +0.01, +0.03, +0.04 0.16 −0.02, −0.01, −0.01, 0.00, +0.02

Rio Branco 19. South America: 9◦ S 67◦W 0.10 −0.04, 0.00, 0.00, +0.02, +0.04 0.21 −0.07, −0.03, −0.03, −0.03, 0.00

Singapore 20. Maritime cont.: 1◦ N; 103◦ E 0.33 −0.16, −0.11, −0.11, −0.10, −0.05 0.43 −0.21, −0.17, −0.14, −0.13, −0.04

Solar Village 21. Southwest Asia: 24◦ N; 46◦ E 0.47 −0.15, −0.14, −0.03, −0.02, +0.23 0.39 −0.10, +0.01, +0.01, +0.02, +0.13

Figure 2. Examples of ICAP-MME products expected to be released to the public at publication of this paper for an example 72 h forecast

of 2012’s most significant dust events plus a secondary event over the Arabian Gulf using all six dust members. (a) Ensemble mean 550 nm

AOT; (b) Mean/Spread of the six ensemble members, with the standard deviation as color and AOT isopleths; (c) Spaghetti plot of AOT 0.8

isopleth; (d) Dust warning areas where more than half of the models predict AOT > 0.8.

www.atmos-chem-phys.net/15/335/2015/ Atmos. Chem. Phys., 15, 335–362, 2015
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2.3 Verification

For comparison with available observations, for this intro-

ductory paper we focus on the ICAP-MME 550 nm AOT ap-

portioned into total, fine and coarse mode contributions as

well as some limited examination of the five member dust

ensemble (ICAP-CORE+NGAC). Comparisons henceforth

referencing ICAP values refer to that mean while individual

member results remain anonymous. Core verification metrics

here include mean bias, RMSE and fractional gross error.

BIAS=
1

n

n∑
i=1

(ci − oi) (1)

RMSE=

√√√√1

n

n∑
i=1

(ci − oi)
2 (2)

FGE=
2

n

n∑
i=1

∣∣∣∣ci − oici + oi

∣∣∣∣ (3)

AOT data from the Aerosol Robotic Network (AERONET;

Holben et al., 1998) are used to validate ICAP forecasts.

AERONET level 2 data (cloud screened and quality assured

with final calibrations; Smirnov et al., 2000) are used where

available but can take upwards of 12 months to be processed.

During periods where L2 data are not available, L1.5 data

(cloud screened but without final calibration) are substituted

after being hand filtered at NRL for clear outliers. Total, fine

and coarse mode AOT at 550 nm were extracted using the

O’Neill et al. (2003, 2008) SDA from AERONET provided

AOTs. Our extraction differs from the 500 nm extraction per-

formed at AERONET. The AERONET level 2 input spectral

AOT to the SDA algorithm (380 to 870 nm) are accurate from

∼ 0.01 to 0.02 (higher in the UV; Eck et al., 1999). These

accuracies are for non-cloud contaminated data and compar-

ison of AERONET field site AOT with independently cali-

brated sun photometers showed agreement to within∼ 0.015

(root mean square) or better (Schmid et al., 1999; Nyeki et

al., 2012). Level 1.5 AOD (aerosol optical depth) may have

typical accuracies of ∼ 0.02–0.04 but is quite variable and

uncertainty may be larger, depending primarily on the length

of deployment since initial calibration and the amount of ma-

terial deposited on the optics lenses (dust, sea salt, etc.). In-

stances of cirrus contamination (Chew et al., 2011) were ev-

ident in the level 1.5 and, to a lesser extent, level 2 products.

Influence of these outliers was removed by hand for clear

outliers, as well as trimming the top 5 % of coarse obser-

vations in northern Africa and East Asia, and the top 15 %

elsewhere. The remaining observations are then binned by

the median observation value within a 6 h window centered

on the model valid time. We focus on 21 sites chosen by the

ensemble developers in consultation with AERONET before

the analysis was conducted. Selection was based on regional

representativeness (e.g., Shi et al., 2011) as well as a contigu-

ous data record throughout the 1-year study period. These are

listed in Table 1 and marked on Fig. 1b.

All quantitative comparisons to AERONET are pairwise,

conducted only when AERONET and the ICAP-MME can

be co-located. Because three of the four multi-species mod-

els invoke some form of data assimilation, and ECMWF does

not generate an analysis field of AOT on the model grid, our

primary model metric for global representation of aerosol

loadings is the 6–24 h forecast. Given AERONET only col-

lects data on the sun side of the earth, this corresponds to

6–30 h of forecast time for any data day. For all calculations

of forecasts out to five days, verification is performed ±3 h

of model valid time which is instantaneous for that time. For

brevity, we group error statistics into data days to simplify

the number of columns in data tables. With the once daily

00:00 UTC (GMT) production of ICAP, some regions bene-

fit from the availability of daytime-only data for verification

and assimilation. Thus, over Asia verification and assimila-

tion are at a shorter forecast time than say Europe and North

America. This gives Asia a beneficial regional verification

bias, but we do not believe this will impact any of our key

results.

Rank histograms, also known as the Talagrand diagram,

were also generated for the models (Talagrand et al., 1997).

These help determine if the ensemble members are drawn

from the same distribution that produces the true state. While

not a true verification tool, they are diagnostically useful to

judge the ensemble reliability. Given an observation point,

an n member ensemble is organized from highest to lowest

and assigned a rank of 1 to n+ 1. If the ensemble is rep-

resentative, the observation value is equally likely to be of

any rank of the n+ 1 ranks, assuming a statistically signifi-

cant number of independent observations, resulting in a flat

histogram. Conversely, bias could be evaluated if the obser-

vation too often falls into the top or bottom bin. A U-shaped

histogram potentially indicates insufficient ensemble spread,

as all the forecasts consistently resolve too high or low. Care

must be taken with interpretation, as uniform or U-shaped

distributions can arise, such as when observational biases

change sign by location. More detail on rank histograms can

be found in Talagrand et al. (1997) and Hamill (2001).

For event forecasting, we use the critical success in-

dex (CSI) also known as the threat score (TS) (CSI or

TS= hits / (hits+misses+ false alarms) as a common and

straightforward metric with scales that range from 0 (no

skill) to 1 (perfect skill). For AOT, threat scores are some-

what subjective. If the bar for triggering a hit is too low,

then the model forecast is without functional value. If

it is set extremely high, then the TS gives a false opti-

mism in system performance. To address this issue, we

also use the equitable threat score accounts for random

change ETS= (hits− random chancehits)/ (hits+misses+

false alarms−random chance hits) where the random chance
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Figure 3. Mean and standard deviation of the ICAP-MME 550 nm AOT ensemble consensus for the December 2011–November 2012 time

period. Included are the four core models of ECMWF MACC, FNMOC/NRL NAAPS, JMA MASINGAR, and NASA GMAO GEOS-5.

Breakout is by boreal winter–spring (December–May) and summer–fall (June–November). Further striations are for total, fine and coarse

mode optical depth. Provided in dots are the AERONET means for the same time period, although these are not pairwise with the model

data.

is (the total forecasts of the event · the total observa-

tion) / sample size. As discussed in Sect. 6, the use of threat

scores are somewhat problematic, especially in regard to am-

plitude or displacement error (Baldwin and Kain, 2006).

3 Results: climatological characteristics of

ICAP-MME

The mean and standard deviation of the ICAP-MME 6-

hourly forecast mean is provided in Fig. 3. Data are bro-

ken down into a seasonal and size mode degree of free-

dom. Seasonally, data are presented for the boreal winter–

spring December 2011–May 2012 and boreal summer–fall

June–November 2012 time periods. These bi-seasonal tem-

poral stratifications account for the major monsoonal and cli-

matic shifts in the atmosphere while preserving major aerosol

events such as for the boreal summer–fall, the August–

October biomass burning seasons in Africa, South Amer-

ica and Maritime Continent, the June–August African Dust

Season and the contiguous United States (CONUS), and Eu-

ropean summer haze seasons. Similarly the boreal winter–

spring period captures the March–May Asian dust season,

and the Southeast Asia and Sahelian African biomass burn-

ing season. The next set of striation is by model size, separat-

ing fine mode species (sulfate, organic carbon, black carbon

etc.) from coarse (sea salt and dust). This stratification re-

solves speciation differences between models. Correspond-

ing seasonal means of AERONET fine and coarse mode

550 nm AOT are also presented on the mean plots.

