
Atmos. Chem. Phys., 15, 2903–2914, 2015

www.atmos-chem-phys.net/15/2903/2015/

doi:10.5194/acp-15-2903-2015

© Author(s) 2015. CC Attribution 3.0 License.

Biases in atmospheric CO2 estimates from correlated

meteorology modeling errors

S. M. Miller1, M. N. Hayek1, A. E. Andrews2, I. Fung3, and J. Liu4

1Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
2Global Monitoring Division, Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration,

Boulder, CO, USA
3Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
4Earth Science Division, Jet Propulsion Laboratory, NASA, Pasadena, CA, USA

Correspondence to: S. M. Miller (scot.m.miller@gmail.com)

Received: 18 August 2014 – Published in Atmos. Chem. Phys. Discuss.: 15 September 2014

Revised: 8 February 2015 – Accepted: 24 February 2015 – Published: 13 March 2015

Abstract. Estimates of CO2 fluxes that are based on at-

mospheric measurements rely upon a meteorology model

to simulate atmospheric transport. These models provide a

quantitative link between the surface fluxes and CO2 mea-

surements taken downwind. Errors in the meteorology can

therefore cause errors in the estimated CO2 fluxes. Meteorol-

ogy errors that correlate or covary across time and/or space

are particularly worrisome; they can cause biases in modeled

atmospheric CO2 that are easily confused with the CO2 sig-

nal from surface fluxes, and they are difficult to characterize.

In this paper, we leverage an ensemble of global meteorol-

ogy model outputs combined with a data assimilation system

to estimate these biases in modeled atmospheric CO2. In one

case study, we estimate the magnitude of month-long CO2 bi-

ases relative to CO2 boundary layer enhancements and quan-

tify how that answer changes if we either include or remove

error correlations or covariances. In a second case study, we

investigate which meteorological conditions are associated

with these CO2 biases.

In the first case study, we estimate uncertainties of 0.5–

7 ppm in monthly-averaged CO2 concentrations, depending

upon location (95 % confidence interval). These uncertainties

correspond to 13–150 % of the mean afternoon CO2 bound-

ary layer enhancement at individual observation sites. When

we remove error covariances, however, this range drops to 2–

22 %. Top-down studies that ignore these covariances could

therefore underestimate the uncertainties and/or propagate

transport errors into the flux estimate.

In the second case study, we find that these month-long

errors in atmospheric transport are anti-correlated with tem-

perature and planetary boundary layer (PBL) height over ter-

restrial regions. In marine environments, by contrast, these

errors are more strongly associated with weak zonal winds.

Many errors, however, are not correlated with a single mete-

orological parameter, suggesting that a single meteorological

proxy is not sufficient to characterize uncertainties in atmo-

spheric CO2. Together, these two case studies provide infor-

mation to improve the setup of future top-down inverse mod-

eling studies, preventing unforeseen biases in estimated CO2

fluxes.

1 Introduction

Scientists increasingly use atmospheric CO2 observations to

estimate CO2 fluxes at Earth’s surface (e.g., Gurney et al.,

2002; Michalak et al., 2004; Peters et al., 2007; Gourdji et al.,

2012). This “top-down” approach contrasts with “bottom-

up” studies that rely primarily on expert knowledge of bio-

logical processes (e.g., Huntzinger et al., 2012; Raczka et al.,

2013). In order to estimate the fluxes, top-down studies typ-

ically require a meteorology model to link fluxes at the sur-

face with measurements taken downwind. Using this link,

one can estimate the fluxes even if the atmospheric measure-

ments do not themselves directly measure the fluxes.

However, both the accuracy and effective resolution of the

flux estimate hinge upon the accuracy of the meteorological
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model. Errors in the meteorological model may (or may not)

bias estimated CO2 fluxes depending upon the error charac-

teristics and the space/timescales of interest.

More specifically, the effect of CO2 transport errors on the

estimated fluxes depends upon two important factors. First,

the flux estimate becomes more uncertain as the CO2 trans-

port error variance (or standard deviation) increases. Top-

down studies that use Bayesian statistics will explicitly ac-

count for these variances when estimating fluxes (e.g., Ent-

ing, 2002; Tarantola, 2005); before estimating the fluxes, the

modeler first estimates the total variance due to an array of

model or data errors – due to imperfect atmospheric trans-

port or imperfect measurements, among many other sources

of error (e.g., Gerbig et al., 2003; Michalak et al., 2005; Ciais

et al., 2011).

Second, the flux estimate becomes more uncertain as the

temporal and/or spatial error covariances increase. As the co-

variances increase, each CO2 measurement effectively pro-

vides less and less independent information to constrain the

surface fluxes. Furthermore, these temporally and/or spa-

tially correlated errors can bias the flux estimate over a region

or over the entire geographic area of interest (e.g., Stephens

et al., 2007).