The ICAP-MME, as well as the entirety of the core model

members, easily resolves the world’s largest aerosol features:

Saharan dust, continental biomass burning, and the great

Asian dust and pollution plume are well described. Associ-

ated standard deviations of the ICAP-MME 6-hourly means

also highlight regions of more episodic aerosol events, with

African and Asian dust being particularly noteworthy. The

seasonal biomass burning features also stand out.

While in the next section we focus on member scores,

from a climatological point of view it is worthwhile to ex-

amine the climatological variability between the models. In

a manner similar to Fig. 3, in Fig. 4 we present bi-seasonal

and size modal estimates of the pointwise maximum or min-

imum AOT of the ensemble members. That is, after generat-

ing seasonal and size modal mean AOT for each of the four

core member models, for each 1× 1 latitude and longitude

point we select the highest and lowest AOT of the four. Such

a minimum and maximum not only is indicative of differ-

ences in model amplitude, but also in plume location (if, for

example, a zonal aerosol feature is shifted meridionally be-

tween models, then the minimum will be low across the re-

gion, missing the feature completely). Such a depiction can

span the local seasonal range of coarse and fine mode AOT

present in the models and identify which areas require atten-

tion. The largest area of difference between the models was

clearly associated with biomass burning, with factors of 3
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Figure 4. Same as Fig. 3, but for pointwise maximum and minimum 550 nm AOTs drawn from the ICAP-MME’s four core member season-

ally averaged AOT fields. AERONET circles represent AOT means.

differences spanning springtime Sahelian and South Ameri-

can biomass burning and biomass burning over the maritime

continent. The coarse models generally tuned dust reason-

ably well, but sea salt maximum and minimum in the South-

ern Ocean spanned a factor of 2.

We can become more quantitative through comparison to

AERONET. Table 1 lists AERONET AOT and the model

mean bias for the ICAP-MME and its core members for the

two monsoonal periods. Table 2 presents a similar set of

bias statistics for ICAP core models plus NGAC for those

sites where the coarse mode is dominated by dust. In all of

these tables, ICAP-MME ensemble mean is underlined. To

improve visualization, in Fig. 5 we present similar data in a

scatterplot (similar in nature to a reliability diagram), where

the ICAP-MME means are in bold.

Our interpretation of pairwise AERONET data are in

agreement with our interpretation of plots in Figs. 3 and 4.

Overall the models have reasonable correlation and consis-

tency across the AERONET sites. Cape Verde, perhaps the

community’s benchmark site for dust, was so well tuned in

the models that it had virtually non-existent dust biases for

summer–fall and an insignificant 10 % high bias for winter–

spring. Most background sites performed equally well. The

one exception was the Crozet Islands in the Southern Ocean

for boreal summer–austral winter, where most models clearly

overestimated sea salt production.

For higher AOT sites, all of the models have a clear and

consistent low bias. A small part of this can be explained

by the smoothing nature of a global model (models propose

to represent the grid box mean). High AOT plume or dust

event amplitude simply is not captured either in the model

physics or in data assimilation. Depending on how models

screen their AOT data before data assimilation, bias could

be a residual of the retrieval (e.g., see discussion in Zhang

et al., 2008). However, some of the largest departures are

clearly related to chemistry or sources. The highest single

departure for the winter–spring period is Chiang Mai, Thai-

land, where all models seem to underestimate that season’s

biomass burning and pollution influence. Models also under-

estimate AOTs at Singapore. This is not surprising, as SE

Asia has been identified as being perhaps the most challeng-

ing region in the world to observe and model (Reid et al.,

2009, 2013a, b) because, among other reasons, high cloud

cover conspires to disrupt both fire detections and data assim-

ilation. Most models rely in fact on retrieved products from

the MODIS instruments, which have large biases in presence

of clouds or are not available at all. The Sahel region in the

winter–spring is another area of considerable difficulty for

nearly all models. Ilorin in fact had the highest climatologi-

cal AOT of any site (0.89) with consistent low biases in all

models, on the order of 50 %. This is likely due to under-

representation of biomass burning in all models, although a

correlated bias between models and smoke optical proper-

ties cannot be ruled out at this time. The Sahelian biomass

burning system and its frequent mixing with dust and clouds

makes it difficult to remotely monitor (Reid et al., 2009). Fi-

nally, areas of very high pollution load, such as the sites on

the Indo–Gangetic plain (Kanpur and Gandhi College) and

Beijing also have persistent low biases (Table 1). Models that

have secondary organic aerosol production have lower biases

than those without. However, large uncertainties at this site
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Table 2. Same as Table 1 but for coarse mode AOT, and for those sites in which the coarse mode is dominated by dust. This includes the

ICAP core and NGAC models.

Site 550 nm 550 nm coarse AOT 550 nm 550 nm coarse AOT

Dec–May Dec–May model dust biases Jun–Nov Jun–Nov model dust biases

dust AOT (ensemble bold) dust AOT (ensemble bold)

Baengnyeong 0.10 −0.09, −0.02, −0.01, +0.01, +0.01, +0.02 0.09 −0.08, −0.03, −0.02, 0.00, +0.01, +0.01

Banizoumbou 0.43 −0.13, −0.08, −0.06, −0.04, −0.03, +0.09 0.36 −0.25, −0.19, −0.13, −0.13, −0.12, +0.02

Beijing 0.16 −0.12, −0.04, −0.03, −0.01, +0.01, +0.02 0.14 −0.12, −0.06, −0.03, −0.03, 0.00, +0.01

Cape Verde 0.28 −0.03, +0.01, +0.01, +0.03, +0.03, +0.11 0.31 −0.11, −0.03, −0.03, 0.00, +0.01, +0.14

Gandhi College 0.20 −0.09, 0.09, −0.09, −0.09, −0.06, −0.01 0.18 −0.11, −0.09, −0.08, −0.07, −0.06, −0.01

Ilorin 0.38 −0.13, −0.11, −0.10, −0.07, −0.06, +0.01 0.15 −0.10, −0.07, −0.06, −0.04, −0.03, +0.06

Kanpur 0.24 −0.10, −0.10, −0.09, −0.07, −0.09, −0.01 0.26 −0.15, −0.12, −0.11, −0.11, −0.09, −0.02

Palma de Mallorca 0.11 −0.07, −0.06, −0.05, −0.05, −0.04, −0.01 0.12 −0.04, −0.03, −0.02, −0.01, −0.01, +0.03

Ragged Point 0.13 −0.07, −0.04, −0.04, −0.04, −0.03, −0.03 0.14 −0.05, −0.05, −0.03, −0.03, −0.02, +0.01

Solar Village 0.30 −0.05, −0.04, −0.04, −0.01, 0.01, 0.14 0.27 −0.02, −0.02, +0.02, +0.02, +0.02, +0.10

also point at inadequacies of the emission inventories. Dust

is also under-represented for these sites.

A similar study of bias as above can be also conducted as

a function of forecast day (Fig. 6). After the generation of

the forecast analysis through data assimilation and the fore-

cast commences, both the meteorological and aerosol mod-

els will evolve into its free running behavior. Thus, in general

we expect model biases to worsen in time as the model gets

further and further away from the satellite observations that

help initialize the run. In areas of poor natural model per-

formance, the change in model bias with forecast time can

be dramatic. Sometimes, site performance can completely

reverse itself between monsoonal phases. Most notable is

Ilorin in the African Sahel. Mean AOT biases become ev-

ermore negative in forecast time in the winter–spring period,

reaching 50 % of the mean value at 5 days. Similar biases are

seen in Chiang Mai, Thailand. Bias change in the fine mode

implicate biomass burning in this region. Again, these are

the most complex burning regimes in the world (Reid et al.,

2009, 2013a, b). However, for the summer–fall, both sites do

remarkably well. In the case of Ilorin, it is a result of a tran-

sition from mixed dust and biomass burning to a dust domi-

nated regime (Eck et al., 2010). For Chiang Mai, it is a result

of the linear nature of consensus style ensembles, one model

with a very large high bias counteracted three others with

a moderate low bias. Also of note is Kanpur, India, which

consistently demonstrates poor forecasting performance of

all the models, although its neighbor Gandhi College (not

shown) only showed half the bias.

Some sites actually improve in time, such as,

Baengnyeong Korea, where there is statistically signifi-

cant improvement in bias with forecast, in the winter–spring.

This could implicate bias in the analysis, as the free running

forecasts relax into lower error states before being erro-

neously jarred into high error by the assimilation process.

Other sites show little difference at all as forecast time

increases, such as Beijing, Banizoumbou, Sahelian Africa

and winter–spring in Singapore, implicating the lesser

impact of data assimilation in these regions.