Quantification of this complex cause-and-effect between

meteorological errors and errors in estimated CO2 fluxes rep-

resents an ongoing research challenge, and a number of ex-

isting studies have characterized different aspects of these

uncertainties. For example, a series of studies known as

TransCom (Atmospheric Tracer Transport Model Intercom-

parison) represents one of the first coordinated projects on

CO2 transport uncertainties (Gurney et al., 2002; Baker et al.,

2006). These early studies used 13 different global atmo-

spheric models and compared differences in top-down CO2

budgets due to atmospheric model differences. Subsequent

to the TransCom project, a number of studies have focused

on the effects of changing vertical mixing and/or planetary

boundary layer height (PBLH) (Gerbig et al., 2008; Williams

et al., 2011; Kretschmer et al., 2012, 2014; Parazoo et al.,

2012; Pino et al., 2012). In general, those papers found that

uncertainties in PBLH can lead to biases of∼ 3 ppm in mod-

eled daytime CO2. Another paper examined the effect of un-

certain horizontal winds (Lin and Gerbig, 2005). The authors

applied a particle-trajectory model at a measurement site

in Wisconsin and found that uncertainties in the horizontal

winds contributed ∼ 6 ppm (standard deviation) to the over-

all CO2 transport uncertainty. In summary, a number of pre-

vious studies have either perturbed individual meteorological

parameters or, in the case of TransCom, sampled transport

uncertainties using 13 preselected atmospheric models.

The present study is particularly concerned with temporal

and/or spatial error covariances in atmospheric CO2 trans-

port. To what extent do CO2 transport errors covary in space

and time? How large are these covariances relative to the

magnitude of the surface CO2 fluxes, and which meteorolog-

ical factors drive large error covariances? These covariances

are often difficult to characterize (e.g., Lin and Gerbig, 2005;

Lauvaux et al., 2009) and are omitted from most existing top-

down efforts.

We explore several facets of these questions using a global

meteorology model ensemble and a meteorology data assim-

ilation system – the Community Atmosphere Model (CAM)

and a Local Ensemble Transform Kalman Filter (LETKF)

(Hunt et al., 2007). Efforts by Liu et al. (2011) and Liu et al.

(2012) extended this meteorological framework to model un-

certainties in atmospheric CO2.

This framework systematically estimates meteorology and

CO2 transport uncertainties to an extent not previously pos-

sible; CAM-LETKF explicitly represents the CO2 transport

uncertainties that remain after assimilating several hundred

thousand meteorology observations at each 6 h model time

step. To accomplish this task, CAM-LETKF uses an ensem-

ble of weather forecasts and optimizes the ensemble to match

available meteorological observations. Furthermore, CAM-

LETKF adjusts the variance of the weather ensemble at each

time step to match the modeling uncertainties implied by the

meteorological observations.

Using this toolkit, we construct several case studies to un-

derstand both the possible magnitude and drivers of CO2

transport error covariances – errors that persist over many

time steps and/or across large regions. The next section de-

scribes CAM-LETKF and these case studies in greater detail.

2 Methods

2.1 The meteorology and CO2 model

The first component of CAM-LETKF is the meteorological

model. We simulate global meteorology using CAM and the

Community Land Model (CLM, version 3.5) run in weather

forecast mode (not climate mode) (Collins et al., 2006; Ole-

son et al., 2008; Chen et al., 2010). Model simulations in this

study have a spatial resolution of 2.5◦ longitude by 1.9◦ lati-

tude with 26 vertical model levels. In most regions, there are

three vertical model levels within the lowest kilometer of the

atmosphere. These model levels are centered at 929.6, 970.6,

and 992.6 hPa over regions where the land/water surface is at

sea level.

We save the global model output at 6 h time incre-

ments. Furthermore, we run the model for two time periods:

January–February 2009 and May–July 2009. The first month

of each run serves as an initial spin-up for the model–data

assimilation system. The next section describes this assimi-

lation in greater detail.

2.2 The meteorological model–data assimilation

framework

The second component of CAM-LETKF is the data assim-

ilation and model optimization framework. This framework

serves two purposes. First, the LETKF optimizes modeled
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Figure 1. Average CarbonTracker CO2 fluxes (version 2011oi) for (a) February and (b) July 2009. The fluxes include biosphere, ocean,

fossil fuel, and biomass burning fluxes (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2011_oi).

meteorology (CAM-CLM) to match available observations.

Second, the LETKF uses an ensemble of model forecasts to

represent model uncertainties that remain after data assim-

ilation (Hunt et al., 2004, 2007). We define each ensemble

member and the mean of the entire ensemble as follows:

xi = x̄+Xi where i = 1. . .k, (1)

where xi (m× 1) is a single model ensemble member, x̄

(m× 1) is the mean of the model ensemble, and Xi (m× k)

refers to the ith column of the matrix that defines the en-

semble spread. In this paper, the variable m refers to the

total number of model parameters – the model estimate for

a variety of meteorological variables, concatenated across the

globe and across all 6-hourly time steps in a given model run.

Furthermore, we use k = 64 total ensemble members in this

setup, as was done in Liu et al. (2011) and Liu et al. (2012).

Using this ensemble, CAM-LETKF steps through time in

sequential 6 h intervals. First, the model ensemble at time t is

optimized to match meteorological data (Hunt et al., 2007).

To this end, we assimilate the same meteorological observa-

tions used in the National Centers for Environmental Predic-

tion – Department of Energy reanalysis 2 (Kanamitsu et al.,

2002): temperature (in situ and satellite), zonal wind (in situ

and satellite), meridional wind (in situ and satellite), surface

pressure (in situ), and specific humidity (in situ). At each

6 h model time step, we assimilate between ∼ 180 000 and

330 000 observations globally. At that juncture, the ensem-

ble mean associated with time t , x̄(t), represents the model

best guess and the ensemble members, x̄(t)+X(t), collec-

tively represent the uncertainties in the modeled meteorol-

ogy (i.e., posterior variances and covariances). Second, we

run 6 h CAM-CLM forecasts using these realizations as ini-

tial conditions – a total of 64 model forecasts. The 6 h cycle

of data assimilation and model forecast then begins again.

This model ensemble, by design, is guaranteed to reflect

actual uncertainties in modeled meteorology; at each 6 h

model time step, we adjust the ensemble variance such that

this variance matches against the model–data residuals (Li

et al., 2009; Miyoshi, 2011). The Supplement describes this

procedure, known as adaptive covariance inflation.

The model ensemble also accounts for both spatial and

temporal covariances in modeled meteorological uncertain-

ties; meteorological errors within one ensemble member can

easily persist over many time steps. This continuity occurs

because the optimized ensemble members from the one time

step become the initial conditions for the weather forecast at

the next time step. For example, if the PBL height in one en-

semble member is lower than the ensemble average at a given

time step, it will likely be lower than average at the next time

step. Similarly, if the PBL height in one ensemble member

is lower than average over one grid box, it will likely also be

lower than the average over an adjacent grid box.

Certain meteorological uncertainties, however, may not al-

ways be captured by the assimilation system, particularly un-

certainties that do not manifest in the model–data residuals.

For example, CAM-LETKF will not fully characterize un-

certainties due to different PBL schemes (e.g., Yonsei versus

Mellor–Yamada–Janjic) or due to other structural model dif-

ferences. Furthermore, LETKF cannot spatially resolve un-

certainties that occur at sub-grid scale (e.g., turbulent eddies

or numerical diffusion). For further technical detail on the

LETKF and adaptive covariance inflation, refer to the Sup-

plement, Hunt et al. (2004, 2007), Li et al. (2009), Liu et al.

(2011), or Miyoshi (2011).

2.3 CO2 transport error variances and covariances

The CAM-LETKF system described above estimates not

only meteorological uncertainties but also uncertainties in

CO2 transport. In this study, CO2 is a passive tracer that is

not part of the data assimilation, so any uncertainties in CO2

concentrations are solely due to uncertainties in atmospheric

transport.

We drive all model simulations with a published CO2

flux estimate from CarbonTracker (CT), version CT2011oi

(Fig. 1; Peters et al., 2007, http://carbontracker.noaa.gov).

CT is a commonly used global CO2 flux estimate created
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by the US National Oceanic and Atmospheric Administra-

tion (NOAA). NOAA scientists optimize CT fluxes to match

atmospheric CO2 data, so the flux estimate is consistent with

actual observations (Peters et al., 2007). The original CT

fluxes have a temporal resolution of 3 h. We average these

fluxes to a 6 h resolution for all of the CAM simulations in

this study.

We subsequently estimate 6-hourly CO2 transport uncer-

tainties using this setup. These uncertainties are defined as

the difference between the top and bottom of the 95 % con-

fidence interval, computed from the 64 model realizations

(e.g., Fig. 2). To make this estimate, we calculate the 2.5th

and 97.5th percentiles of each row in X[CO2]
, where the sub-

script [CO2] refers to the atmospheric CO2 concentrations

estimated by the ensemble. The remainder of the methods

section applies this CO2 and meteorology modeling frame-

work to two case studies.

2.4 Case study 1: the magnitude of temporally and

spatially covarying atmospheric transport errors

relative to a CO2 flux estimate

This case study explores the importance of persistent, co-

varying transport errors and the magnitude of those errors

relative to the CO2 fluxes. In particular, we estimate uncer-

tainties in monthly mean, afternoon, modeled CO2 concen-

trations at a number of in situ atmospheric observation sites.

In one case, we include temporal and/or spatial covariances

in the atmospheric transport errors, and in another case we re-

move these covariances. We then compare these uncertainties

against the modeled afternoon CO2 boundary layer enhance-

ment to understand the magnitude of these errors relative to

the surface fluxes.

The uncertainty in monthly-averaged CO2 concentrations

serves as a measure of how transport errors correlate or co-

vary across time. Uncorrelated transport errors will aver-

age out, to a large degree, over many model time steps, but

temporal error covariances prevent the errors from averag-

ing down over time. Furthermore, CO2 budgets are often re-

ported in month-long increments (e.g., Gourdji et al., 2012,

and CT), so this time window is a relevant benchmark with

respect to inverse modeling studies.