4 Results: RMSE

While mean seasonal bias is important overall to many

aerosol applications, for aerosol forecasting daily variabil-

ity is equally if not more important. In this regard metrics

such as the RMSE become more appropriate for characteriz-

ing model skill. Since RMSE incorporates both bias and vari-

ance, additional steps can also be taken to perform bias re-

moval in order to determine how well models capture aerosol

variability. In a like manner to bias, Tables 3 and 4, provide

total AOT and dust RMSE for each site. These RMSEs are

pictorially presented in Fig. 7 against each site’s mean AOT.

Shown are each model’s value (small dots color coded) and

the RMSE for the ensemble mean (large blue data point). A

likewise representation of RMSE for 4-day forecasts (84 to

108 h model AERONET matchups) is similarly presented in

Fig. 8 for total, and dust AOT. Total AOT RMSE and FGE

(fractional gross error) as a function of forecast time for key

sites are presented in Fig. 9.

By definition, for biases the ICAP-MME ensemble mean

provides no more information than the average of its mem-

bers. As was clearly demonstrated, as all of the models tend

to low bias average AOT, so does the ICAP-MME. If the

model averages are evenly distributed around the true state,

the ICAP-MME will be without bias. For RMSE however,

the situation is quite different, where typically we find the

RMSE of the ensemble of skillful and independent models

is superior than any individual members. We found this to be

the case with ICAP MME. With RMSE (or mean absolute er-

ror, not shown), ICAP-MME provides the best performance.

Examination of Fig. 7 and Tables 3 and 4 shows that in nearly

all cases the ICAP-MME RMSE is either the leader or the

second best in RMSE. For dust in particular (in which all
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Table 3. List of +1-day forecast 550 nm total AOT RMSE from study core AERONET sites. These are followed by list of model biases for

the four core ICAP members listed sequentially low to high for each site. The ICAP-MME ensemble mean bias is bold.

Site 550 nm 550 nm total AOT 550 nm 550 nm total AOT

Dec–May Dec–May model RMSE Jun–Nov Jun–Nov model RMSE

total (ensemble bold) total (ensemble bold)

AOT AOT

Alta Floresta 0.12 0.05, 0.06, 0.07, 0.08, 0.09 0.24 0.08, 0.12, 0.14, 0.15, 0.21

Baengnyeong 0.40 0.18, 0.21, 0.22, 0.22, 0.32 0.36 0.18, 0.19, 0.19, 0.25, 0.29

Banizoumbou 0.65 0.29, 0.29, 0.29, 0.36, 0.4 0.45 0.20, 0.20, 0.22, 0.24, 0.30

Beijing 0.61 0.38, 0.40, 0.41, 0.46, 0.55 0.72 0.44, 0.46, 0.49, 0.53, 0.62

Cape Verde 0.34 0.11, 0.13, 0.13, 0.14, 0.30 0.36 0.10, 0.12, 0.12, 0.13, 0.15

CART Site 0.12 0.04, 0.04, 0.04, 0.04, 0.10 0.15 0.05, 0.07, 0.08, 0.09, 0.17

Chapais 0.17 0.17, 0.17, 0.18, 0.18, 0.27 0.13 0.05, 0.05, 0.07, 0.06, 0.09

Chiang Mai 0.59 0.37, 0.43, 0.43, 0.47, 0.64 0.21 0.10, 0.14, 0.14, 0.16, 0.26

Crozet Islands 0.12 0.06, 0.07, 0.07, 0.08, 0.11 0.10 0.05, 0.06, 0.07, 0.10, 0.11

Gandhi College 0.63 0.17, 0.20, 0.23, 0.25, 0.36 0.66 0.27, 0.31, 0.32, 0.33, 0.48

GSFC 0.12 0.05, 0.05, 0.05, 0.07, 0.08 0.17 0.05, 0.07, 0.08, 0.10, 0.12

Ilorin 0.89 0.36, 0.38, 0.40, 0.42, 0.55 0.30 0.11, 0.12, 0.13, 0.14, 0.16

Kanpur 0.60 0.18, 0.24, 0.26, 0.29, 0.29 0.67 0.30, 0.30, 0.31, 0.34, 0.48

Minsk 0.18 0.04, 0.04, 0.05, 0.05, 0.10 0.16 0.07, 0.07, 0.08, 0.09, 0.10

Moldova 0.19 0.08, 0.09, 0.09, 0.11, 0.18 0.18 0.05, 0.08, 0.09, 0.11, 0.18

Monterey 0.09 0.04, 0.04, 0.05, 0.05, 0.06 0.09 0.03, 0.03, 0.04, 0.04, 0.05

Palma de Mallorca 0.19 0.06, 0.06, 0.06, 0.08, 0.12 0.19 0.05, 0.06, 0.06, 0.08, 0.10

Ragged Point 0.15 0.05, 0.05, 0.05, 0.06, 0.11 0.16 0.05, 0.05, 0.06, 0.06, 0.09

Rio Branco 0.10 0.03, 0.04, 0.04, 0.05, 0.07 0.21 0.08, 0.09, 0.10, 0.11, 0.15

Singapore 0.33 0.18, 0.19, 0.20, 0.22, 0.23 0.43 0.19, 0.23, 0.26, 0.27, 0.32

Solar Village 0.47 0.13, 0.19, 0.20, 0.21, 0.29 0.39 0.09, 0.11, 0.14, 0.18, 0.19

1st day rank (21 pos) 13, 5, 3, 0, 0 10, 9, 2, 0, 0

4th day rank (21 pos) 9, 11, 1, 0, 0 10, 9, 1, 1, 0

Table 4. Same as Table 3 but for AERONET coarse mode AOT and model dust RMSE, and for those sites in which the coarse mode is

dominated by dust. This includes the ICAP core and NGAC models.

Site 550 nm 550 nm coarse AOT 550 nm 550 nm coarse AOT

Dec–May Dec–May model dust RMSE Jun–Nov Jun–Nov model dust RMSE )

dust AOT (ensemble bold) dust AOT (ensemble bold)

Baengnyeong 0.10 0.06, 0.07, 0.07, 0.10, 0.10, 0.16 0.09 0.05, 0.06, 0.06, 0.09, 0.09, 0.11

Banizoumbou 0.43 0.20, 0.22, 0.24, 0.25, 0.29, 0.30 0.36 0.18, 0.18, 0.18, 0.21, 0.24, 0.28

Beijing 0.16 0.12, 0.13, 0.16, 0.17, 0.17, 0.32 0.14 0.13, 0.13, 0.14, 0.14, 0.20, 0.36

Cape Verde 0.28 0.11, 0.11, 0.11, 0.13, 0.17, 0.18 0.31 0.10, 0.12, 0.13, 0.13, 0.19, 0.19

Gandhi College 0.20 0.09, 0.09. 0.11, 0.12, 0.12, 0.15 0.18 0.08, 0.08, 0.09, 0.10, 0.10, 0.12

Ilorin 0.38 0.20, 0.20, 0.24, 0.25, 0.30, 0.32 0.15 0.08, 0.09, 0.11, 0.12, 0.13, 0.13

Kanpur 0.24 0.09, 0.10, 0.13, 0.13, 0.14, 0.16 0.26 0.11, 0.12, 0.14, 0.14, 0.15, 0.17

Palma de Mallorca 0.11 0.06, 0.07, 0.07, 0.07, 0.08, 0.08 0.12 0.04, 0.04, 0.05, 0.06, 0.07, 0.08

Ragged Point 0.13 0.06, 0.07, 0.07, 0.08, 0.08, 0.09 0.14 0.06, 0.06, 0.06, 0.07, 0.07, 0.09

Solar Village 0.30 0.09, 0.11, 0.12, 0.14, 0.22, 0.22 0.27 0.09, 0.10, 0.10, 0.13, 0.16, 0.23

24 h rank (10 pos) 9, 1, 0, 0, 0, 0 10, 0, 0, 0, 0, 0

96 h rank (10 pos) 10, 0, 0, 0, 0, 0 10, 0, 0, 0, 0, 0
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Figure 5. Bi-seasonal comparisons of model 550 nm AOT means

with 21 core AERONET verification sites listed in Table 1. Large

blue circles are ICAP-MME means. Other models are small col-

ored diamonds. Data are stratified (left column) for December–

May 2011, (right column) June–November. (a) and (b) core models

and ensemble mean comparisons to total AERONET derived 550

nm AOT. (c) and (d) models vs. AERONET for fine mode parti-

cles. (e) and (f) models vs. AERONET for coarse mode particles.

(g) and (h) model dust vs. AERONET Coarse for dust stations listed

in Table 2. NGAC is included in the dust comparison.