We calculate uncertainties in the monthly-averaged model

output (including error covariances) via several steps. First,

we select out the rows of X[CO2]
that correspond to afternoon

observations (13:00–19:00 LT) for a given month at an in situ

CO2 observation site. Second, we calculate the mean of each

column in X[CO2]
. Each column corresponds to a different

ensemble member. The resulting vector of length 64 is the

difference between each ensemble member and the best esti-

mate (x̄), averaged at the monthly scale. Lastly, we use this

vector to compute a confidence interval in monthly-averaged,

modeled CO2 (the 97.5th minus 2.5th percentiles).

We subsequently remove covariances in the CO2 transport

errors and recalculate uncertainties in the monthly-averaged

CO2 concentrations. As described in Sect. 2.2, errors in one

ensemble member can persist over many steps and can persist

across a large geographic region. However, we can remove

these error covariances by randomly reshuffling the elements

of each individual row in X[CO2]
. The variance in modeled

concentrations in any row or at any given time step will re-

main the same. However, each column will no longer rep-

resent a single ensemble member. Rather, each column will

represent a random assortment of different ensemble mem-

bers, and the errors in each column will no longer covary

from one time step to another or one geographic location to

another.

We conduct this analysis at a representative selection of

observation sites in North America, Asia, and Europe. This

setup indicates how errors covary with time at the monthly

scale. In addition, we also conduct the analysis using multi-

ple observation sites; we estimate monthly-averaged uncer-

tainties at the eco-region scale and include all observation

sites that lie within the given eco-region. This latter approach

indicates how errors covary spatially across multiple sites at

the regional scale.

These monthly-averaged uncertainties can then be com-

pared against the afternoon, modeled CO2 increment from

regional surface fluxes. To estimate this increment, we sub-

tract modeled free troposphere, “clean air” concentrations at

600 hPa from concentrations modeled at the surface using

CT fluxes. The concentrations at 600 hPa are not necessar-

ily a perfect measure of clean air concentrations. Rather, this

approach is an approximation similar to that used by inverse

modeling studies in the literature (e.g., Gerbig et al., 2003;

Gourdji et al., 2012).

In summary, case study one explores the magnitude of per-

sistent atmospheric CO2 transport errors or error covariances

relative to the afternoon CO2 signal from surface fluxes. The

next case study, in contrast, explores the meteorological con-

ditions under which these persistent CO2 transport errors

may be more likely to occur.

2.5 Case study 2: which meteorological factors may be

associated with month-long transport biases?

We create a synthetic experiment to explore the meteorolog-

ical conditions under which month-long model biases in at-

mospheric transport may occur. The spatial patterns in the

CO2 transport uncertainties are heavily influenced by spatial

patterns in the CO2 fluxes (Fig. 2). In other words, regions

with large fluxes or large diurnal flux variability also show

higher CO2 transport uncertainties. As a result, it is difficult

to disentangle the effect of different meteorological parame-

ters on CO2 transport uncertainties. Instead, we create a syn-

thetic tracer with constant global emissions in both space and

time. This experiment serves as a lens to explore the possible

effects of different meteorological parameters independent of

the spatiotemporal variability in CO2 fluxes.

Atmos. Chem. Phys., 15, 2903–2914, 2015 www.atmos-chem-phys.net/15/2903/2015/
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Figure 2. The top panels display average 6-hourly CO2 transport uncertainties estimated by CAM-LETKF. The uncertainties (95 % confi-

dence intervals) are for the surface model layer for (a) February and (b) July 2009. The bottom panels (c and d), in contrast, display the

uncertainties in month-long averaged surface CO2 concentrations. Note that these plots include model output from all 24 h of each day. The

Supplement provides analogous figures for daytime- or nighttime-only model output.

To this end, we initialize CAM-LETKF runs with zero

atmospheric concentration of this synthetic tracer and then

run CAM-LETKF forward for 1 month using constant global

emissions (e.g., for both February and July 2009). Any un-

certainties in the atmospheric distribution of this tracer are

solely due to meteorological parameters, not due to the spa-

tial distribution of the underlying fluxes.

Next, we calculate the coefficient of variation (CV) associ-

ated with the monthly-averaged surface concentrations. The

CV is an inverted signal-to-noise ratio; it measures the uncer-

tainty in modeled surface concentrations relative to the aver-

age surface concentration ( σ
µ

). For example, an uncertainty

of 1 ppm in modeled concentrations is most problematic if

the signal from surface fluxes is weak, and a 1 ppm uncer-

tainty is less problematic if the signal from surface sources

and/or sinks is strong.

For this setup, the CV equals the standard deviation in

the monthly-averaged surface concentrations divided by the

monthly surface concentration averaged across all 64 realiza-

tions. We then plot the tracer CV against monthly-averaged

meteorological parameters and their associated uncertain-

ties from CAM-LETKF. These relationships give insight into

the meteorological conditions or meteorological uncertain-

ties that are associated with month-long biases in the mod-

eled synthetic tracer.

3 Results and discussion

3.1 Uncertainties in the 6-hourly modeled CO2

concentrations

Before examining the two case studies in detail, we first pro-

vide context on the CO2 transport uncertainties estimated

with CT fluxes and CAM-LETKF. Figure 2a and b visually

summarize the average 6-hourly CO2 transport uncertainties

in the model surface layer – the difference between the top

and bottom of the 95 % confidence intervals. These figures

show how CO2 transport uncertainties vary across the globe

– from 0.6 to 26 ppm, depending on location. Furthermore,

the transport uncertainties in Fig. 2a and b show several dis-

tinctive features. The largest uncertainties are localized to re-

gions where either the magnitude or the diurnal cycle of the

CT fluxes is largest (e.g., the US Eastern Seaboard and south-

ern Siberia during summertime, the Amazon, the Congo, and

eastern China). CO2 transport uncertainties in the eastern US

and eastern Asia bleed, to a smaller degree, over the adjacent

ocean where surface fluxes are small.

Figure 3 places these transport uncertainties in context of

CO2 data measured at two observation sites in the United

States. These time series plots validate the model’s capacity

to simulate daily variations in CO2 concentrations. Further-

www.atmos-chem-phys.net/15/2903/2015/ Atmos. Chem. Phys., 15, 2903–2914, 2015
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model ensemble. Measurements are from the top inlet height at each

location. In this figure, the model ensemble represents uncertainties

due to atmospheric transport but not other errors (e.g., due to the

fluxes and model resolution).

more, the comparison illustrates the magnitude of the CO2

transport uncertainties relative to the diurnal cycle in CO2

concentrations. For example, the uncertainties at AMT in

July are ∼ 30 % of the diurnal range in the CO2 measure-

ments. Overall, the model ensemble depicted in these plots

usually encapsulates the hourly-averaged measurements. CT

fluxes are estimated using these CO2 observations and the

TM5 transport model (Tracer Model, version 5) (Peters et al.,

2007), so one might expect the CAM model to fit the CO2

observations relatively well. In the instances when the model

ensemble does not encapsulate the hourly-averaged CO2

measurements, one of the many other non-transport error

types could be to blame; the ensemble spread only encom-

passes transport errors and does not include measurement er-

rors, errors due to finite-model resolution, or errors in the

fluxes. Furthermore, these instances could be due to struc-

tural differences between CAM and TM5, including differ-

ences in model resolution. The Supplement provides more

example CO2 model–data comparisons, meteorology model

validation, and data assimilation diagnostics.

3.2 CO2 transport uncertainties at longer timescales

The uncertainty in monthly-averaged CO2 concentrations

provides one measure of how transport errors persist over

time, as discussed in Sect. 2.4. Figure 2c and d display un-

certainties in the month-long average surface concentrations

for February and July 2009. In contrast to the 6-hourly uncer-

tainties, these uncertainties are far more spatially distributed.

This result implies that CO2 transport errors covary over

longer periods of time in remote regions, compared to re-

gions with large surface fluxes. Observation sites that are far

from large fluxes are therefore more likely to produce a bi-

ased CO2 budget than sites near to large surface fluxes. These

“remote” sites see a lower CO2 signal from surface fluxes,

and the transport errors at these locations generally covary

over longer periods of time.

A number of factors may explain these relatively large er-

ror covariances in remote regions. CO2 transport over re-

mote or oceanic regions is likely dominated by synoptic-

scale weather patterns that evolve over multi-day time pe-

riods. When CO2 is transported across the oceans or remote

areas from source/sink regions, atmospheric CO2 transport

errors would likely covary at timescales characteristic of this

synoptic-scale air flow. Over large CO2 source/sink regions,

by contrast, atmospheric concentrations are likely influenced

more strongly by processes that occur over smaller time peri-

ods – grid-scale winds or boundary layer mixing. In addition,

sustained transport errors over regions of large biosphere flux

would be more likely to cancel out at longer timescales – due

to the diurnal cycle of biosphere CO2 uptake and release.

In addition to remote and ocean regions, month-long trans-

port uncertainties are also large across the entire Northern

Hemisphere during February. A subsequent Sect. 3.4 ex-

plores possible reasons why these month-long biases occur.

3.3 Case study 1: the magnitude of temporally and

spatially covarying atmospheric transport errors

relative to a CO2 flux estimate

We construct a case study to understand the importance of

temporal and spatial error covariances relative to the magni-

tude of CO2 surface fluxes. Figure 4 displays the results of

this analysis for a selection of representative global CO2 ob-

servation sites from Asia, Europe, and North America. The

y axis of each bar plot indicates the difference between the

top and bottom of the 95 % confidence interval in monthly

mean modeled concentrations. We first consider the results

when covariances in atmospheric CO2 transport errors are

included in the analysis (dark blue bars) and then compare

those results to a setup in which we remove these error co-

variances (light blue bars).