Figure 6. ICAP-MME 550 nm total AOT model bias as a function

of forecast hour for key AERONET sites. (a) December–May boreal

winter–spring period; (b) June–November boreal summer–fall.

modeling groups emphasize development), the ICAP-MME

is particularly skillful.

Based on the slope of RMSE against mean AOT value

for each site in Fig. 7, the RMSEs of the 1-day forecasts

of ICAP-MME run approximately 50 % of the climatological

mean AOT value. Dust AOT forecasting is superior to over all

fine and coarse mode AOT, running approximately one-third

of climatological AOT. Again, this is part reflects the impor-

tance of the dust species by centers. Further, the AERONET

Cape Verde site (in which RMSE is particularly skillful) is a

common benchmark site for Saharan dust; hence, models are

typically tuned for the region.

Regions of particular difficulty with RMSE are often the

same as those with large biases. Chiang Mai and Singapore

in their respective biomass burning seasons have some of the

highest biases. Beijing China, Kanpur India and Ilorin in the

Sahel have RMSEs that are more than half the mean AOT.

But, if we account for mean AOT for the region in the FGE

errors at some low AOT sites become more pronounced. Per-

haps most important of sites would be Baengnyeong Korea,

a receptor for East Asia, with a normalized RMSE of 1.3,

or a FGE of 0.55. Owing to the low baseline AOT and the

difficulty with modeling and remote sensing in the South-
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Figure 7. Bi-seasonal comparisons of +1-day model 550 nm AOT

RMSE with 21 core AERONET verification sites listed in Table 1.

Large blue circles are ICAP-MME means. Other models are small

colored diamonds. Data is stratified (left column) for December–

May 2011, (right column) June–November. (a) and (b) core models

and ensemble mean comparisons to total AERONET derived 550

nm AOT. (c) and (d) models vs. AERONET for fine mode parti-

cles. (e) and (f) models vs. AERONET for coarse mode particles.

(g) and (h) model dust vs. AERONET coarse for dust stations listed

in Table 2. NGAC is included in the dust comparison.

Figure 8. Same as Fig. 7 for total and dust AOT, with +4-day RM-

SEs.

ern Ocean, the Crozet Islands also appear to be poorly repre-

sented, with normalized RMSE of 1.24, and a FGE of 0.67.

Monterey, CA, another marine site, also has FGEs in the 0.3–

0.6 range.

Like bias, forecasting skill for all models and the ensemble

mean degrades in time. Although the relative performance

of the ICAP-MME mean relative to the member models in-

creases in time, particularly for dust. In Fig. 8, we show the

RMSE vs. AERONET AOT for 4-day forecasts, or 3 days af-

ter the first 24 h baseline for the total and dust cases (Fig. 7).

In general, the RMSEs increase to 60 % of the total AOT

value from ∼ 40 % at 1 day. For dust, however, skills remain

constant in time. These general trends can be seen even more

clearly in RMSE and FGE as a function of forecast day of

the ICAP-MME consensus (Fig. 9).

5 Results: rank histograms

Thus far we have treated the ICAP-MME deterministically

through comparisons of the ensemble mean to the individual

members. Comparisons between models in bias and RMSE

do tell us a general state of the modeling community. To

move towards a goal of event driven applications of the

ICAP-MME, we can begin to view the ensemble members

probabilistically and ask questions related to where individ-

ual observations fall relative to the model. The rank his-

togram (a.k.a Talagrand diagram) is a useful diagnostic to de-

pict the relative distribution of observations and models (e.g.,

Hamill, 2001). Rank histograms are constructed by repeat-

edly tallying the rank of the verifying observation relative to
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Figure 9. ICAP-MME consensus root mean square error (RMSE)

and fractional gross error as a function of forecast day for selected

AERONET sites shown in Fig. 1b.

values from an ensemble sorted from lowest to highest. A flat

rank histogram is usually taken as a sign of reliability, while

a U-shaped rank histogram often indicates a lack of variabil-

ity in the ensemble. In Fig. 10 we present global rank his-

tograms of the first forecast data day (6–24 h forecast period)

for all observations segregated bi-seasonally into the boreal

winter (December–May) and summer (June–November) pe-

riods. Included are histograms for all AERONET matchups

for our 22 sites (Fig. 9a–d) as well as for those AERONET

cases were AOT > 0.6 (Fig. 9e–h). This value of 0.6 is some-

what arbitrary, and was chosen to give balance between high

AOT and enough data points to lend significance to the prod-

uct. Plots are given for total, fine and coarse AOTs for the

four core multi-species models (leading to 5 ranks), and dust

for the core four plus NGAC (6 ranks).

As a rank histogram is a histogram as to where an ob-

servation falls relative to the models, it is useful to calcu-

late and examine relative to the biases and RMSEs. For all

data (Fig. 10a), the histogram is relatively flat, with a slight

slope with increasing rank. That is, the observations tend to

be bigger than the individual members and the ICAP-MME

mean. But, there is offsetting divergence in the individual

aerosol particle size modes, with models generally overes-

timating fine mode AOT overall, and conversely underesti-

mating coarse mode AOT. This is in agreement with the bi-

ases presented in Table 1. Thus, while the total AOT data

histogram is relatively flat, it is flat for the wrong reasons

with offsetting fine and coarse populations. If we examine

more significant events for AOT > 0.6 (Fig. 10e–g), we will

see that the models are strongly low biased overall. That is,

for dust, smoke and pollution alike, the models are in general

underestimating the most severe events.

These rank histograms are for all global observations and

are generally representative for individual sites. In Fig. 11 we

present histograms for 15 of the 21 sites for the four multi-

species models (to conserve space, plots that showed similar

tendencies to neighbors were dropped). In the first column,

sites of a background nature or as a long-range receptor are

given. All of these sites are relatively clean and have average

AOTs < 0.15. In general, the histograms are relatively flat, al-

though there is in general over prediction of AOT in the cen-

tral United States, represented by the DOE CART site, and

under-representation of dust at the Palma de Mallorca site

in Spain as a receptor for dust. At Ragged Point, an African

dust receptor in the Caribbean, the distribution is good. For

sites with intermediate loadings or those that are taken as

regionally representative of polluted areas (column 2), there

is also a distribution of tendencies, with Singapore showing

universal AOT under-representation in AOT, and Goddard

Space flight center suggesting over-representation. Most in-

teresting are the heavily impacted sites (column 3 and 4),

where we show all data plus those cases where AERONET

AOT > 0.6. Sites, such as Beijing, China and Gandhi College,

India (for massive pollution models), and Baengnyeong, Ko-

rea (an Asian receptor), Cape Verde and Banizoubou (for
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Figure 10. (a)–(d), bi-seasonal rank histograms of ICAP-MME members and the ensemble mean total, fine, coarse and dust AOT for all

data. (e)–(h) same as previous for cases where AERONET AOT > 0.6.

African dust models), have similar tendencies in regard to all

data. But all models are strongly low biased for high AOT

events. This shows that while the models are independent

in the meteorology and parameterizations, they nevertheless

succumb to correlated bias overall. As an example of typical

behavior for a well characterized site we turn to Cape Verde

as an example.

6 Results: Cape Verde and Kanpur as examples of

issues related to forecasting significant events

A substantial motivation for operational aerosol forecasting

is natural hazards and significant events forecasting. Thus,

while it is important for models to generally reproduce the

basic characteristics of the aerosol system via good bias and

RMSE scores, it is perhaps equally important for the mod-

els to succeed in identifying significant and unusual events.

Good RMSE scores by nature ensure the models have skill

in predicting typical environments, but consistent bias and

amplitude may cloud a model’s value in more extreme sit-

uations. In the early stage of development we settled on an

AOT of 0.8 to be a key benchmark for warning areas (e.g.,

Fig. 2c, d). For example, the MACC alert system which

is aimed at detecting significant events for air quality ex-

ceedance, uses a threshold of 0.5, which can be shown to cor-

respond to a particulate matter < 10 µm in diameter (PM10) of

approximately 50 µg m−3. The number of days during which

this PM10 value is exceeded is used in European legislation

as a threshold for fining EU countries. The value chosen for

the ICAP-MME is largely subjective, and was agreed upon

after an examination of AERONET data to find logical 2σ

events in heavily polluted regions. However, after deeper in-

vestigation, this became somewhat dissatisfying. In the con-

text of a multi-model ensemble, there are numerous subjec-

tive considerations in combining model products for the ben-

efit of forecasters. For example, one model may have an am-

plitude consistent error (i.e., track AOT extremely well), but

poor bias scores and threat scores. Others may have excellent

amplitudes and biases overall, but have timing issues with

significant events. As always, there is the potential for sam-

pling bias in our observational data set.