At this selection of sites, uncertainties in the monthly mean

afternoon concentrations range from 1.6 to 2.8 ppm (dark

blue bars). These uncertainties are lower at marine sites like

RYO and TTA (see definitions in Fig. 4) and are higher at

continental sites located near large biospheric fluxes, sites

like FSD and WBI. Note that this analysis only considers

estimated uncertainties due to meteorology. The capabilities

of the atmospheric observations would deteriorate if other er-

rors were included, such as those due to imperfect measure-

ments or due to finite-model resolution (e.g., Gerbig et al.,

2003; Masarie et al., 2011).
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95% confidence interval: monthly mean modeled concentrations (1pm-7pm local time)
a) February                        b) July
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Figure 4. The uncertainties in monthly-averaged, afternoon atmospheric CO2 (Sects. 2.4, 3.3) at a selection of representative, global CO2

observation sites. Panels (a) and (b) show the results at each site for February and July 2009, respectively. Dark blue bars indicate the

difference between the top and bottom of the 95 % confidence interval when we include error covariances. The light blue bars indicate

the results when we remove these covariances in atmospheric transport errors. Observation sites in the figure include Ryori, Japan (RYO);

Ochsenkopf, Germany (OXK); Talk Tower Angus, UK (TTA); East Trout Lake, Saskatchewan, Canada (ETL); Fraserdale, Ontario, Canada

(FSD); and West Branch, Iowa, USA (WBI). For more information on these observation sites, refer to Table S1 in the Supplement.

Uncertainty in monthly mean modeled concentrations as a percentage of the CO2 increment from surface fluxes
a) February                        b) July
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Figure 5. Uncertainty in monthly-averaged afternoon CO2 concentrations as a percentage of the average afternoon CO2 boundary layer

enhancement. This figure places the uncertainties from Fig. 4 (dark blue bars) in context of the afternoon CO2 increment from surface fluxes.

Larger percentages indicate greater potential for bias in monthly CO2 budgets estimated from atmospheric data.

We subsequently remove temporal covariances in the er-

rors to identify the role that these covariances play in CO2

transport uncertainties at the monthly scale. These results

are displayed as light blue bars in Fig. 4. When we remove

the covariances, the monthly-scale uncertainties are much

smaller – by a factor of 5–20 at the individual observation

sites. If CO2 transport errors were temporally independent,

then errors of opposite sign and different magnitude would

cancel out to a degree when averaged over 1 month (light

blue bars). Instead, the transport errors estimated by CAM-

LETKF covary in time, and this covariance prevents the er-

rors from averaging down (dark blue bars).

A multi-site comparison in Fig. 4 additionally indicates the

role of spatial covariances in the transport errors; the figure

shows the uncertainties in CO2 concentrations when aver-

aged across multiple observation sites within an eco-region.

We compute the monthly-average afternoon concentration

across multiple sites for a given ensemble member. We then

estimate a confidence interval based upon the distribution of

the 64 ensemble members.

The results indicate a large degree of spatial covariance in

the atmospheric CO2 errors. If the errors had no spatial co-

variance, these errors would average down as more and more

observation sites were added to the analysis. However, the

dark blue bars in Fig. 4 have a similar magnitude irrespective

of whether the analysis was conducted on an individual site

or on a collection of many sites from an eco-region; the er-

rors must therefore covary in space. In contrast, the light blue

bars (i.e., error covariances removed) do decrease in magni-

tude at the eco-region scale relative to individual observation

sites. In that case, the errors do average out when more and

more sites are included in the analysis.
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Figure 6. The coefficient of variation (CV, unitless) for the monthly-averaged model surface layer. The results plotted here are for the

synthetic tracer simulation (Sects. 2.5, 3.4). In that simulation, the synthetic fluxes have a constant spatial distribution. The resulting CV

(σ /µ) shows the distribution of month-long, surface-level transport uncertainties independent of the spatial distribution in the fluxes.

Figure 5 places the results of case study one in the context

of the surface fluxes. This figure displays the uncertainties in

atmospheric CO2 transport (the dark blue bars in Fig. 4) as a

fraction of the mean afternoon CO2 boundary layer enhance-

ment. As discussed in Sect. 2.4, this enhancement approxi-

mates the CO2 increment due to regional surface fluxes, and

a similar CO2 increment is used by a number of top-down

studies to estimate the surface fluxes. At the individual obser-

vation sites, the uncertainty in atmospheric CO2 constitutes

13–150 % of the average boundary layer CO2 enhancement.

This percentage is highest at marine sites like RYO and TTA

that see a relatively small boundary layer enhancement, and

the relative magnitude of the uncertainties is smallest at sites

that see a very large enhancement due to large summertime

vegetation fluxes (e.g., at the WBI site). The uncertainties

due to atmospheric transport are substantial relative to the

fluxes but only when we include covariances in transport er-

ror. When we remove these covariances, the uncertainty in

monthly-average afternoon concentrations drops to only 2–

22 % of the boundary layer enhancement.

The results of this analysis hold several implications for

future atmospheric inverse models and/or top-down studies

that optimize CO2 fluxes. Most existing inverse models ac-

count for atmospheric CO2 transport errors in their statistical

setup. In a Bayesian synthesis or geostatistical inverse model,

for example, this information is incorporated into a covari-

ance matrix, and that covariance matrix is used as an input

to the equation that optimizes the CO2 fluxes (e.g., Enting,

2002; Michalak et al., 2004; Ciais et al., 2011). However, the

majority of existing studies assume that this covariance ma-

trix is diagonal (i.e., no error covariances), in part, because

these temporal and spatial covariances are challenging to es-

timate (e.g., Lin and Gerbig, 2005; Lauvaux et al., 2009). The

present study, in contrast, indicates that both temporal and

spatial error covariances play an important role in monthly-

scale errors in atmospheric transport.