To conceptualize the above issues we considered two

sites in detail: Cape Verde and Kanpur. The Cape Verde

AERONET site is a long-standing benchmark location for

dust modeling. With more than 15 years of observations, it

is one of AERONET’s longest running providing not only

satellite and model verification data, but also climatological

aerosol trends. Given the significant amount of attention cen-

ters pay to modeling dust, it is no surprise that Cape Verde is

a high scoring site for all models. In comparison, Kanpur is

the lowest scoring site next to Beijing for the models. Given

that Kanpur has a more contiguous data record than Beijing,

we chose that site for further analysis.

6.1 Cape Verde

Cape Verde’s location as a downwind receptor for African

dust coupled with overall good model performance makes

it a good location to study the nature of event scoring. The

Boolean nature of threat scores is often problematic and there

can be difficulty in this metric in first defining what con-
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Figure 11. Rank histograms for selected sites the entire 1-year study period. Included are sites considered as background or long range

receptor sites (column 1), sites with intermediate loadings (column 2), and sites with high aerosol impact, segregated into all data (column 3)

and those cases with AERONET AOT > 0.6 (column 4). The dominant aerosol type leading to AOTs > 0.6 are listed for sites in column 4.

stitutes an event. For air quality applications, for example,

an event can be referenced to a degree of violation. Near

misses are frequently valuable from a forecasting point of

view, both in magnitude and in temporal offset. Observations

are also problematic, as clear-sky bias can be a problem in

both satellite and ground-based observations, thus leading to

a bias as to when one can verify. We can explore this further

with the time series of AERONET coarse mode AOT and

the ICAP-MME mean for the 1-year study period (Fig. 12a).

Differences in the dust seasonality are clear, with winter and

spring months having a relatively low background with oc-

casional significant events and a higher dust continuum dur-

ing summer months with numerous high-frequency events.

An enlargement is provided in Fig. 12b for the middle time

series month of May. Examination of the data in combi-

nation of error statistics presented in Tables 1 and 2 sug-

gests that indeed the ICAP-MME is performing well. Scat-

terplots of the 12 and 84 h forecasts for 00:00 UTC against

AERONET (Fig. 12c), representing 24 and 96 h since the last

satellite data assimilation cycle for the region, are quite good.

However, there are clear outliers worth investigating from an

events perspective.

In interpreting the regression of Fig. 12c, cases far to the

right of the regression lines (7 February, AERONET= 1.15,

ICAP MME= 0.25) tend to be in association with residual

cirrus contamination. Cases studies such as these were visu-

ally verified such as in the right satellite image in Fig. 12a.

While such misses are infrequent, they nevertheless are re-

minders that no verification data set is perfect, and in an un-

supervised verification system, cases such as this can heavily

affect scores. Data points far to the left of the regression line

are false alarm cases where presumably the models far over

predicted a dust event that did not materialize. These cases

are nearly all associated with the 84 h forecast of isolated

wintertime events, or four full days since the last satellite data

assimilation cycle, and thus are purely forecast meteorology

driven. We found that errors dropped to half their previous

value as forecast lengths decreased to about two days as the
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Figure 12. An example of the derivation of threat scores for the

CapeV site. (a) One-year time series of first-day forecasted ICAP-

MME mean AOT with corresponding AERONET coarse mode

AOT. Insets are MODIS RGB images for an actual and artifact dust

event. (b) enlargement of (a) for the month of May 2012; (c) scat-

terplot of forecasted AOT against AERONET; (d) probability dis-

tribution of AERONET and forecasted AOT.

forecast meteorology became more accurate. However, there

are also cases where when we track the peak in dust AOT, this

peak arrives outside of AERONET verification data avail-

ability but within 12 h. This artifact points to the necessity

of loosening our verification criteria for the amplitude and

timing for longer forecasts.

To help further describe the nature of the many Boolean

skill scores, it helps to provide an example for when we have

the most confidence: forecasts within 24 h. Our first chal-

lenge is to define the threshold to be implemented. This can

be done uniformly for all sites (AOT > 0.5, 0.8 or 1 etc.), or it

can be site specific, based on the probability of what is locally

considered an extreme event. Figure 12d provides an AOT

probability plot for the 1-year time series of the 12 and 84 h

forecasts. There is generally good agreement on the proba-

bility distribution of AOT between observations and corre-

sponding 12 and 84 h forecasts well past one geometric stan-

dard deviations (84.1 AOT percentile= 0.50) to just short of

two (97.7 AOT percentile= 0.83). These lines are marked on

Fig. 12a and b as well as the common 1.5σg level (93 AOT

percentile= 0.62).

The difficulty in skill scores becomes apparent if we con-

sider the 2σg level as a threshold. At 2σg there are six events

recorded by AERONET (3 in May, Fig. 12b), all of which

were captured by the ICAP MME mean at 12 and 84 h. How-

ever, at 12 h, there were six false alarms. This leads to a TS

or CSI of 0.5, and ETS of 0.48. This is a somewhat middling

score. However, in five of the six false alarm cases, the obser-

vations reached at least 1.5σg with the remaining one above

the 1σ level. For 84 h forecasts, the false alarm rate goes up

to 11, but even here six reach the 1.5σg level. If we use 1.5σg

as a threshold, the 12 h TS goes up to 0.65 and the ETS to

0.58.

Between the above analysis and Fig. 12c the model clearly

has skill. However, the Boolean nature of the metrics can

make interpretation difficult, particularly when one applies

them uniformly over the globe. This situation is common

in the Numerical Weather Prediction realm, and in response

dozen of skill scores have been developed, including those

with fuzzy neighborhood boundaries such as spatial multi-

event contingency tables and fractional skill scores to (e.g.,

http://www.cawcr.gov.au/projects/verification/). If we move

further to take advantage of the natural probabilistic appli-

cations of a multi-model ensemble, versions of Brier scores

or the continuous rank probability score may also be appro-

priate. These are directions of research for the next set of

multi-year ensemble data.

6.2 Kanpur

In contrast to Cape Verde, Kanpur represents a site with over-

all poor event scoring by all models for the common metrics

as bias, RMSE and threat score. In this case, Kanpur provides

a complex overall environment over land in opposition to the

more simplified dust environment at the nominally oceanic

site of Cape Verde. Kanpur district has a high population

density (∼ 4.5 million), has high industrial and biofuel emis-

sions, is a receptor for dust from all along the Indo–Gangetic

plane and as is key here, and a complex aerosol meteorology,

particularly in wintertime (e.g., Nair et al., 2007; Gautam et

al., 2007, 2009, 2011; Kar et al., 2010; Arola et al., 2013).

Given such complexity, it is little wonder that the global

models have great difficulty with the region in the context

of common metrics. But, after further examination and con-

sideration of the nature of global modeling, we find that bulk

metrics do not entirely describe model performance, particu-

larly in regard to extreme events.

Figure 13 provides data of a similar nature as shown in

Fig. 12 for Cape Verde. Although here we provide fine mode

data for the four multi-species models, and all five models

under current analysis with dust. Beginning with fine mode

comparison, we find that the 12 h forecast nominally tracks

the overall nature of the regions aerosol pattern, although

with a significant low bias in the winter months. Also in
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Figure 13. ICAP MME-AERONET comparisons for the Kanpur

India site. Included are the (a) fine mode and (b) dust components.

Marked are the 1, 1.5 and 2 geometric standard deviation lines.

Also shown are scatterplots against 12 and 84 h forecasts for (c) fine

mode and (d) dust, respectively.

the winter months is when we find significant spikes in fine

mode AOT. These are quite often haze events created dur-

ing the evaporation of winter time stratocumulus (Eck et al.,

2010). Under such circumstances, global models are unlikely

to cope with such strong boundary layer meteorological forc-

ing. In contrast, we see that in the spring, when pollution

events are more regional, the models have some skill in at

least simulating event onset, albeit with a significant low

bias. When taken as a whole, skill scores for correlations are

reasonable for 12 h forecasts, or nominally 18–24 h since the

last satellite observations were assimilated (r2
= 0.58). How-

ever, by the time forecasts reach 3–4 days, models appear to

lose all fine mode skill.

For dust, the models appear in general to perform better.

Regressions are decent at both 12 and 84 h (r2
=∼ 0.6). But

in this case, there are no events. The distribution of coarse

mode AOT observations are so tight, there are few to no ob-

servations past the 1.5 standard deviation level. At one geo-

metric standard deviation, exceedances are in a continuum.