Ignoring these error covariances could lead to numerous

challenges. When we add more data at an observation site or

add more sites the analysis, the actual errors do not average

down to the extent that uncorrelated errors would. Rather,

adding more data or more observation sites provides more

limited gains in accuracy. As a result, an inverse model that

overlooks the error covariances will estimate uncertainties in

the CO2 fluxes that are too small, and/or the inverse model

may erroneously map atmospheric transport errors onto the

surface fluxes (e.g., Stephens et al., 2007). Future inverse

modeling studies could better account for these uncertain-

ties by including off-diagonal terms in one of the covariance

matrices used by the inverse model.

The next case study (Sect. 3.4) explores the meteorologi-

cal factors that may be associated with these persistent atmo-

spheric transport errors.

3.4 Case study 2: which meteorological factors are

associated with month-long atmospheric transport

biases?

In this case study, we use a synthetic tracer experiment

(Sect. 2.5) to uncover possible drivers of atmospheric trans-

port biases at month-long timescales. The previous section

(Sect. 3.3) explored the importance of covariances in atmo-

spheric CO2 transport errors, and this section investigates the

meteorological conditions associated with these persistent er-

rors.

Figure 6 displays the CV for monthly-averaged surface

concentrations of the synthetic tracer. The CV, a unitless

quantity, does not just indicate where the uncertainties are

largest. Rather, the CV indicates the magnitude of these un-

certainties relative to the mean modeled tracer concentration.

Arguably, this noise-to-signal ratio measures the influence of

transport uncertainties more effectively than a simple stan-

dard deviation.

This coefficient shows a number of distinctive seasonal

and spatial patterns. Like the uncertainties in monthly-
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Figure 7. Each panel shows the relationship between the synthetic tracer CV (Fig. 6) and various monthly-averaged meteorological param-

eters estimated by CAM-LETKF. The top row (a) shows the results for terrestrial regions while the bottom row (b) displays the results for

ocean/marine regions. Darker colors in each panel indicate a higher density of points. We test the correlation with 60 different parameters

(Table S2 in the Supplement) and plot the two parameters that correlate most closely with the tracer CV over terrestrial and marine regions,

respectively. In all cases, we fit both a standard major axis regression and nonlinear least squares ( 1
[β1×parameter+β2]

) and plot the regression

with the higher correlation coefficient.

averaged CO2 (Fig. 2c, d), the CV in Fig. 6 is highest in ter-

restrial boreal and arctic regions of the Northern Hemisphere

during winter. The CV is lowest over Europe, Australia, and

the Amazon during all seasons.

The CV in Fig. 6 exhibits different spatial patterns over

land and ocean regions, and these respective patterns corre-

late with different sets of meteorological variables. Over the

oceans, for example, high CV values in Fig. 6a are clustered

in zonal bands – along the Equator and along 40◦ S. In con-

trast, high CV values do not cluster into zonal bands to the

same degree over terrestrial regions. Rather, CV values are

often high when temperatures are low (e.g., over Canada or

Russia in February).

We plot the synthetic tracer CV against numerous modeled

meteorological parameters to further understand the possible

drivers behind atmospheric transport uncertainties averaged

over these monthly timescales. To this end, we examine cor-

relations between the tracer CV and 60 different meteoro-

logical parameters, including the uncertainties in the meteo-

rological variables. Figure 7 displays the two variables that

correlate most strongly with the tracer CV over land regions

and over ocean regions, respectively.

Over land regions, meteorological conditions that lead to

high atmospheric stability and low energy are most closely

associated with atmospheric transport errors. For exam-

ple, a high tracer CV is associated with low temperatures

(R2
= 0.45) and low specific humidity (R2

= 0.40). Sim-

ilarly, a high tracer CV is correlated with low net solar

flux (R2
= 0.35), low planetary boundary layer height (R2

=

0.33), and low vertical diffusion diffusivity (R2
= 0.31).

Note that many of these meteorological variables are closely

related to one another, so the individual correlations listed

above are all interrelated.

In addition, several of the meteorological variables exhibit

a nonlinear relationship with the tracer CV, and the poten-

tial for bias in modeled atmospheric transport increases more

quickly in stable atmospheric conditions. For example, the

CV increases more quickly when planetary boundary heights

are low.

In contrast to land regions, the tracer CV over the oceans

is most closely associated with low zonal wind speeds (R2
=

0.29, Fig. 7). Over land regions, that correlation is zero. Un-

certainties in atmospheric transport over the oceans are also

associated with low PBL heights (R2
= 0.25). These two me-

teorological variables explain different patterns in the tracer

CV; PBL heights and zonal wind speeds over the ocean are

not correlated with one another (R2
= 0), so these two pa-

rameters may indicate different processes underlying the at-

mospheric transport errors.

These differences between land and ocean regions may

reflect differences in synoptic-scale circulation. Over the

oceans, high CV values are clustered in zonal bands, and

these clusters often occur at the transition between distinctive

synoptic flow patterns. Modeled atmospheric tracer transport

is more uncertain in these transition regions – at the transi-

tion between southern westerlies and southern trade winds

and at the transition between the North Atlantic trade winds

and the westerlies. Zonal winds over the continents are often

more variable than over the oceans (Fig. S17 in the Supple-

ment), and atmospheric transport uncertainties do not cluster

into the same, distinctive, zonal bands.
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The results of this synthetic tracer experiment hold a num-

ber of potential applications to top-down CO2 flux estima-

tion. The danger of obtaining a biased CO2 budget is likely

higher in regions with consistent low energy and limited ver-

tical mixing. A number of existing studies indicate that un-

certainties in PBLH and vertical mixing are closely tied to

uncertainties in estimated trace gas transport or in estimated

trace gas fluxes (e.g., Stephens et al., 2007; Williams et al.,

2011; Miller et al., 2012; Pino et al., 2012; Kretschmer et al.,

2012). This study further suggests that sustained transport er-

rors due to PBLH are more likely in regions or at times when

PBL heights and mixing are consistently low. The meteoro-

logical model ensemble is not necessarily more uncertain in

these regions (see Figs. S15–S16 in the Supplement). Rather,

the extent to which meteorological uncertainties translate

into tracer transport uncertainties appears to depend, at least

in part, on the stability and net energy input associated with

the boundary layer.

In summary, boundary layer energy and height explain

some of the patterns in the estimated transport errors, but

other patterns are associated with uncertainties in synoptic

flow and are not related to a single meteorological parameter.

In fact, over both terrestrial and oceanic regions, individual

meteorological parameters only explain a maximum of 29–

45 % of the variability in the tracer CV. This result stresses

the utility of a meteorological model to calculate the vari-

ances and covariances in atmospheric transport errors rather

than relying on a single, meteorological proxy.

Note that this study does not account for uncertainties in

bottom-up, biogeochemical flux models due to uncertainties

in driving meteorological variables. For example, process-

based, biogeochemical models of CO2 typically require es-

timates of meteorological variables like humidity, tempera-

ture, or precipitation to compute the surface fluxes. A number

of existing studies have used atmospheric data and/or atmo-

spheric models to explore the meteorological variables that

drive CO2 flux models. For example, Lin et al. (2011) ex-

plored how uncertainties in flux model drivers affected fluxes

estimated for Canadian boreal forests. They found that uncer-

tainties in downward shortwave radiation contributed to the

largest uncertainties in the simulated fluxes. Similarly, nu-

merous studies indicate that both air temperature and humid-

ity are drivers of CO2 fluxes (e.g., Law et al., 2002; Gourdji

et al., 2012). These meteorological variables (e.g., downward

shortwave radiation, temperature, and specific humidity) cor-

relate with the persistent atmospheric transport uncertainties

discussed earlier in this section. A future study could connect

these uncertainties (in the biogeochemical model and in at-

mospheric transport) to gain an even broader picture of how

meteorological uncertainties affect CO2 flux modeling and

ultimately top-down CO2 flux estimates.

4 Conclusions

We use CAM-LETKF to explore the characteristics of corre-

lated or covarying atmospheric CO2 transport errors and the

implications of those errors for CO2 flux estimates. The first

case study examines the relative magnitude of these errors at

the monthly timescale. At this scale, error covariances play

a critical role in the uncertainties in modeled atmospheric

CO2; we find that uncertainties increase by a factor of 5–20

at individual CO2 observation sites when we include the error

covariances in the analysis. These monthly-scale errors cor-

respond to 13–150 % of the afternoon CO2 boundary layer

enhancement, depending on the site in question.

Existing top-down studies often overlook these covari-

ances, and these results imply that atmospheric CO2 mea-

surements contain less information about the fluxes than is

often assumed. As a result, existing inverse models may un-

derestimate the uncertainties in estimated CO2 fluxes and/or

may be vulnerable to unforeseen biases in the estimated

fluxes. Accounting for these correlated errors can be as sim-

ple as modifying one of the covariance matrix inputs in

a Bayesian inverse model.

In a subsequent case study, we investigate the meteorologi-

cal factors associated with month-long biases in atmospheric

transport. The largest short-term CO2 transport errors corre-

late strongly with the location of the largest surface fluxes,

but month-long biases in atmospheric transport are not only

localized to regions with large fluxes. Rather, these biases

may be more likely to occur at observation sites that are

far from large fluxes and in regions with high atmospheric

stability and low net radiation. Over the oceans, biases in

atmospheric transport are also associated with weak zonal

winds. Existing top-down flux studies may be more likely to

estimate inaccurate regional fluxes under those conditions.

However, a large fraction of the estimated atmospheric trans-

port errors cannot be described by a single meteorological

parameter. This result indicates the utility of a meteorologi-

cal modeling system, like CAM-LETKF, to estimate errors in

atmospheric CO2 transport. Through this framework, we can

better understand the connections between uncertain atmo-

spheric transport and uncertainties in CO2 budgets estimated

from atmospheric data.

The Supplement related to this article is available online

at doi:10.5194/acp-15-2903-2015-supplement.
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