Thus, a threat score does not provide sufficient context to

evaluate models in this environment.

Finally, Kanpur highlights a further situation with verifi-

cation data. While the SDA algorithm does an admirable job

separating fine and coarse mode AOT, in this case coarse

mode is a combination of aeolian dust (which is generally

the context of dust in the global models), and regional coarse

mode species, including agriculture, industrial or road dust

as well as perhaps droplets in the cloud burn off phase. This

seems to be particularly true in the winter periods. Thus,

is the use of the term coarse mode cannot be used synony-

mously with dust in classical terms, and thus provides an ad-

ditional challenge to the global models.

7 Discussion and conclusions

This paper describes the basic climatological characteristics

and evaluation of the world’s first global multi-model aerosol

forecast model, the International Cooperative for Aerosol

Research Multi-Model ensemble: ICAP-MME. At the time

of writing this paper, there were four core multi-species

models (ECMWF, JMA MASINGAR, NASA GEOS-5, NRL

NAAPS) and seven dust models (aforementioned four, plus

NMMB/BSC-CTM, NOAA NGAC, and UKMO Unified

Model) running daily at 00:00 UTC with 24 h latency. Here

we focus on the first year of data, from 1 December 2011

to 30 November 2012 when all four multi-species models

plus NGAC were providing data in near-real time. We expect

rapid evolution in the individual member models based on

these results and similar exercises with ICAP-MME prod-

ucts. Thus, the error metrics are likely out of date for the

better at the publishing of this initial research. Further, as

models are added to the ICAP-MME we expect better per-

formance. The initial state of the ICAP-MME is worth docu-

menting for base lining purposes, and the general tendencies

in the state of global aerosol forecasting models are worth

discussing. These are listed here as follows:

1. Overall performance via RMSE: as we expected when

we first constructed the ICAP-MME, the ensemble

mean outperforms all of its individual members in

RMSE against AERONET globally throughout the fore-

cast period. Typically RMSE runs 40–60 % of the mean

AOT with coarse mode prediction outperforming fine

mode. Given that RMSE has both a bias and variance

component, and the ensemble mean bias is by defini-

tion in the middle of the members, the improvement in

variance prediction is significant. Like other ensemble-

based systems like the tropical cyclones (Leslie and

Fraedrich, 1990; Mundell and Rupp, 1995; Goerss,

2000; DeMaria et al., 2006; Kaplan and DeMaria 2001;

Sampson, 2008) and GCMs (e.g., Meehl et al., 2007;

Knutti et al., 2010; Reichler and Kim 2008), we ex-

pect that as individual models improve and are added,

so will the consensus. Indeed, even though NGAC has
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average performance relative to other dust models, it did

improve the overall RMSE of the ICAP-MME for dust.

2. Overall performance via bias: in general all models and

thus the ensemble mean capture the major climatolog-

ical aerosol features around the globe. However, while

the models perform well in RMSE, there is a tendency

for the modeling community to have a low bias in AOT,

particularly for significant events. Conversely, for more

moderate or clean conditions, fine mode AOT is over-

estimated. These biases seem to be persistent in the

modeling community, and documentation dates back to

the AeroCom (Aerosol Comparisons between Observa-

tions and Models) comparisons of Kinne et al. (2006).

This persistence in low bias dust in models is perplex-

ing, because one would think the community would

tune around the observation. In the case of the forecast

models, the assimilation of MODIS and verification via

AERONET are ubiquitous. Further, regression is prob-

ably the most commonly used tuning metric, and as it

is driven by the largest magnitude values we were sur-

prised to find the under-representation of AOT. We can

surmise that in some heavily polluted urban site like

Beijing, large-scale models cannot represent fine-scale

features nor are there observations for extreme events

(the maximum AOT measurable by AERONET is ∼ 5).

But for regional polluted sites compared to urban coun-

terparts (such as Gandhi College vs. Kanpur) the biases

remain. It may represent an overall reluctance by model

developers to perturb or tune static emissions inven-

tories. Thus, this persistent bias among models might

also have a psychological supporting factor too in the

way scientists interpret pollution data vs. other species

such as dust and biomass burning. In regard to ICAP-

MME, all core models have satellite data assimilation

in some cases, remote-sensing biases can then work

their way into forecast climatological biases. Even so,

some species remain problematic. There is more diver-

sity in climatological biomass burning AOTs than any

other species. Despite the low AOTs, diversity in sea

salt AOTs in the high mid-latitudes is also large. Track-

ing this effect is a goal of future efforts.

3. Site specific performance: AERONET sites were picked

by mutual agreement by the model developers based

on data representativeness and availability. There are

clearly regions of relative high and low model perfor-

mance. Cape Verde is a widely used AERONET site

for monitoring dust emissions from the Sahara, and

models in general tune to this site to great effect even

though the benefit of data assimilation is marginal out-

side of the analysis period. Aerosol receptor sites or

those sites which will have the benefit of data assimi-

lation also tend to score well such as Palma de Mallorca

and Ragged Point. There are also sites with universal

difficulty. Models clearly have more difficulty with sites

in the mixed fine and coarse mode environments of the

Sahel, India and polluted cities of Asia. Cloud cover im-

pacts on data assimilation are also likely a factor in sites

such as Singapore and Chiang Mai.

4. Future directions: this is the first paper on the ICAP-

MME and there are clearly many directions in which

studies may proceed. Perhaps the most common ques-

tion received by developers on future direction is

whether we intend to convert the ICAP-MME to a

super ensemble where models are weighted by their

scores (e.g., Krishnamurti et al., 1999; Casanova and

Ahrens, 2009). Experience has shown however that

equal weighting in a consensus style appears to pro-

vide the most robust results overall, and this is backed

up on both practical and theoretical grounds (DelSole et

al., 2013). Further, we frequently see regional improve-

ments to ensemble members as the models develop, and

different models score differently by region or type of

event. In the operational realm reanalyses cannot al-

ways be generated and significant events by nature are

so rare that tuning will likely be unrepresentative. Thus,

for all of these reasons an operational super ensemble

is impractical at this time, although in the future adap-

tive systems may be possible. Nevertheless, the under-

lying premise that individual models be continuously

scored uniformly is highly relevant to the field, particu-

larly for major events. Now that a common data set has

been generated developers are now in a position to agree

upon standard metrics and protocols to ensure that per-

formance improvement and best practices are cleanly

documented across models. A second area for future

direction related to metrics is to take advantage of the

probabilistic nature of the ICAP-MME. Already con-

sensus threat scores and warning areas have been de-

fined. These clearly need to be explored further. Finally,

given that the ICAP-MME members share some devel-

opment legacy and at times exhibit similar forecast out-

comes, we intend to probe the relative independence of

the models.
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Appendix A: Member model descriptions

Provided in the Appendix are short narratives of individ-

ual model descriptions provided by their developers. We

begin with the four core multi-species model developers

(ECMWF MACC, FNMOC/NRL NAAPS, JMA- MASIN-

GAR, NASA GMAO GEOS-5) followed by the three dust-

only models (NMMB/BSC-CTM, NOAA NCEP NGAC, and

UKMO Unified Model).

A1 Multi-species models

A1.1 ECMWF MACC

Starting in 2008, ECMWF has been providing daily aerosol

forecasts including dust as part of the EU-funded projects

GEMS, MACC and MACC-II. All data are publicly avail-

able online at http://www.copernicus-atmosphere.eu. In the

near future, these forecasts will be available operationally as

part of the EU Copernicus Atmospheric Services which pro-

vides predictions of global atmospheric composition and re-

gional European air pollution. The current model resolution

is ∼ 80 km, and it is envisaged that this will be increased to

∼ 40 km in the operational phase expected to start in 2015.

A detailed description of the ECMWF forecast and anal-

ysis model including aerosol processes is given in Mor-

crette et al. (2009) and Benedetti et al. (2009). The ini-

tial package of ECMWF physical parameterizations dedi-

cated to aerosol processes mainly follows the aerosol treat-

ment in the LOA/LMD-Z (Laboratoire d’Optique Atmo-

spherique/Laboratoire de Météorologie Dynamique Model)

model (Boucher et al., 2002; Reddy et al., 2005). Five types

of tropospheric aerosols are considered: sea salt, dust, or-

ganic and black carbon and sulfate aerosols. Prognostic

aerosols of natural origin, such as mineral dust and sea salt

are described using three size bins. For dust, bin limits are

at 0.03, 0.55, 0.9 and 20 microns, while for sea salt bin lim-

its are at 0.03, 0.5, 5 and 20 microns. Emissions of dust de-

pend on the 10 m wind, soil moisture, the UV–visible com-

ponent of the surface albedo and the fraction of land cov-

ered by vegetation when the surface is snow free. A correc-

tion to the 10 m wind to account for gustiness is also in-

cluded (Morcrette et al., 2008). Sea salt emissions are di-

agnosed using a source function based on work by Guelle

et al. (2001) and Schulz et al. (2004). In this formulation,

wet sea salt mass fluxes at 80 % relative humidity are in-

tegrated for the three size bins, merging work by Monahan

et al. (1986) and Smith and Harrison (1998) between 2 and

4 mm. Sources for the other aerosol types, which are linked to

emissions from domestic, industrial, power generation, trans-

port and shipping activities, are taken from the SPEW (Spe-

ciated Particulate Emission Wizard), and EDGAR (Emission

Database for Global Atmospheric Research) annual-mean or

monthly mean climatologies. More details on the sources of

these aerosols are given in Dentener et al. (2006). Emissions

of OM (organic matter), BC and SO2 linked to fire emis-

sions are obtained using the Global Fire Assimilation Sys-

tem (GFAS) based on MODIS satellite observations of fire

radiative power, as described in Kaiser et al. (2012).

Several types of removal processes are considered: dry

deposition including the turbulent transfer to the surface,

gravitational settling, and wet deposition including rainout

by large-scale and convective precipitation and washout of

aerosol particles in and below the clouds. The wet and dry

deposition schemes are standard, whereas the sedimentation

of aerosols follows closely what was introduced by Tomp-

kins (2005) for the sedimentation of ice particles. Hygro-

scopic effects are also considered for organic matter and

black carbon aerosols.

MODIS AOT data at 550 nm are routinely assimilated in

a 4-D Var framework which has been extended to include

aerosol total mixing ratio as extra control variable (Benedetti

et al., 2009). A variational bias correction for MODIS AOD

is implemented based on the operational setup for assimi-

lated radiances following the developments by Dee and Up-

pala (2009). The bias model for the MODIS data consists of

a global constant that is adjusted variationally in the mini-

mization based on the first-guess departures. Although sim-

ple, this bias correction works well in the sense that the

MACC analysis matches well the debiased MODIS obser-

vations. The observation error covariance matrix is assumed

to be diagonal, to simplify the problem. The errors have been

chosen based on the departure statistics and are prescribed as

fixed values over land and ocean for the assimilated observa-

tions. The aerosol background error covariance matrix used

for aerosol analysis was derived using the Parrish and Der-

ber method (also known as NMC (National Meteorological

Center, now National Centers for Environmental Prediction)

method; Parrish and Derber, 1992) as detailed by Benedetti

and Fisher (2007). This method was long used for the defini-

tion of the background error statistics for the meteorological

variables and is based on the assumption that the forecast dif-

ferences between the 48 h and the 24 h forecasts are a good

statistical proxy to estimate the model background errors.

A1.2 FNMOC/NRL NAAPS

The Navy Aerosol Analysis and Prediction System (NAAPS)

is the US Navy’s offline chemical transport model running

with dust, smoke, sulfate and sea salt at 1◦×1◦/27 levels

based on the Danish Eulerian Hemispheric Model (Chris-

tensen, 1997; Witek et al., 2007). NAAPS has generated

quasi-operational forecasts since 1999 at the Naval Research

Laboratory (NRL; http://www.nrlmry.navy.mil/aerosol), but

in 2008 became fully operational global at Fleet Numeri-

cal Meteorology and Oceanography Center (FNMOC; http:

//www.usno.navy.mil/FNMOC/). At the time of writing this

paper, NAAPS was in the process of a major revision change,

including an increase in resolution to 1/3◦, new meteorology

through NAVGEM (Navy Global Environmental Model), up-
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dated data assimilation and improved fire emissions. For this

study, an intermediate version of the model is used for con-

sistency. The 1◦×1◦ model is driven by the 0.5◦ Navy Oper-

ational Global Analysis and Prediction System (NOGAPS;

Hogan and Rosmond, 1991). A first order approximation

of secondary organic aerosol (SOA) processes is adopted in

which production of SOA from its precursors is assumed to

be instant and included with the original sulfate species to

form a combined pollution species. Anthropogenic emissions

come from the ECMWF MACC inventory (Lamarque et al.,

2010). Smoke from biomass burning is derived from near-

real-time satellite-based thermal anomaly data used to con-

struct smoke source functions (Reid et al., 2009; Hyer et al.,

2013). In the NAAPS version for the ensemble, dust is emit-

ted dynamically and is a function of modeled friction veloc-

ity to the fourth power, surface wetness and surface erodibil-

ity, which in this model run is adopted from Ginoux (2001)

with regional tuning. Sea salt modeling in ensemble version

of NAAPS is the same as Witek et al. (2007) and sea salt

emission is driven dynamically by sea surface wind. Analysis

fields assimilate quality controlled collection 5 MODIS AOT

(Zhang and Reid, 2006; Zhang et al., 2008, Hyer et al., 2011)

with minor corrections from Multi-angle Imaging Spectrora-

diometer (MISR). Aerosol wet deposition is constrained at

analysis time with satellite retrieved precipitation within the

tropics (Xian et al., 2009).

A1.3 JMA MASINGAR

The Japan Meteorological Agency (JMA) has been provid-

ing the Aeolian dust information to the general public via its

website (http://www.jma.go.jp/en/kosa/) since January 2004.

The operational numerical dust forecast in JMA is based

on the Model of Aerosol Species in the Global Atmosphere

(MASINGAR) (Tanaka et al., 2003), which is coupled with

the MRI (Meteorological Research Institute)/JMA98 AGCM

(atmospheric general circulation model). The model includes

five aerosol species, namely, sulfate (and its precursors),

black carbon, organic aerosols, sea salt and mineral dust.

The model resolutions were set to a T106 Gaussian hor-

izontal grid (approximately 1.125◦× 1.125◦) and 30 ver-

tical layers from the surface to a height of 0.4 hPa. Dust

and sea salt particles are logarithmically divided into ten

discrete size bins from 0.1 to 10 µm in radius. The opera-

tional version of MASINGAR calculates the emission flux

of dust as a function of the third power of 10 m wind ve-

locity (Gillette, 1978), soil moisture, soil type, snow cover

and vegetation cover. Anthropogenic emissions curing this

study period are taken from the Representative Concentra-

tion Pathways Database (RCP), but have since transitioned

to using MACCity. The ICAP-MME version of MASINGAR

used updated dust aerosol module based on the saltation-

bombardment dust emission theory, which is described in

Tanaka and Chiba (2005). The transport of aerosol is calcu-

lated with 3-D semi-Lagrangian advection, subgrid vertical

diffusion, moist convective transport and gravitational set-

tling. Removal processes of aerosol include rainout, washout

and dry deposition. JMA is planning to update the opera-

tional dust forecast model to be based on the latest global

climate model MRI-CGCM3 (Meteorological Research In-

stitute coupled general circulation model) (Yukimoto et al.,

2012).

A1.4 NASA GEOS-5

The Goddard Earth Observing System model, version 5

(GEOS-5), is the latest version of the NASA Global Mod-

eling and Assimilation Office (GMAO) Earth system model

(Rienecker et al., 2008). GEOS-5 serves NASA (1) as a

state-of-the-art modeling tool to study climate variability

and change, (2) as a provider of research quality reanaly-

ses for use by NASA instrument teams and the scientific

community at large and (3) as a source of near-real-time

forecasts of aerosol and atmospheric constituents in sup-

port of NASA aircraft campaigns (e.g., SEAC4RS, ARC-

TAS, HS3, DISCOVER-AQ). GEOS-5 includes components

for atmospheric circulation and composition (including at-

mospheric data assimilation), ocean circulation and biogeo-

chemistry, and land surface processes. Components and in-

dividual parameterizations within components are coupled

under the Earth System Modeling Framework (ESMF, Hill

et al., 2004). GEOS-5 has a mature atmospheric data as-

similation system that builds upon the Grid-point Statistical

Interpolation (GSI) algorithm jointly developed with NCEP

(Rienecker et al., 2008) and is currently evolving into a hy-

brid ensemble-variational assimilation system. The version

of GEOS-5 documented here is run in near-real time at a

0.25◦×0.3125◦ latitude× longitude horizontal spatial reso-

lution on 72 hybrid sigma levels from the surface to approx-

imately 85 km. In addition to traditional meteorological pa-

rameters (winds, temperatures, etc.; Rienecker et al., 2008),

GEOS-5 includes modules to represent aerosols (Colarco

et al., 2010) and tropospheric–stratospheric chemical con-

stituents (Pawson et al., 2008), and their respective radiative

feedback. Aerosols are handled through a version of the GO-

CART (Chin et al., 2002) run online and radiatively coupled

in GEOS-5. GOCART treats the sources, sinks and chem-

istry of dust, sulfate, sea salt and black and organic carbon

aerosols. Aerosol species are assumed to be external mix-

tures. Aerosol and precursor emissions are based on a num-

ber of sources. Biofuel emissions of black and organic car-

bon are based on Park et al. (2003) with emissions from ship-

ping based on EDGAR. Other anthropogenic sources fol-

low from Streets et al. (2009). For SO2 we have anthro-

pogenic emissions from EDGAR except for aircraft emis-

sions, which are based on the NASA AEAP program. Natu-

ral sources of organic carbon are derived from the GEIA ter-

pene inventory (assuming 10 % conversion to secondary or-

ganic aerosol). DMS emissions (converted to SO2 and then

to sulfate) are based on Kettle et al. (1999). Dust and sea
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salt emissions are as in Colarco et al. (2010). Total mass

of sulfate and hydrophobic and hydrophilic modes of car-

bonaceous aerosols are tracked, while for dust and sea salt

the particle size distribution is explicitly resolved across five

non-interacting size bins for each. Both dust and sea salt have

wind-speed dependent emission functions, while sulfate and

carbonaceous species have emissions principally from fossil

fuel combustion, biomass burning and biofuel consumption,

with additional biogenic sources of organic carbon. Sulfate

has additional chemical production from oxidation of SO2

and dimethyl sulfide (DMS), as well as a database of volcanic

SO2 emissions and injection heights. For all aerosol species,

optical properties are primarily from the commonly used Op-

tical Properties of Aerosols and Clouds data set (OPAC, Hess

et al., 1998). Except for dust, optical properties are derived

under the assumption of spherical particles. Our dust optical

properties data set incorporates non-spherical dust properties

based on Meng et al. (2010). GEOS-5 is driven by biomass

burning emissions from the Quick Fire Emission Data set

(QFED, Darmenov and da Silva, 2013). In near-real time,

GEOS-5 includes assimilation of AOT observations from the

MODIS sensors on both Terra and Aqua satellites. Based on

the work of Zhang and Reid (2006) and Lary et al. (2010), we

originally developed a back-propagation neural network to

correct observational biases related to cloud contamination,

surface parameterization and aerosol microphysics. This em-

pirical algorithm has been adapted to retrieve AOT directly

from cloud-cleared MODIS reflectances. Online quality con-

trol is performed with the adaptive buddy check of Dee

et al. (2001), with observation and background errors esti-

mated using the maximum likelihood approach of Dee and

da Silva (1999). Following a multi-channel AOT analysis,

three-dimensional analysis increments are produced explor-

ing the Lagrangian characteristics of the problem, generat-

ing local displacement ensembles intended to represent mis-

placements of the aerosol plumes.

A2 Dust-only models

A2.1 NMMB/BSC-CTM

The NMMB/BSC-CTM (Pérez et al., 2011; Jorba et al.,

2012; Spada et al., 2013) is an online chemical weather-

prediction system for meso- to global-scale applications, de-

veloped at the Barcelona Supercomputing Center-Centro Na-

cional de Supercomputación (BSC-CNS) in collaboration

with NOAA/NCEP, NASA Goddard Institute for Space Stud-

ies, the International Research Institute for Climate and So-

ciety (IRI) and the University of California Irvine. BSC-CNS

maintains global and regional dust and sea salt aerosol fore-

casts based on NMMB/BSC-CTM. The BSC-Dust module is

fully embedded into the Non-hydrostatic Multi-scale Model

NMMB developed at NCEP (Janjic et al., 2011; Janjic and

Gall, 2012). It includes a physically based dust emission

scheme, which explicitly takes account of saltation and sand-

blasting processes (White, 1979; Marticorena and Berga-

metti, 1995; Marticorena et al., 1997) and assumes a vis-

cous sublayer between the smooth desert surface and the

lowest model layer (Janjic, 1994; Nickovic et al., 2001). For

the source function, the model uses the topographic prefer-

ential source approach after Ginoux et al. (2001) and the

NESDIS (National Environmental Satellite, Data, and In-

formation Service) vegetation fraction climatology (Ignatov

and Gutman, 1998). It includes an eight-bin size distribution

within the 0.1–10 microns radius range according to Tegen

and Lacis (1996) and radiative interactions (Mlawer et al.,

1997). The NMMB/BSC-Dust model has been evaluated at

regional and global scales (Pérez et al., 2011; Haustein et al.,

2012). Complementing the dust atmospheric aerosol, a sea

salt module (Spada et al., 2013) is implemented through 8

bins in the dry radius interval (0.1–15 microns) to describe

mass concentrations and optical depth. A sub-bin lognormal

approach is assumed to calculate the optical properties of the

particles. Several open-ocean emission schemes are imple-

mented, accounting for bubble-bursting and spume produc-

tion (Gong, 2003; Monahan et al., 1986; Smith et al., 1993;

Mårtensson et al., 2003; Jaeglé et al., 2011). The water up-

take is taken into account by using prescribed growth fac-

tors for different relative humidity values following Chin et

al. (2002). The parameterizations of the aerosol processes

affected by the water uptake (i.e., sedimentation, dry depo-

sition, wet deposition) have been extended to wet particles

from those implemented in the dust module. These develop-

ments are steps forward towards a unified multi-scale chem-

ical weather-prediction system at BSC-CNS. This sea salt

component is not in the ICAP-MME but may be included

at a later date.

A2.2 NOAA NCEP NGAC

Since September 2012 NOAA NCEP has been providing 5-

day global dust forecasts at 1◦×1◦/64 levels once per day

(at 00:00 UTC cycle) from the NEMS GFS Aerosol Com-

ponent (NGAC) system. It includes a five-bin size distribu-

tion with effective radius at 1, 1.8, 3, 6 and 10 microns. The

NGAC is an online global atmospheric aerosol model devel-

oped at NCEP in collaboration with NASA GMAO (Lu et al.,

2010, 2013). The forecast model is the NCEP’s Global Fore-

cast System (GFS) within the NOAA Environmental Model-

ing System (NEMS) infrastructure (Black et al., 2009). The

aerosol component is NASA’s GOCART within GMAO’s

GEOS-5 earth system model (Colarco et al., 2010). While

NGAC has the capability to forecast dust, sea salt, sulfate and

carbonaceous aerosols, the initial NGAC operational produc-

tion in 2012 only generated global dust forecasts. NCEP is

planning to upgrade the operational NGAC in 2015 to in-

clude the full suite of aerosols using real-time fire emissions

from satellites observations.
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A2.3 UKMO Unified Model

The dust forecasts from the UK Met Office are produced

by the global NWP configuration of the Met Office Uni-

fied Model (MetUM). The dust scheme is essentially that of

Woodward (2001) with modifications as described in Wood-

ward (2011) and Collins et al. (2011). The dust emission

scheme is based on Marticorena and Bergametti (1995) and

represents an initial horizontal/saltation flux in a number of

size bins with subsequent vertical flux of bare soil particles

from the surface into the atmosphere. The global NWP model

uses only 2 bins (0.1–2 microns and 2–10 microns) from the

original 9 bins. The magnitude of the emission is a cubic

function of the exceedance of the friction velocity over bare

soil with respect to a threshold value, where this friction ve-

locity is determined from the model wind field and bound-

ary layer structure, and the threshold friction velocity is in-

creased by the presence of soil moisture according to Fé-

can (1999). The conversion from the horizontal flux to the

vertical flux is first limited using the clay fraction in the soil

texture data set, according to Gillette (1978), and then parti-

tioned into the new bins by prescribing the emitted size distri-

bution. Once the dust is lifted into the atmosphere it is trans-

ported as a set of tracers by the model 3-D wind field. John-

son et al. (2011) gave in-depth description and evaluation

of the Met Office dust forecasts, in a local area model over

North Africa. Dust is assimilated in a 4-D Var framework

following Benedetti et al. (2009), using aerosol observations

from MODIS (Collection 5.1) on-board NASA’s Aqua plat-

form. MODIS observations (best quality, dust filtered) are

assimilated only over the land based on MODIS Dark Target

(Kaufman et al., 1997a, b; Levy et al., 2007, 2009) and Deep

Blue (Hsu et al., 2004, 2006) retrievals.
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